xref: /kvm-unit-tests/x86/access.c (revision c865f654ffe4c5955038aaf74f702ba62f3eb014)
1 
2 #include "libcflat.h"
3 #include "desc.h"
4 #include "processor.h"
5 #include "asm/page.h"
6 #include "x86/vm.h"
7 
8 #define smp_id() 0
9 
10 #define true 1
11 #define false 0
12 
13 static _Bool verbose = false;
14 
15 typedef unsigned long pt_element_t;
16 static int invalid_mask;
17 static int page_table_levels;
18 
19 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 36) - 1) & PAGE_MASK))
20 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
21 
22 #define CR0_WP_MASK (1UL << 16)
23 #define CR4_SMEP_MASK (1UL << 20)
24 
25 #define PFERR_PRESENT_MASK (1U << 0)
26 #define PFERR_WRITE_MASK (1U << 1)
27 #define PFERR_USER_MASK (1U << 2)
28 #define PFERR_RESERVED_MASK (1U << 3)
29 #define PFERR_FETCH_MASK (1U << 4)
30 #define PFERR_PK_MASK (1U << 5)
31 
32 #define MSR_EFER 0xc0000080
33 #define EFER_NX_MASK		(1ull << 11)
34 
35 #define PT_INDEX(address, level)       \
36        ((address) >> (12 + ((level)-1) * 9)) & 511
37 
38 /*
39  * page table access check tests
40  */
41 
42 enum {
43     AC_PTE_PRESENT_BIT,
44     AC_PTE_WRITABLE_BIT,
45     AC_PTE_USER_BIT,
46     AC_PTE_ACCESSED_BIT,
47     AC_PTE_DIRTY_BIT,
48     AC_PTE_NX_BIT,
49     AC_PTE_BIT51_BIT,
50     AC_PTE_BIT36_BIT,
51 
52     AC_PDE_PRESENT_BIT,
53     AC_PDE_WRITABLE_BIT,
54     AC_PDE_USER_BIT,
55     AC_PDE_ACCESSED_BIT,
56     AC_PDE_DIRTY_BIT,
57     AC_PDE_PSE_BIT,
58     AC_PDE_NX_BIT,
59     AC_PDE_BIT51_BIT,
60     AC_PDE_BIT36_BIT,
61     AC_PDE_BIT13_BIT,
62 
63     /*
64      *  special test case to DISABLE writable bit on page directory
65      *  pointer table entry.
66      */
67     AC_PDPTE_NO_WRITABLE_BIT,
68 
69     AC_PKU_AD_BIT,
70     AC_PKU_WD_BIT,
71     AC_PKU_PKEY_BIT,
72 
73     AC_ACCESS_USER_BIT,
74     AC_ACCESS_WRITE_BIT,
75     AC_ACCESS_FETCH_BIT,
76     AC_ACCESS_TWICE_BIT,
77 
78     AC_CPU_EFER_NX_BIT,
79     AC_CPU_CR0_WP_BIT,
80     AC_CPU_CR4_SMEP_BIT,
81     AC_CPU_CR4_PKE_BIT,
82 
83     NR_AC_FLAGS
84 };
85 
86 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
87 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
88 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
89 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
90 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
91 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
92 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
93 #define AC_PTE_BIT36_MASK     (1 << AC_PTE_BIT36_BIT)
94 
95 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
96 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
97 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
98 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
99 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
100 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
101 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
102 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
103 #define AC_PDE_BIT36_MASK     (1 << AC_PDE_BIT36_BIT)
104 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
105 
106 #define AC_PDPTE_NO_WRITABLE_MASK  (1 << AC_PDPTE_NO_WRITABLE_BIT)
107 
108 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
109 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
110 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
111 
112 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
113 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
114 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
115 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
116 
117 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
118 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
119 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
120 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
121 
122 const char *ac_names[] = {
123     [AC_PTE_PRESENT_BIT] = "pte.p",
124     [AC_PTE_ACCESSED_BIT] = "pte.a",
125     [AC_PTE_WRITABLE_BIT] = "pte.rw",
126     [AC_PTE_USER_BIT] = "pte.user",
127     [AC_PTE_DIRTY_BIT] = "pte.d",
128     [AC_PTE_NX_BIT] = "pte.nx",
129     [AC_PTE_BIT51_BIT] = "pte.51",
130     [AC_PTE_BIT36_BIT] = "pte.36",
131     [AC_PDE_PRESENT_BIT] = "pde.p",
132     [AC_PDE_ACCESSED_BIT] = "pde.a",
