xref: /kvm-unit-tests/x86/pmu.c (revision 85c21181f45ca45e3dc7a7ba6551c44f73c70cd2)
1 
2 #include "x86/msr.h"
3 #include "x86/processor.h"
4 #include "x86/apic-defs.h"
5 #include "x86/apic.h"
6 #include "x86/desc.h"
7 #include "x86/isr.h"
8 #include "alloc.h"
9 
10 #include "libcflat.h"
11 #include <stdint.h>
12 
13 #define FIXED_CNT_INDEX 32
14 #define PC_VECTOR	32
15 
16 #define EVNSEL_EVENT_SHIFT	0
17 #define EVNTSEL_UMASK_SHIFT	8
18 #define EVNTSEL_USR_SHIFT	16
19 #define EVNTSEL_OS_SHIFT	17
20 #define EVNTSEL_EDGE_SHIFT	18
21 #define EVNTSEL_PC_SHIFT	19
22 #define EVNTSEL_INT_SHIFT	20
23 #define EVNTSEL_EN_SHIF		22
24 #define EVNTSEL_INV_SHIF	23
25 #define EVNTSEL_CMASK_SHIFT	24
26 
27 #define EVNTSEL_EN	(1 << EVNTSEL_EN_SHIF)
28 #define EVNTSEL_USR	(1 << EVNTSEL_USR_SHIFT)
29 #define EVNTSEL_OS	(1 << EVNTSEL_OS_SHIFT)
30 #define EVNTSEL_PC	(1 << EVNTSEL_PC_SHIFT)
31 #define EVNTSEL_INT	(1 << EVNTSEL_INT_SHIFT)
32 #define EVNTSEL_INV	(1 << EVNTSEL_INV_SHIF)
33 
34 #define N 1000000
35 
36 // These values match the number of instructions and branches in the
37 // assembly block in check_emulated_instr().
38 #define EXPECTED_INSTR 17
39 #define EXPECTED_BRNCH 5
40 
41 typedef struct {
42 	uint32_t ctr;
43 	uint32_t config;
44 	uint64_t count;
45 	int idx;
46 } pmu_counter_t;
47 
48 struct pmu_event {
49 	const char *name;
50 	uint32_t unit_sel;
51 	int min;
52 	int max;
53 } gp_events[] = {
54 	{"core cycles", 0x003c, 1*N, 50*N},
55 	{"instructions", 0x00c0, 10*N, 10.2*N},
56 	{"ref cycles", 0x013c, 1*N, 30*N},
57 	{"llc references", 0x4f2e, 1, 2*N},
58 	{"llc misses", 0x412e, 1, 1*N},
59 	{"branches", 0x00c4, 1*N, 1.1*N},
60 	{"branch misses", 0x00c5, 0, 0.1*N},
61 }, fixed_events[] = {
62 	{"fixed 1", MSR_CORE_PERF_FIXED_CTR0, 10*N, 10.2*N},
63 	{"fixed 2", MSR_CORE_PERF_FIXED_CTR0 + 1, 1*N, 30*N},
64 	{"fixed 3", MSR_CORE_PERF_FIXED_CTR0 + 2, 0.1*N, 30*N}
65 };
66 
67 #define PMU_CAP_FW_WRITES	(1ULL << 13)
68 static u64 gp_counter_base = MSR_IA32_PERFCTR0;
69 
70 char *buf;
71 
72 static inline void loop(void)
73 {
74 	unsigned long tmp, tmp2, tmp3;
75 
76 	asm volatile("1: mov (%1), %2; add $64, %1; nop; nop; nop; nop; nop; nop; nop; loop 1b"
77 			: "=c"(tmp), "=r"(tmp2), "=r"(tmp3): "0"(N), "1"(buf));
78 
79 }
80 
81 volatile uint64_t irq_received;
82 
83 static void cnt_overflow(isr_regs_t *regs)
84 {
85 	irq_received++;
86 	apic_write(APIC_EOI, 0);
87 }
88 
89 static bool check_irq(void)
90 {
91 	int i;
92 	irq_received = 0;
93 	irq_enable();
94 	for (i = 0; i < 100000 && !irq_received; i++)
95 		asm volatile("pause");
96 	irq_disable();
97 	return irq_received;
98 }
99 
100 static bool is_gp(pmu_counter_t *evt)
101 {
102 	return evt->ctr < MSR_CORE_PERF_FIXED_CTR0 ||
103 		evt->ctr >= MSR_IA32_PMC0;
104 }
105 
