xref: /kvm-unit-tests/x86/access.c (revision c604fa931a1cb70c3649ac1b7223178fc79eab6a)
1 #include "libcflat.h"
2 #include "desc.h"
3 #include "processor.h"
4 #include "asm/page.h"
5 #include "x86/vm.h"
6 #include "access.h"
7 
8 #define true 1
9 #define false 0
10 
11 static _Bool verbose = false;
12 
13 typedef unsigned long pt_element_t;
14 static int invalid_mask;
15 
16 /* Test code/data is at 32MiB, paging structures at 33MiB. */
17 #define AT_CODE_DATA_PHYS	  32 * 1024 * 1024
18 #define AT_PAGING_STRUCTURES_PHYS 33 * 1024 * 1024
19 
20 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 36) - 1) & PAGE_MASK))
21 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
22 
23 #define CR0_WP_MASK (1UL << 16)
24 #define CR4_SMEP_MASK (1UL << 20)
25 
26 #define PFERR_PRESENT_MASK (1U << 0)
27 #define PFERR_WRITE_MASK (1U << 1)
28 #define PFERR_USER_MASK (1U << 2)
29 #define PFERR_RESERVED_MASK (1U << 3)
30 #define PFERR_FETCH_MASK (1U << 4)
31 #define PFERR_PK_MASK (1U << 5)
32 
33 #define MSR_EFER 0xc0000080
34 #define EFER_NX_MASK            (1ull << 11)
35 
36 #define PT_INDEX(address, level)       \
37 	  (((address) >> (12 + ((level)-1) * 9)) & 511)
38 
39 /*
40  * Page table access check tests.  Each number/bit represent an individual
41  * test case.  The main test will bump a counter by 1 to run all permutations
42  * of the below test cases (sans illegal combinations).
43  *
44  * Keep the PRESENT and reserved bits in the higher numbers so that they aren't
45  * toggled on every test, e.g. to keep entries in the TLB.
46  */
47 enum {
48 	AC_PTE_WRITABLE_BIT,
49 	AC_PTE_USER_BIT,
50 	AC_PTE_ACCESSED_BIT,
51 	AC_PTE_DIRTY_BIT,
52 	AC_PTE_NX_BIT,
53 	AC_PTE_PRESENT_BIT,
54 	AC_PTE_BIT51_BIT,
55 	AC_PTE_BIT36_BIT,
56 
57 	AC_PDE_WRITABLE_BIT,
58 	AC_PDE_USER_BIT,
59 	AC_PDE_ACCESSED_BIT,
60 	AC_PDE_DIRTY_BIT,
61 	AC_PDE_PSE_BIT,
62 	AC_PDE_NX_BIT,
63 	AC_PDE_PRESENT_BIT,
64 	AC_PDE_BIT51_BIT,
65 	AC_PDE_BIT36_BIT,
66 	AC_PDE_BIT13_BIT,
67 
68 	/*
69 	 *  special test case to DISABLE writable bit on page directory
70 	 *  pointer table entry.