133     [AC_PDE_WRITABLE_BIT] = "pde.rw",
134     [AC_PDE_USER_BIT] = "pde.user",
135     [AC_PDE_DIRTY_BIT] = "pde.d",
136     [AC_PDE_PSE_BIT] = "pde.pse",
137     [AC_PDE_NX_BIT] = "pde.nx",
138     [AC_PDE_BIT51_BIT] = "pde.51",
139     [AC_PDE_BIT36_BIT] = "pde.36",
140     [AC_PDE_BIT13_BIT] = "pde.13",
141     [AC_PDPTE_NO_WRITABLE_BIT] = "pdpte.ro",
142     [AC_PKU_AD_BIT] = "pkru.ad",
143     [AC_PKU_WD_BIT] = "pkru.wd",
144     [AC_PKU_PKEY_BIT] = "pkey=1",
145     [AC_ACCESS_WRITE_BIT] = "write",
146     [AC_ACCESS_USER_BIT] = "user",
147     [AC_ACCESS_FETCH_BIT] = "fetch",
148     [AC_ACCESS_TWICE_BIT] = "twice",
149     [AC_CPU_EFER_NX_BIT] = "efer.nx",
150     [AC_CPU_CR0_WP_BIT] = "cr0.wp",
151     [AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
152     [AC_CPU_CR4_PKE_BIT] = "cr4.pke",
153 };
154 
155 static inline void *va(pt_element_t phys)
156 {
157     return (void *)phys;
158 }
159 
160 typedef struct {
161     pt_element_t pt_pool;
162     unsigned pt_pool_size;
163     unsigned pt_pool_current;
164 } ac_pool_t;
165 
166 typedef struct {
167     unsigned flags;
168     void *virt;
169     pt_element_t phys;
170     pt_element_t *ptep;
171     pt_element_t expected_pte;
172     pt_element_t *pdep;
173     pt_element_t expected_pde;
174     pt_element_t ignore_pde;
175     int expected_fault;
176     unsigned expected_error;
177 } ac_test_t;
178 
179 typedef struct {
180     unsigned short limit;
181     unsigned long linear_addr;
182 } __attribute__((packed)) descriptor_table_t;
183 
184 
185 static void ac_test_show(ac_test_t *at);
186 
187 static unsigned long shadow_cr0;
188 static unsigned long shadow_cr4;
189 static unsigned long long shadow_efer;
190 
191 static void set_cr0_wp(int wp)
192 {
193     unsigned long cr0 = shadow_cr0;
194 
195     cr0 &= ~CR0_WP_MASK;
196     if (wp)
197 	cr0 |= CR0_WP_MASK;
198     if (cr0 != shadow_cr0) {
199         write_cr0(cr0);
200         shadow_cr0 = cr0;
201     }
202 }
203 
204 static unsigned set_cr4_smep(int smep)
205 {
206     unsigned long cr4 = shadow_cr4;
207     extern u64 ptl2[];
208     unsigned r;
209 
210     cr4 &= ~CR4_SMEP_MASK;
211     if (smep)
212 	cr4 |= CR4_SMEP_MASK;
213     if (cr4 == shadow_cr4)
214         return 0;
215 
216     if (smep)
217         ptl2[2] &= ~PT_USER_MASK;
218     r = write_cr4_checking(cr4);
219     if (r || !smep)
220         ptl2[2] |= PT_USER_MASK;
221     if (!r)
222         shadow_cr4 = cr4;
223     return r;
224 }
225 
226 static void set_cr4_pke(int pke)
227 {
228     unsigned long cr4 = shadow_cr4;
229 
230     cr4 &= ~X86_CR4_PKE;
231     if (pke)
232 	cr4 |= X86_CR4_PKE;
233     if (cr4 == shadow_cr4)
234         return;
235 
236     /* Check that protection keys do not affect accesses when CR4.PKE=0.  */
237     if ((shadow_cr4 & X86_CR4_PKE) && !pke)
238         write_pkru(0xfffffffc);
239     write_cr4(cr4);
240     shadow_cr4 = cr4;
241 }
242 
243 static void set_efer_nx(int nx)
244 {
245     unsigned long long efer = shadow_efer;
246 
247     efer &= ~EFER_NX_MASK;
248     if (nx)
249 	efer |= EFER_NX_MASK;
250     if (efer != shadow_efer) {
251         wrmsr(MSR_EFER, efer);
252         shadow_efer = efer;
253     }
254 }
255 
256 static void ac_env_int(ac_pool_t *pool)
257 {
258     extern char page_fault, kernel_entry;
259     set_idt_entry(14, &page_fault, 0);
260     set_idt_entry(0x20, &kernel_entry, 3);
261 
262     pool->pt_pool = 33 * 1024 * 1024;
263     pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
264     pool->pt_pool_current = 0;
265 }
266 
267 static void ac_test_init(ac_test_t *at, void *virt)
268 {
269     set_efer_nx(1);
270     set_cr0_wp(1);
271     at->flags = 0;
272     at->virt = virt;
273     at->phys = 32 * 1024 * 1024;
274 }
275 
276 static int ac_test_bump_one(ac_test_t *at)
277 {
278     at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
279     return at->flags < (1 << NR_AC_FLAGS);
280 }
281 
282 #define F(x)  ((flags & x##_MASK) != 0)
283 
284 static _Bool ac_test_legal(ac_test_t *at)
285 {
286     int flags = at->flags;
287 
288     if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
289 	return false;
290 
291     /*
292      * Since we convert current page to kernel page when cr4.smep=1,
293      * we can't switch to user mode.