106 static int event_to_global_idx(pmu_counter_t *cnt)
107 {
108 	return cnt->ctr - (is_gp(cnt) ? gp_counter_base :
109 		(MSR_CORE_PERF_FIXED_CTR0 - FIXED_CNT_INDEX));
110 }
111 
112 static struct pmu_event* get_counter_event(pmu_counter_t *cnt)
113 {
114 	if (is_gp(cnt)) {
115 		int i;
116 
117 		for (i = 0; i < sizeof(gp_events)/sizeof(gp_events[0]); i++)
118 			if (gp_events[i].unit_sel == (cnt->config & 0xffff))
119 				return &gp_events[i];
120 	} else
121 		return &fixed_events[cnt->ctr - MSR_CORE_PERF_FIXED_CTR0];
122 
123 	return (void*)0;
124 }
125 
126 static void global_enable(pmu_counter_t *cnt)
127 {
128 	cnt->idx = event_to_global_idx(cnt);
129 
130 	wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL) |
131 			(1ull << cnt->idx));
132 }
133 
134 static void global_disable(pmu_counter_t *cnt)
135 {
136 	wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL) &
137 			~(1ull << cnt->idx));
138 }
139 
140 static void __start_event(pmu_counter_t *evt, uint64_t count)
141 {
142     evt->count = count;
143     wrmsr(evt->ctr, evt->count);
144     if (is_gp(evt))
145 	    wrmsr(MSR_P6_EVNTSEL0 + event_to_global_idx(evt),
146 			    evt->config | EVNTSEL_EN);
147     else {
148 	    uint32_t ctrl = rdmsr(MSR_CORE_PERF_FIXED_CTR_CTRL);
149 	    int shift = (evt->ctr - MSR_CORE_PERF_FIXED_CTR0) * 4;
150 	    uint32_t usrospmi = 0;
151 
152 	    if (evt->config & EVNTSEL_OS)
153 		    usrospmi |= (1 << 0);
154 	    if (evt->config & EVNTSEL_USR)
155 		    usrospmi |= (1 << 1);
156 	    if (evt->config & EVNTSEL_INT)
157 		    usrospmi |= (1 << 3); // PMI on overflow
158 	    ctrl = (ctrl & ~(0xf << shift)) | (usrospmi << shift);
159 	    wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, ctrl);
160     }
161     global_enable(evt);
162     apic_write(APIC_LVTPC, PC_VECTOR);
163 }
164 
165 static void start_event(pmu_counter_t *evt)
166 {
167 	__start_event(evt, 0);
168 }
169 
170 static void stop_event(pmu_counter_t *evt)
171 {
172 	global_disable(evt);
173 	if (is_gp(evt))
174 		wrmsr(MSR_P6_EVNTSEL0 + event_to_global_idx(evt),
175 				evt->config & ~EVNTSEL_EN);
176 	else {
177 		uint32_t ctrl = rdmsr(MSR_CORE_PERF_FIXED_CTR_CTRL);
178 		int shift = (evt->ctr - MSR_CORE_PERF_FIXED_CTR0) * 4;
179 		wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, ctrl & ~(0xf << shift));
180 	}
181 	evt->count = rdmsr(evt->ctr);
182 }
183 
184 static noinline void measure_many(pmu_counter_t *evt, int count)
185 {
186 	int i;
187 	for (i = 0; i < count; i++)
188 		start_event(&evt[i]);
189 	loop();
190 	for (i = 0; i < count; i++)
191 		stop_event(&evt[i]);
192 }
193 
194 static void measure_one(pmu_counter_t *evt)
195 {
196 	measure_many(evt, 1);
197 }
198 
199 static noinline void __measure(pmu_counter_t *evt, uint64_t count)
200 {
201 	__start_event(evt, count);
202 	loop();
203 	stop_event(evt);
204 }
205 
206 static bool verify_event(uint64_t count, struct pmu_event *e)
207 {
208 	// printf("%d <= %ld <= %d\n", e->min, count, e->max);
209 	return count >= e->min  && count <= e->max;
210 
211 }
212 
213 static bool verify_counter(pmu_counter_t *cnt)
214 {
215 	return verify_event(cnt->count, get_counter_event(cnt));
216 }
217 
218 static void check_gp_counter(struct pmu_event *evt)
219 {
220 	int nr_gp_counters = pmu_nr_gp_counters();
221 	pmu_counter_t cnt = {
222 		.ctr = gp_counter_base,
223 		.config = EVNTSEL_OS | EVNTSEL_USR | evt->unit_sel,
224 	};
225 	int i;
226 
227 	for (i = 0; i < nr_gp_counters; i++, cnt.ctr++) {
228 		measure_one(&cnt);
229 		report(verify_event(cnt.count, evt), "%s-%d", evt->name, i);
230 	}
231 }
232 
233 static void check_gp_counters(void)
234 {
235 	int i;
236 
237 	for (i = 0; i < sizeof(gp_events)/sizeof(gp_events[0]); i++)
238 		if (pmu_gp_counter_is_available(i))
239 			check_gp_counter(&gp_events[i]);
240 		else
241 			printf("GP event '%s' is disabled\n",
242 					gp_events[i].name);
243 }
244 
245 static void check_fixed_counters(void)
246 {
247 	int nr_fixed_counters = pmu_nr_fixed_counters();
248 	pmu_counter_t cnt = {
249 		.config = EVNTSEL_OS | EVNTSEL_USR,
250 	};
251 	int i;
252 
253 	for (i = 0; i < nr_fixed_counters; i++) {
254 		cnt.ctr = fixed_events[i].unit_sel;
255 		measure_one(&cnt);
256 		report(verify_event(cnt.count, &fixed_events[i]), "fixed-%d", i);
257 	}
258 }
259 
260 static void check_counters_many(void)
261 {
262 	int nr_fixed_counters = pmu_nr_fixed_counters();
263 	int nr_gp_counters = pmu_nr_gp_counters();
264 	pmu_counter_t cnt[10];
265 	int i, n;
266 
267 	for (i = 0, n = 0; n < nr_gp_counters; i++) {
268 		if (!pmu_gp_counter_is_available(i))
269 			continue;
270 
271 		cnt[n].ctr = gp_counter_base + n;
272 		cnt[n].config = EVNTSEL_OS | EVNTSEL_USR |
273 			gp_events[i % ARRAY_SIZE(gp_events)].unit_sel;
274 		n++;
275 	}
276 	for (i = 0; i < nr_fixed_counters; i++) {
277 		cnt[n].ctr = fixed_events[i].unit_sel;
278 		cnt[n].config = EVNTSEL_OS | EVNTSEL_USR;
279 		n++;
280 	}
281 
282 	measure_many(cnt, n);
283 
284 	for (i = 0; i < n; i++)
285 		if (!verify_counter(&cnt[i]))
286 			break;
287 
288 	report(i == n, "all counters");
289 }
290 
291 static uint64_t measure_for_overflow(pmu_counter_t *cnt)
292 {
293 	__measure(cnt, 0);
294 	/*
295 	 * To generate overflow, i.e. roll over to '0', the initial count just
296 	 * needs to be preset to the negative expected count.  However, as per
297 	 * Intel's SDM, the preset count needs to be incremented by 1 to ensure
298 	 * the overflow interrupt is generated immediately instead of possibly
299 	 * waiting for the overflow to propagate through the counter.