294      */
295     if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
296 	return false;
297 
298     /*
299      * Only test protection key faults if CR4.PKE=1.
300      */
301     if (!F(AC_CPU_CR4_PKE) &&
302         (F(AC_PKU_AD) || F(AC_PKU_WD))) {
303 	return false;
304     }
305 
306     /*
307      * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
308      * meaningless if there is a PTE.
309      */
310     if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
311         return false;
312 
313     /*
314      * Shorten the test by avoiding testing too many reserved bit combinations
315      */
316     if ((F(AC_PDE_BIT51) + F(AC_PDE_BIT36) + F(AC_PDE_BIT13)) > 1)
317         return false;
318     if ((F(AC_PTE_BIT51) + F(AC_PTE_BIT36)) > 1)
319         return false;
320 
321     return true;
322 }
323 
324 static int ac_test_bump(ac_test_t *at)
325 {
326     int ret;
327 
328     ret = ac_test_bump_one(at);
329     while (ret && !ac_test_legal(at))
330 	ret = ac_test_bump_one(at);
331     return ret;
332 }
333 
334 static pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
335 {
336     pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
337     pool->pt_pool_current += PAGE_SIZE;
338     memset(va(ret), 0, PAGE_SIZE);
339     return ret;
340 }
341 
342 static _Bool ac_test_enough_room(ac_pool_t *pool)
343 {
344     return pool->pt_pool_current + 5 * PAGE_SIZE <= pool->pt_pool_size;
345 }
346 
347 static void ac_test_reset_pt_pool(ac_pool_t *pool)
348 {
349     pool->pt_pool_current = 0;
350 }
351 
352 static pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags,
353                                         bool writable, bool user,
354                                         bool executable)
355 {
356     bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
357     pt_element_t expected = 0;
358 
359     if (F(AC_ACCESS_USER) && !user)
360 	at->expected_fault = 1;
361 
362     if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
363 	at->expected_fault = 1;
364 
365     if (F(AC_ACCESS_FETCH) && !executable)
366 	at->expected_fault = 1;
367 
368     if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
369         at->expected_fault = 1;
370 
371     if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
372         if (F(AC_PKU_AD)) {
373             at->expected_fault = 1;
374             at->expected_error |= PFERR_PK_MASK;
375         } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
376             at->expected_fault = 1;
377             at->expected_error |= PFERR_PK_MASK;
378         }
379     }
380 
381     if (!at->expected_fault) {
382         expected |= PT_ACCESSED_MASK;
383         if (F(AC_ACCESS_WRITE))
384             expected |= PT_DIRTY_MASK;
385     }
386 
387     return expected;
388 }
389 
390 static void ac_emulate_access(ac_test_t *at, unsigned flags)
391 {
392     bool pde_valid, pte_valid;
393     bool user, writable, executable;
394 
395     if (F(AC_ACCESS_USER))
396 	at->expected_error |= PFERR_USER_MASK;
397 
398     if (F(AC_ACCESS_WRITE))
399 	at->expected_error |= PFERR_WRITE_MASK;
400 
401     if (F(AC_ACCESS_FETCH))
402 	at->expected_error |= PFERR_FETCH_MASK;
403 
404     if (!F(AC_PDE_ACCESSED))
405         at->ignore_pde = PT_ACCESSED_MASK;
406 
407     pde_valid = F(AC_PDE_PRESENT)
408         && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT36) && !F(AC_PDE_BIT13)
409         && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
410 
411     if (!pde_valid) {
412         at->expected_fault = 1;
413 	if (F(AC_PDE_PRESENT)) {
414             at->expected_error |= PFERR_RESERVED_MASK;
415         } else {
416             at->expected_error &= ~PFERR_PRESENT_MASK;
417         }
418 	goto fault;
419     }
420 
421     writable = !F(AC_PDPTE_NO_WRITABLE) && F(AC_PDE_WRITABLE);
422     user = F(AC_PDE_USER);
423     executable = !F(AC_PDE_NX);
424 
425     if (F(AC_PDE_PSE)) {
426         at->expected_pde |= ac_test_permissions(at, flags, writable, user,
427                                                 executable);
428 	goto no_pte;
429     }
430 
431     at->expected_pde |= PT_ACCESSED_MASK;
432 
433     pte_valid = F(AC_PTE_PRESENT)
434         && !F(AC_PTE_BIT51) && !F(AC_PTE_BIT36)
435         && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
436 
437     if (!pte_valid) {
438         at->expected_fault = 1;
439 	if (F(AC_PTE_PRESENT)) {
440             at->expected_error |= PFERR_RESERVED_MASK;
441         } else {
442             at->expected_error &= ~PFERR_PRESENT_MASK;
443         }
444 	goto fault;
445     }
446 
447     writable &= F(AC_PTE_WRITABLE);
448     user &= F(AC_PTE_USER);
449     executable &= !F(AC_PTE_NX);
450 
451     at->expected_pte |= ac_test_permissions(at, flags, writable, user,
452                                             executable);
453 
454 no_pte:
455 fault:
456     if (!at->expected_fault)
457         at->ignore_pde = 0;