300 	 */
301 	assert(cnt->count > 1);
302 	return 1 - cnt->count;
303 }
304 
305 static void check_counter_overflow(void)
306 {
307 	int nr_gp_counters = pmu_nr_gp_counters();
308 	uint64_t overflow_preset;
309 	int i;
310 	pmu_counter_t cnt = {
311 		.ctr = gp_counter_base,
312 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel /* instructions */,
313 	};
314 	overflow_preset = measure_for_overflow(&cnt);
315 
316 	/* clear status before test */
317 	wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_STATUS));
318 
319 	report_prefix_push("overflow");
320 
321 	for (i = 0; i < nr_gp_counters + 1; i++, cnt.ctr++) {
322 		uint64_t status;
323 		int idx;
324 
325 		cnt.count = overflow_preset;
326 		if (gp_counter_base == MSR_IA32_PMC0)
327 			cnt.count &= (1ull << pmu_gp_counter_width()) - 1;
328 
329 		if (i == nr_gp_counters) {
330 			cnt.ctr = fixed_events[0].unit_sel;
331 			cnt.count = measure_for_overflow(&cnt);
332 			cnt.count &= (1ull << pmu_fixed_counter_width()) - 1;
333 		}
334 
335 		if (i % 2)
336 			cnt.config |= EVNTSEL_INT;
337 		else
338 			cnt.config &= ~EVNTSEL_INT;
339 		idx = event_to_global_idx(&cnt);
340 		__measure(&cnt, cnt.count);
341 		report(cnt.count == 1, "cntr-%d", i);
342 		status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS);
343 		report(status & (1ull << idx), "status-%d", i);
344 		wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, status);
345 		status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS);
346 		report(!(status & (1ull << idx)), "status clear-%d", i);
347 		report(check_irq() == (i % 2), "irq-%d", i);
348 	}
349 
350 	report_prefix_pop();
351 }
352 
353 static void check_gp_counter_cmask(void)
354 {
355 	pmu_counter_t cnt = {
356 		.ctr = gp_counter_base,
357 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel /* instructions */,
358 	};
359 	cnt.config |= (0x2 << EVNTSEL_CMASK_SHIFT);
360 	measure_one(&cnt);
361 	report(cnt.count < gp_events[1].min, "cmask");
362 }
363 
364 static void do_rdpmc_fast(void *ptr)
365 {
366 	pmu_counter_t *cnt = ptr;
367 	uint32_t idx = (uint32_t)cnt->idx | (1u << 31);
368 
369 	if (!is_gp(cnt))
370 		idx |= 1 << 30;
371 
372 	cnt->count = rdpmc(idx);
373 }
374 
375 
376 static void check_rdpmc(void)
377 {
378 	int fixed_counter_width = pmu_fixed_counter_width();
379 	int nr_fixed_counters = pmu_nr_fixed_counters();
380 	u8 gp_counter_width = pmu_gp_counter_width();
381 	int nr_gp_counters = pmu_nr_gp_counters();
382 	uint64_t val = 0xff0123456789ull;
383 	bool exc;
384 	int i;
385 
386 	report_prefix_push("rdpmc");
387 
388 	for (i = 0; i < nr_gp_counters; i++) {
389 		uint64_t x;
390 		pmu_counter_t cnt = {
391 			.ctr = gp_counter_base + i,
392 			.idx = i
393 		};
394 
395 	        /*
396 	         * Without full-width writes, only the low 32 bits are writable,
397 	         * and the value is sign-extended.