458     if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
459         at->expected_error &= ~PFERR_FETCH_MASK;
460 }
461 
462 static void ac_set_expected_status(ac_test_t *at)
463 {
464     invlpg(at->virt);
465 
466     if (at->ptep)
467 	at->expected_pte = *at->ptep;
468     at->expected_pde = *at->pdep;
469     at->ignore_pde = 0;
470     at->expected_fault = 0;
471     at->expected_error = PFERR_PRESENT_MASK;
472 
473     if (at->flags & AC_ACCESS_TWICE_MASK) {
474         ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
475                           & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
476         at->expected_fault = 0;
477 	at->expected_error = PFERR_PRESENT_MASK;
478         at->ignore_pde = 0;
479     }
480 
481     ac_emulate_access(at, at->flags);
482 }
483 
484 static void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, bool reuse,
485 				      u64 pd_page, u64 pt_page)
486 
487 {
488     unsigned long root = read_cr3();
489     int flags = at->flags;
490     bool skip = true;
491 
492     if (!ac_test_enough_room(pool))
493 	ac_test_reset_pt_pool(pool);
494 
495     at->ptep = 0;
496     for (int i = page_table_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
497 	pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
498 	unsigned index = PT_INDEX((unsigned long)at->virt, i);
499 	pt_element_t pte = 0;
500 
501 	/*
502 	 * Reuse existing page tables along the path to the test code and data
503 	 * (which is in the bottom 2MB).
504 	 */
505 	if (skip && i >= 2 && index == 0) {
506 	    goto next;
507 	}
508 	skip = false;
509 	if (reuse && vroot[index]) {
510 	    switch (i) {
511 	    case 2:
512 		at->pdep = &vroot[index];
513 		break;
514 	    case 1:
515 		at->ptep = &vroot[index];
516 		break;
517 	    }
518 	    goto next;
519 	}
520 
521 	switch (i) {
522 	case 5:
523 	case 4:
524 	    pte = ac_test_alloc_pt(pool);
525 	    pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
526 	    break;
527 	case 3:
528 	    pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
529 	    pte |= PT_PRESENT_MASK | PT_USER_MASK;
530 	    if (!F(AC_PDPTE_NO_WRITABLE))
531 		pte |= PT_WRITABLE_MASK;
532 	    break;
533 	case 2:
534 	    if (!F(AC_PDE_PSE)) {
535 		pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
536 		/* The protection key is ignored on non-leaf entries.  */
537                 if (F(AC_PKU_PKEY))
538                     pte |= 2ull << 59;
539 	    } else {
540 		pte = at->phys & PT_PSE_BASE_ADDR_MASK;
541 		pte |= PT_PAGE_SIZE_MASK;
542                 if (F(AC_PKU_PKEY))
543                     pte |= 1ull << 59;
544 	    }
545 	    if (F(AC_PDE_PRESENT))
546 		pte |= PT_PRESENT_MASK;
547 	    if (F(AC_PDE_WRITABLE))
548 		pte |= PT_WRITABLE_MASK;
549 	    if (F(AC_PDE_USER))
550 		pte |= PT_USER_MASK;
551 	    if (F(AC_PDE_ACCESSED))
552 		pte |= PT_ACCESSED_MASK;
553 	    if (F(AC_PDE_DIRTY))
554 		pte |= PT_DIRTY_MASK;
555 	    if (F(AC_PDE_NX))
556 		pte |= PT64_NX_MASK;
557 	    if (F(AC_PDE_BIT51))
558 		pte |= 1ull << 51;
559 	    if (F(AC_PDE_BIT36))
560                 pte |= 1ull << 36;
561 	    if (F(AC_PDE_BIT13))
562 		pte |= 1ull << 13;
563 	    at->pdep = &vroot[index];
564 	    break;
565 	case 1:
566 	    pte = at->phys & PT_BASE_ADDR_MASK;
567 	    if (F(AC_PKU_PKEY))
568 		pte |= 1ull << 59;
569 	    if (F(AC_PTE_PRESENT))
570 		pte |= PT_PRESENT_MASK;
571 	    if (F(AC_PTE_WRITABLE))
572 		pte |= PT_WRITABLE_MASK;
573 	    if (F(AC_PTE_USER))
574 		pte |= PT_USER_MASK;
575 	    if (F(AC_PTE_ACCESSED))
576 		pte |= PT_ACCESSED_MASK;
577 	    if (F(AC_PTE_DIRTY))
578 		pte |= PT_DIRTY_MASK;
579 	    if (F(AC_PTE_NX))
580 		pte |= PT64_NX_MASK;
581 	    if (F(AC_PTE_BIT51))
582 		pte |= 1ull << 51;
583 	    if (F(AC_PTE_BIT36))
584                 pte |= 1ull << 36;
585 	    at->ptep = &vroot[index];
586 	    break;
587 	}
588 	vroot[index] = pte;
589  next:
590 	root = vroot[index];
591     }
592     ac_set_expected_status(at);
593 }
594 
595 static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
596 {
597 	__ac_setup_specific_pages(at, pool, false, 0, 0);
598 }
599 
600 static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
601 				    u64 pd_page, u64 pt_page)
602 {
603 	return __ac_setup_specific_pages(at, pool, false, pd_page, pt_page);
604 }
605 
606 static void dump_mapping(ac_test_t *at)
607 {
608 	unsigned long root = read_cr3();
609         int flags = at->flags;
610 	int i;
611 
612 	printf("Dump mapping: address: %p\n", at->virt);
613 	for (i = page_table_levels ; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
614 		pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
615 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
616 		pt_element_t pte = vroot[index];
617 
618 		printf("------L%d: %lx\n", i, pte);
619 		root = vroot[index];
620 	}
621 }
622 
623 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
624                           const char *fmt, ...)