398 	         */
399 		if (gp_counter_base == MSR_IA32_PERFCTR0)
400 			x = (uint64_t)(int64_t)(int32_t)val;
401 		else
402 			x = (uint64_t)(int64_t)val;
403 
404 		/* Mask according to the number of supported bits */
405 		x &= (1ull << gp_counter_width) - 1;
406 
407 		wrmsr(gp_counter_base + i, val);
408 		report(rdpmc(i) == x, "cntr-%d", i);
409 
410 		exc = test_for_exception(GP_VECTOR, do_rdpmc_fast, &cnt);
411 		if (exc)
412 			report_skip("fast-%d", i);
413 		else
414 			report(cnt.count == (u32)val, "fast-%d", i);
415 	}
416 	for (i = 0; i < nr_fixed_counters; i++) {
417 		uint64_t x = val & ((1ull << fixed_counter_width) - 1);
418 		pmu_counter_t cnt = {
419 			.ctr = MSR_CORE_PERF_FIXED_CTR0 + i,
420 			.idx = i
421 		};
422 
423 		wrmsr(MSR_CORE_PERF_FIXED_CTR0 + i, x);
424 		report(rdpmc(i | (1 << 30)) == x, "fixed cntr-%d", i);
425 
426 		exc = test_for_exception(GP_VECTOR, do_rdpmc_fast, &cnt);
427 		if (exc)
428 			report_skip("fixed fast-%d", i);
429 		else
430 			report(cnt.count == (u32)x, "fixed fast-%d", i);
431 	}
432 
433 	report_prefix_pop();
434 }
435 
436 static void check_running_counter_wrmsr(void)
437 {
438 	uint64_t status;
439 	uint64_t count;
440 	pmu_counter_t evt = {
441 		.ctr = gp_counter_base,
442 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel,
443 	};
444 
445 	report_prefix_push("running counter wrmsr");
446 
447 	start_event(&evt);
448 	loop();
449 	wrmsr(gp_counter_base, 0);
450 	stop_event(&evt);
451 	report(evt.count < gp_events[1].min, "cntr");
452 
453 	/* clear status before overflow test */
454 	wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL,
455 	      rdmsr(MSR_CORE_PERF_GLOBAL_STATUS));
456 
457 	start_event(&evt);
458 
459 	count = -1;
460 	if (gp_counter_base == MSR_IA32_PMC0)
461 		count &= (1ull << pmu_gp_counter_width()) - 1;
462 
463 	wrmsr(gp_counter_base, count);
464 
465 	loop();
466 	stop_event(&evt);
467 	status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS);
468 	report(status & 1, "status");
469 
470 	report_prefix_pop();
471 }
472 
473 static void check_emulated_instr(void)
474 {
475 	uint64_t status, instr_start, brnch_start;
476 	pmu_counter_t brnch_cnt = {
477 		.ctr = MSR_IA32_PERFCTR0,
478 		/* branch instructions */
479 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[5].unit_sel,
480 	};
481 	pmu_counter_t instr_cnt = {
482 		.ctr = MSR_IA32_PERFCTR0 + 1,
483 		/* instructions */
484 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[1].unit_sel,
485 	};
486 	report_prefix_push("emulated instruction");
487 
488 	wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL,
489 	      rdmsr(MSR_CORE_PERF_GLOBAL_STATUS));
490 
491 	start_event(&brnch_cnt);
492 	start_event(&instr_cnt);
493 
494 	brnch_start = -EXPECTED_BRNCH;
495 	instr_start = -EXPECTED_INSTR;
496 	wrmsr(MSR_IA32_PERFCTR0, brnch_start);
497 	wrmsr(MSR_IA32_PERFCTR0 + 1, instr_start);
498 	// KVM_FEP is a magic prefix that forces emulation so
499 	// 'KVM_FEP "jne label\n"' just counts as a single instruction.