625 {
626     va_list ap;
627     char buf[500];
628 
629     if (!*success_ret) {
630         return;
631     }
632 
633     if (!cond) {
634         return;
635     }
636 
637     *success_ret = false;
638 
639     if (!verbose) {
640         puts("\n");
641         ac_test_show(at);
642     }
643 
644     va_start(ap, fmt);
645     vsnprintf(buf, sizeof(buf), fmt, ap);
646     va_end(ap);
647     printf("FAIL: %s\n", buf);
648     dump_mapping(at);
649 }
650 
651 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
652 {
653     pte1 &= ~ignore;
654     pte2 &= ~ignore;
655     return pte1 == pte2;
656 }
657 
658 static int ac_test_do_access(ac_test_t *at)
659 {
660     static unsigned unique = 42;
661     int fault = 0;
662     unsigned e;
663     static unsigned char user_stack[4096];
664     unsigned long rsp;
665     _Bool success = true;
666     int flags = at->flags;
667 
668     ++unique;
669     if (!(unique & 65535)) {
670         puts(".");
671     }
672 
673     *((unsigned char *)at->phys) = 0xc3; /* ret */
674 
675     unsigned r = unique;
676     set_cr0_wp(F(AC_CPU_CR0_WP));
677     set_efer_nx(F(AC_CPU_EFER_NX));
678     set_cr4_pke(F(AC_CPU_CR4_PKE));
679     if (F(AC_CPU_CR4_PKE)) {
680         /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
681         write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
682                    (F(AC_PKU_AD) ? 4 : 0));
683     }
684 
685     set_cr4_smep(F(AC_CPU_CR4_SMEP));
686 
687     if (F(AC_ACCESS_TWICE)) {
688 	asm volatile (
689 	    "mov $fixed2, %%rsi \n\t"
690 	    "mov (%[addr]), %[reg] \n\t"
691 	    "fixed2:"
692 	    : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
693 	    : [addr]"r"(at->virt)
694 	    : "rsi"
695 	    );
696 	fault = 0;
697     }
698 
699     asm volatile ("mov $fixed1, %%rsi \n\t"
700 		  "mov %%rsp, %%rdx \n\t"
701 		  "cmp $0, %[user] \n\t"
702 		  "jz do_access \n\t"
703 		  "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax  \n\t"
704 		  "pushq %[user_ds] \n\t"
705 		  "pushq %[user_stack_top] \n\t"
706 		  "pushfq \n\t"
707 		  "pushq %[user_cs] \n\t"
708 		  "pushq $do_access \n\t"
709 		  "iretq \n"
710 		  "do_access: \n\t"
711 		  "cmp $0, %[fetch] \n\t"
712 		  "jnz 2f \n\t"
713 		  "cmp $0, %[write] \n\t"
714 		  "jnz 1f \n\t"
715 		  "mov (%[addr]), %[reg] \n\t"
716 		  "jmp done \n\t"
717 		  "1: mov %[reg], (%[addr]) \n\t"
718 		  "jmp done \n\t"
719 		  "2: call *%[addr] \n\t"
720 		  "done: \n"
721 		  "fixed1: \n"
722 		  "int %[kernel_entry_vector] \n\t"
723 		  "back_to_kernel:"
724 		  : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
725 		  : [addr]"r"(at->virt),
726 		    [write]"r"(F(AC_ACCESS_WRITE)),
727 		    [user]"r"(F(AC_ACCESS_USER)),
728 		    [fetch]"r"(F(AC_ACCESS_FETCH)),
729 		    [user_ds]"i"(USER_DS),
730 		    [user_cs]"i"(USER_CS),
731 		    [user_stack_top]"r"(user_stack + sizeof user_stack),
732 		    [kernel_entry_vector]"i"(0x20)
733 		  : "rsi");
734 
735     asm volatile (".section .text.pf \n\t"
736 		  "page_fault: \n\t"
737 		  "pop %rbx \n\t"
738 		  "mov %rsi, (%rsp) \n\t"
739 		  "movl $1, %eax \n\t"
740 		  "iretq \n\t"
741 		  ".section .text");
742 
743     asm volatile (".section .text.entry \n\t"
744 		  "kernel_entry: \n\t"
745 		  "mov %rdx, %rsp \n\t"
746 		  "jmp back_to_kernel \n\t"
747 		  ".section .text");
748 
749     ac_test_check(at, &success, fault && !at->expected_fault,
750                   "unexpected fault");
751     ac_test_check(at, &success, !fault && at->expected_fault,
752                   "unexpected access");
753     ac_test_check(at, &success, fault && e != at->expected_error,
754                   "error code %x expected %x", e, at->expected_error);
755     if (at->ptep)
756         ac_test_check(at, &success, *at->ptep != at->expected_pte,
757                       "pte %x expected %x", *at->ptep, at->expected_pte);
758     ac_test_check(at, &success,
759                   !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
760                   "pde %x expected %x", *at->pdep, at->expected_pde);
761 
762     if (success && verbose) {
763 	if (at->expected_fault) {
764             printf("PASS (%x)\n", at->expected_error);
765 	} else {
766             printf("PASS\n");
767 	}
768     }
769     return success;
770 }
771 
772 static void ac_test_show(ac_test_t *at)
773 {
774     char line[5000];
775 
776     *line = 0;
777     strcat(line, "test");
778     for (int i = 0; i < NR_AC_FLAGS; ++i)
779 	if (at->flags & (1 << i)) {
780 	    strcat(line, " ");
781 	    strcat(line, ac_names[i]);
782 	}
783 
784     strcat(line, ": ");
785     printf("%s", line);
786 }
787 
788 /*
789  * This test case is used to triger the bug which is fixed by
790  * commit e09e90a5 in the kvm tree
791  */
792 static int corrupt_hugepage_triger(ac_pool_t *pool)
793 {
794     ac_test_t at1, at2;
795 
796     ac_test_init(&at1, (void *)(0x123400000000));
797     ac_test_init(&at2, (void *)(0x666600000000));
798 
799     at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
800     ac_test_setup_pte(&at2, pool);
801     if (!ac_test_do_access(&at2))
802         goto err;
803 
804     at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
805     ac_test_setup_pte(&at1, pool);
806     if (!ac_test_do_access(&at1))
807         goto err;
808 
809     at1.flags |= AC_ACCESS_WRITE_MASK;
810     ac_set_expected_status(&at1);
811     if (!ac_test_do_access(&at1))
812         goto err;
813 
814     at2.flags |= AC_ACCESS_WRITE_MASK;
815     ac_set_expected_status(&at2);
816     if (!ac_test_do_access(&at2))
817         goto err;
818 
819     return 1;
820 
821 err:
822     printf("corrupt_hugepage_triger test fail\n");
823     return 0;
824 }
825 
826 /*
827  * This test case is used to triger the bug which is fixed by
828  * commit 3ddf6c06e13e in the kvm tree
829  */
830 static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
831 {
832 	ac_test_t at1, at2;
833 
834 	ac_test_init(&at1, (void *)(0x123406001000));
835 	ac_test_init(&at2, (void *)(0x123406003000));
836 
837 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
838 	ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
839 
840         at2.flags = at1.flags | AC_PTE_NX_MASK;
841 	ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
842 
843 	if (!ac_test_do_access(&at1)) {
844 		printf("%s: prepare fail\n", __FUNCTION__);
845 		goto err;
846 	}
847 
848 	if (!ac_test_do_access(&at2)) {
849 		printf("%s: check PFEC on prefetch pte path fail\n",
850 			__FUNCTION__);
851 		goto err;
852 	}
853 
854 	return 1;
855 
856 err:
857     return 0;
858 }
859 
860 /*
861  * If the write-fault access is from supervisor and CR0.WP is not set on the
862  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
863  * and clears U bit. This is the chance that kvm can change pte access from
864  * readonly to writable.
865  *
866  * Unfortunately, the pte access is the access of 'direct' shadow page table,
867  * means direct sp.role.access = pte_access, then we will create a writable
868  * spte entry on the readonly shadow page table. It will cause Dirty bit is
869  * not tracked when two guest ptes point to the same large page. Note, it
870  * does not have other impact except Dirty bit since cr0.wp is encoded into
871  * sp.role.
872  *
873  * Note: to trigger this bug, hugepage should be disabled on host.