500 	asm volatile(
501 		"mov $0x0, %%eax\n"
502 		"cmp $0x0, %%eax\n"
503 		KVM_FEP "jne label\n"
504 		KVM_FEP "jne label\n"
505 		KVM_FEP "jne label\n"
506 		KVM_FEP "jne label\n"
507 		KVM_FEP "jne label\n"
508 		"mov $0xa, %%eax\n"
509 		"cpuid\n"
510 		"mov $0xa, %%eax\n"
511 		"cpuid\n"
512 		"mov $0xa, %%eax\n"
513 		"cpuid\n"
514 		"mov $0xa, %%eax\n"
515 		"cpuid\n"
516 		"mov $0xa, %%eax\n"
517 		"cpuid\n"
518 		"label:\n"
519 		:
520 		:
521 		: "eax", "ebx", "ecx", "edx");
522 
523 	wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0);
524 
525 	stop_event(&brnch_cnt);
526 	stop_event(&instr_cnt);
527 
528 	// Check that the end count - start count is at least the expected
529 	// number of instructions and branches.
530 	report(instr_cnt.count - instr_start >= EXPECTED_INSTR,
531 	       "instruction count");
532 	report(brnch_cnt.count - brnch_start >= EXPECTED_BRNCH,
533 	       "branch count");
534 	// Additionally check that those counters overflowed properly.
535 	status = rdmsr(MSR_CORE_PERF_GLOBAL_STATUS);
536 	report(status & 1, "branch counter overflow");
537 	report(status & 2, "instruction counter overflow");
538 
539 	report_prefix_pop();
540 }
541 
542 static void check_counters(void)
543 {
544 	if (is_fep_available())
545 		check_emulated_instr();
546 
547 	check_gp_counters();
548 	check_fixed_counters();
549 	check_rdpmc();
550 	check_counters_many();
551 	check_counter_overflow();
552 	check_gp_counter_cmask();
553 	check_running_counter_wrmsr();
554 }
555 
556 static void do_unsupported_width_counter_write(void *index)
557 {
558 	wrmsr(MSR_IA32_PMC0 + *((int *) index), 0xffffff0123456789ull);
559 }
560 
561 static void check_gp_counters_write_width(void)
562 {
563 	u64 val_64 = 0xffffff0123456789ull;
564 	u64 val_32 = val_64 & ((1ull << 32) - 1);
565 	u64 val_max_width = val_64 & ((1ull << pmu_gp_counter_width()) - 1);
566 	int nr_gp_counters = pmu_nr_gp_counters();
567 	int i;
568 
569 	/*
570 	 * MSR_IA32_PERFCTRn supports 64-bit writes,
571 	 * but only the lowest 32 bits are valid.
572 	 */
573 	for (i = 0; i < nr_gp_counters; i++) {
574 		wrmsr(MSR_IA32_PERFCTR0 + i, val_32);
575 		assert(rdmsr(MSR_IA32_PERFCTR0 + i) == val_32);
576 		assert(rdmsr(MSR_IA32_PMC0 + i) == val_32);
577 
578 		wrmsr(MSR_IA32_PERFCTR0 + i, val_max_width);
579 		assert(rdmsr(MSR_IA32_PERFCTR0 + i) == val_32);
580 		assert(rdmsr(MSR_IA32_PMC0 + i) == val_32);
581 
582 		wrmsr(MSR_IA32_PERFCTR0 + i, val_64);
583 		assert(rdmsr(MSR_IA32_PERFCTR0 + i) == val_32);
584 		assert(rdmsr(MSR_IA32_PMC0 + i) == val_32);
585 	}
586 
587 	/*
588 	 * MSR_IA32_PMCn supports writing values up to GP counter width,
589 	 * and only the lowest bits of GP counter width are valid.
590 	 */
591 	for (i = 0; i < nr_gp_counters; i++) {
592 		wrmsr(MSR_IA32_PMC0 + i, val_32);
593 		assert(rdmsr(MSR_IA32_PMC0 + i) == val_32);
594 		assert(rdmsr(MSR_IA32_PERFCTR0 + i) == val_32);
595 
596 		wrmsr(MSR_IA32_PMC0 + i, val_max_width);
597 		assert(rdmsr(MSR_IA32_PMC0 + i) == val_max_width);
598 		assert(rdmsr(MSR_IA32_PERFCTR0 + i) == val_max_width);
599 
600 		report(test_for_exception(GP_VECTOR,
601 			do_unsupported_width_counter_write, &i),
602 		"writing unsupported width to MSR_IA32_PMC%d raises #GP", i);
603 	}
604 }
605 
606 /*
607  * Per the SDM, reference cycles are currently implemented using the
608  * core crystal clock, TSC, or bus clock. Calibrate to the TSC
609  * frequency to set reasonable expectations.