874  */
875 static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
876 {
877 	ac_test_t at1, at2;
878 
879 	ac_test_init(&at1, (void *)(0x123403000000));
880 	ac_test_init(&at2, (void *)(0x666606000000));
881 
882         at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
883 	ac_test_setup_pte(&at2, pool);
884 	if (!ac_test_do_access(&at2)) {
885 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
886 		goto err;
887 	}
888 
889         at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
890 	ac_test_setup_pte(&at1, pool);
891 	if (!ac_test_do_access(&at1)) {
892 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
893 		goto err;
894 	}
895 
896 	at2.flags |= AC_ACCESS_WRITE_MASK;
897 	ac_set_expected_status(&at2);
898 	if (!ac_test_do_access(&at2)) {
899 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
900 		goto err;
901 	}
902 
903 	return 1;
904 
905 err:
906 	return 0;
907 }
908 
909 static int check_smep_andnot_wp(ac_pool_t *pool)
910 {
911 	ac_test_t at1;
912 	int err_prepare_andnot_wp, err_smep_andnot_wp;
913 
914 	if (!this_cpu_has(X86_FEATURE_SMEP)) {
915 	    return 1;
916 	}
917 
918 	ac_test_init(&at1, (void *)(0x123406001000));
919 
920 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
921             AC_PDE_USER_MASK | AC_PTE_USER_MASK |
922             AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
923             AC_CPU_CR4_SMEP_MASK |
924             AC_CPU_CR0_WP_MASK |
925             AC_ACCESS_WRITE_MASK;
926 	ac_test_setup_pte(&at1, pool);
927 
928 	/*
929 	 * Here we write the ro user page when
930 	 * cr0.wp=0, then we execute it and SMEP
931 	 * fault should happen.
932 	 */
933 	err_prepare_andnot_wp = ac_test_do_access(&at1);
934 	if (!err_prepare_andnot_wp) {
935 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
936 		goto clean_up;
937 	}
938 
939         at1.flags &= ~AC_ACCESS_WRITE_MASK;
940         at1.flags |= AC_ACCESS_FETCH_MASK;
941         ac_set_expected_status(&at1);
942         err_smep_andnot_wp = ac_test_do_access(&at1);
943 
944 clean_up:
945 	set_cr4_smep(0);
946 
947 	if (!err_prepare_andnot_wp)
948 		goto err;
949 	if (!err_smep_andnot_wp) {
950 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
951 		goto err;
952 	}
953 	return 1;
954 
955 err:
956 	return 0;
957 }
958 
959 static int check_effective_sp_permissions(ac_pool_t *pool)
960 {
961 	unsigned long ptr1 = 0x123480000000;
962 	unsigned long ptr2 = ptr1 + SZ_2M;
963 	unsigned long ptr3 = ptr1 + SZ_1G;
964 	unsigned long ptr4 = ptr3 + SZ_2M;
965 	pt_element_t pmd = ac_test_alloc_pt(pool);
966 	ac_test_t at1, at2, at3, at4;
967 	int err_read_at1, err_write_at2;
968 	int err_read_at3, err_write_at4;
969 
970 	/*
971 	 * pgd[]   pud[]        pmd[]            virtual address pointers
972 	 *                   /->pmd1(u--)->pte1(uw-)->page1 <- ptr1 (u--)
973 	 *      /->pud1(uw-)--->pmd2(uw-)->pte2(uw-)->page2 <- ptr2 (uw-)
974 	 * pgd-|           (shared pmd[] as above)
975 	 *      \->pud2(u--)--->pmd1(u--)->pte1(uw-)->page1 <- ptr3 (u--)
976 	 *                   \->pmd2(uw-)->pte2(uw-)->page2 <- ptr4 (u--)
977 	 * pud1 and pud2 point to the same pmd page.
978 	 */
979 
980 	ac_test_init(&at1, (void *)(ptr1));
981 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
982 		    AC_PDE_USER_MASK | AC_PTE_USER_MASK |
983 		    AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
984 		    AC_PTE_WRITABLE_MASK | AC_ACCESS_USER_MASK;
985 	__ac_setup_specific_pages(&at1, pool, false, pmd, 0);
986 
987 	ac_test_init(&at2, (void *)(ptr2));
988 	at2.flags = at1.flags | AC_PDE_WRITABLE_MASK | AC_PTE_DIRTY_MASK | AC_ACCESS_WRITE_MASK;
989 	__ac_setup_specific_pages(&at2, pool, true, pmd, 0);
990 
991 	ac_test_init(&at3, (void *)(ptr3));
992 	at3.flags = AC_PDPTE_NO_WRITABLE_MASK | at1.flags;
993 	__ac_setup_specific_pages(&at3, pool, true, pmd, 0);
994 
995 	ac_test_init(&at4, (void *)(ptr4));
996 	at4.flags = AC_PDPTE_NO_WRITABLE_MASK | at2.flags;
997 	__ac_setup_specific_pages(&at4, pool, true, pmd, 0);
998 
999 	err_read_at1 = ac_test_do_access(&at1);
1000 	if (!err_read_at1) {
1001 		printf("%s: read access at1 fail\n", __FUNCTION__);
1002 		return 0;
1003 	}
1004 