610  */
611 static void set_ref_cycle_expectations(void)
612 {
613 	pmu_counter_t cnt = {
614 		.ctr = MSR_IA32_PERFCTR0,
615 		.config = EVNTSEL_OS | EVNTSEL_USR | gp_events[2].unit_sel,
616 	};
617 	uint64_t tsc_delta;
618 	uint64_t t0, t1, t2, t3;
619 
620 	/* Bit 2 enumerates the availability of reference cycles events. */
621 	if (!pmu_nr_gp_counters() || !pmu_gp_counter_is_available(2))
622 		return;
623 
624 	wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0);
625 
626 	t0 = fenced_rdtsc();
627 	start_event(&cnt);
628 	t1 = fenced_rdtsc();
629 
630 	/*
631 	 * This loop has to run long enough to dominate the VM-exit
632 	 * costs for playing with the PMU MSRs on start and stop.
633 	 *
634 	 * On a 2.6GHz Ice Lake, with the TSC frequency at 104 times
635 	 * the core crystal clock, this function calculated a guest
636 	 * TSC : ref cycles ratio of around 105 with ECX initialized
637 	 * to one billion.
638 	 */
639 	asm volatile("loop ." : "+c"((int){1000000000ull}));
640 
641 	t2 = fenced_rdtsc();
642 	stop_event(&cnt);
643 	t3 = fenced_rdtsc();
644 
645 	tsc_delta = ((t2 - t1) + (t3 - t0)) / 2;
646 
647 	if (!tsc_delta)
648 		return;
649 
650 	gp_events[2].min = (gp_events[2].min * cnt.count) / tsc_delta;
651 	gp_events[2].max = (gp_events[2].max * cnt.count) / tsc_delta;
652 }
653 
654 static void check_invalid_rdpmc_gp(void)
655 {
656 	uint64_t val;
657 
658 	report(rdpmc_safe(64, &val) == GP_VECTOR,
659 	       "Expected #GP on RDPMC(64)");
660 }
661 
662 int main(int ac, char **av)
663 {
664 	setup_vm();
665 	handle_irq(PC_VECTOR, cnt_overflow);
666 	buf = malloc(N*64);
667 
668 	check_invalid_rdpmc_gp();
669 
670 	if (!pmu_version()) {
671 		report_skip("No Intel Arch PMU is detected!");
672 		return report_summary();
673 	}
674 
675 	if (pmu_version() == 1) {
676 		report_skip("PMU version 1 is not supported.");
677 		return report_summary();
678 	}
679 
680 	set_ref_cycle_expectations();
681 
682 	printf("PMU version:         %d\n", pmu_version());
683 	printf("GP counters:         %d\n", pmu_nr_gp_counters());
684 	printf("GP counter width:    %d\n", pmu_gp_counter_width());
685 	printf("Mask length:         %d\n", pmu_gp_counter_mask_length());
686 	printf("Fixed counters:      %d\n", pmu_nr_fixed_counters());
687 	printf("Fixed counter width: %d\n", pmu_fixed_counter_width());
688 
689 	apic_write(APIC_LVTPC, PC_VECTOR);
690 
691 	check_counters();
692 
693 	if (this_cpu_perf_capabilities() & PMU_CAP_FW_WRITES) {
694 		gp_counter_base = MSR_IA32_PMC0;
695 		report_prefix_push("full-width writes");
696 		check_counters();
697 		check_gp_counters_write_width();
698 		report_prefix_pop();
699 	}
700 
701 	return report_summary();
702 }
703