1005 	err_write_at2 = ac_test_do_access(&at2);
1006 	if (!err_write_at2) {
1007 		printf("%s: write access at2 fail\n", __FUNCTION__);
1008 		return 0;
1009 	}
1010 
1011 	err_read_at3 = ac_test_do_access(&at3);
1012 	if (!err_read_at3) {
1013 		printf("%s: read access at3 fail\n", __FUNCTION__);
1014 		return 0;
1015 	}
1016 
1017 	err_write_at4 = ac_test_do_access(&at4);
1018 	if (!err_write_at4) {
1019 		printf("%s: write access at4 should fail\n", __FUNCTION__);
1020 		return 0;
1021 	}
1022 
1023 	return 1;
1024 }
1025 
1026 static int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
1027 {
1028     int r;
1029 
1030     if (verbose) {
1031         ac_test_show(at);
1032     }
1033     ac_test_setup_pte(at, pool);
1034     r = ac_test_do_access(at);
1035     return r;
1036 }
1037 
1038 typedef int (*ac_test_fn)(ac_pool_t *pool);
1039 const ac_test_fn ac_test_cases[] =
1040 {
1041 	corrupt_hugepage_triger,
1042 	check_pfec_on_prefetch_pte,
1043 	check_large_pte_dirty_for_nowp,
1044 	check_smep_andnot_wp,
1045 	check_effective_sp_permissions,
1046 };
1047 
1048 static int ac_test_run(void)
1049 {
1050     ac_test_t at;
1051     ac_pool_t pool;
1052     int i, tests, successes;
1053 
1054     printf("run\n");
1055     tests = successes = 0;
1056 
1057     shadow_cr0 = read_cr0();
1058     shadow_cr4 = read_cr4();
1059     shadow_efer = rdmsr(MSR_EFER);
1060 
1061     if (cpuid_maxphyaddr() >= 52) {
1062         invalid_mask |= AC_PDE_BIT51_MASK;
1063         invalid_mask |= AC_PTE_BIT51_MASK;
1064     }
1065     if (cpuid_maxphyaddr() >= 37) {
1066         invalid_mask |= AC_PDE_BIT36_MASK;
1067         invalid_mask |= AC_PTE_BIT36_MASK;
1068     }
1069 
1070     if (this_cpu_has(X86_FEATURE_PKU)) {
1071         set_cr4_pke(1);
1072         set_cr4_pke(0);
1073         /* Now PKRU = 0xFFFFFFFF.  */
1074     } else {
1075 	tests++;
1076 	if (write_cr4_checking(shadow_cr4 | X86_CR4_PKE) == GP_VECTOR) {
1077             successes++;
1078             invalid_mask |= AC_PKU_AD_MASK;
1079             invalid_mask |= AC_PKU_WD_MASK;
1080             invalid_mask |= AC_PKU_PKEY_MASK;
1081             invalid_mask |= AC_CPU_CR4_PKE_MASK;
1082             printf("CR4.PKE not available, disabling PKE tests\n");
1083 	} else {
1084             printf("Set PKE in CR4 - expect #GP: FAIL!\n");
1085             set_cr4_pke(0);
1086 	}
1087     }
1088 
1089     if (!this_cpu_has(X86_FEATURE_SMEP)) {
1090 	tests++;
1091 	if (set_cr4_smep(1) == GP_VECTOR) {
1092             successes++;
1093             invalid_mask |= AC_CPU_CR4_SMEP_MASK;
1094             printf("CR4.SMEP not available, disabling SMEP tests\n");
1095 	} else {
1096             printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
1097             set_cr4_smep(0);
1098 	}
1099     }
1100 
1101     /* Toggling LA57 in 64-bit mode (guaranteed for this test) is illegal. */
1102     if (this_cpu_has(X86_FEATURE_LA57)) {
1103         tests++;
1104         if (write_cr4_checking(shadow_cr4 ^ X86_CR4_LA57) == GP_VECTOR)
1105             successes++;
1106 
1107         /* Force a VM-Exit on KVM, which doesn't intercept LA57 itself. */
1108         tests++;
1109         if (write_cr4_checking(shadow_cr4 ^ (X86_CR4_LA57 | X86_CR4_PSE)) == GP_VECTOR)
1110             successes++;
1111     }
1112 
1113     ac_env_int(&pool);
1114     ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
1115     do {
1116 	++tests;
1117 	successes += ac_test_exec(&at, &pool);
1118     } while (ac_test_bump(&at));
1119 
1120     for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
1121 	++tests;
1122 	successes += ac_test_cases[i](&pool);
1123     }
1124 
1125     printf("\n%d tests, %d failures\n", tests, tests - successes);
1126 
1127     return successes == tests;
1128 }
1129 
1130 int main(void)
1131 {
1132     int r;
1133 
1134     printf("starting test\n\n");
1135     page_table_levels = 4;
1136     r = ac_test_run();
1137 
1138     if (this_cpu_has(X86_FEATURE_LA57)) {
1139         page_table_levels = 5;
1140         printf("starting 5-level paging test.\n\n");
1141         setup_5level_page_table();
1142         r = ac_test_run();
1143     }
1144 
1145     return r ? 0 : 1;
1146 }
1147