71 	 */
72 	AC_PDPTE_NO_WRITABLE_BIT,
73 
74 	AC_PKU_AD_BIT,
75 	AC_PKU_WD_BIT,
76 	AC_PKU_PKEY_BIT,
77 
78 	AC_ACCESS_USER_BIT,
79 	AC_ACCESS_WRITE_BIT,
80 	AC_ACCESS_FETCH_BIT,
81 	AC_ACCESS_TWICE_BIT,
82 
83 	AC_CPU_EFER_NX_BIT,
84 	AC_CPU_CR0_WP_BIT,
85 	AC_CPU_CR4_SMEP_BIT,
86 	AC_CPU_CR4_PKE_BIT,
87 
88 	NR_AC_FLAGS
89 };
90 
91 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
92 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
93 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
94 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
95 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
96 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
97 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
98 #define AC_PTE_BIT36_MASK     (1 << AC_PTE_BIT36_BIT)
99 
100 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
101 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
102 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
103 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
104 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
105 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
106 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
107 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
108 #define AC_PDE_BIT36_MASK     (1 << AC_PDE_BIT36_BIT)
109 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
110 
111 #define AC_PDPTE_NO_WRITABLE_MASK  (1 << AC_PDPTE_NO_WRITABLE_BIT)
112 
113 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
114 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
115 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
116 
117 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
118 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
119 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
120 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
121 
122 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
123 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
124 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
125 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
126 
127 const char *ac_names[] = {
128 	[AC_PTE_PRESENT_BIT] = "pte.p",
129 	[AC_PTE_ACCESSED_BIT] = "pte.a",
130 	[AC_PTE_WRITABLE_BIT] = "pte.rw",
131 	[AC_PTE_USER_BIT] = "pte.user",
132 	[AC_PTE_DIRTY_BIT] = "pte.d",
133 	[AC_PTE_NX_BIT] = "pte.nx",
134 	[AC_PTE_BIT51_BIT] = "pte.51",
135 	[AC_PTE_BIT36_BIT] = "pte.36",
136 	[AC_PDE_PRESENT_BIT] = "pde.p",
137 	[AC_PDE_ACCESSED_BIT] = "pde.a",
138 	[AC_PDE_WRITABLE_BIT] = "pde.rw",
139 	[AC_PDE_USER_BIT] = "pde.user",
140 	[AC_PDE_DIRTY_BIT] = "pde.d",
141 	[AC_PDE_PSE_BIT] = "pde.pse",
142 	[AC_PDE_NX_BIT] = "pde.nx",
143 	[AC_PDE_BIT51_BIT] = "pde.51",
144 	[AC_PDE_BIT36_BIT] = "pde.36",
145 	[AC_PDE_BIT13_BIT] = "pde.13",
146 	[AC_PDPTE_NO_WRITABLE_BIT] = "pdpte.ro",
147 	[AC_PKU_AD_BIT] = "pkru.ad",
148 	[AC_PKU_WD_BIT] = "pkru.wd",
149 	[AC_PKU_PKEY_BIT] = "pkey=1",
150 	[AC_ACCESS_WRITE_BIT] = "write",
151 	[AC_ACCESS_USER_BIT] = "user",
152 	[AC_ACCESS_FETCH_BIT] = "fetch",
153 	[AC_ACCESS_TWICE_BIT] = "twice",
154 	[AC_CPU_EFER_NX_BIT] = "efer.nx",
155 	[AC_CPU_CR0_WP_BIT] = "cr0.wp",
156 	[AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
157 	[AC_CPU_CR4_PKE_BIT] = "cr4.pke",
158 };
159 
160 static inline void *va(pt_element_t phys)
161 {
162 	return (void *)phys;
163 }
164 
165 typedef struct {
166 	pt_element_t pt_pool_pa;
167 	unsigned int pt_pool_current;
168 	int pt_levels;
169 } ac_pt_env_t;
170 
171 typedef struct {
172 	unsigned flags;
173 	void *virt;
174 	pt_element_t phys;
175 	pt_element_t *ptep;
176 	pt_element_t expected_pte;
177 	pt_element_t *pdep;
178 	pt_element_t expected_pde;
179 	pt_element_t ignore_pde;
180 	int expected_fault;
181 	unsigned expected_error;
182 	int pt_levels;
183 
184 	/* 5-level paging, 1-based to avoid math. */
185 	pt_element_t page_tables[6];
186 } ac_test_t;
187 
188 typedef struct {
189 	unsigned short limit;
190 	unsigned long linear_addr;
191 } __attribute__((packed)) descriptor_table_t;
192 
193 
194 static void ac_test_show(ac_test_t *at);
195 
196 static unsigned long shadow_cr0;
197 static unsigned long shadow_cr3;
198 static unsigned long shadow_cr4;
199 static unsigned long long shadow_efer;
200 
201 typedef void (*walk_fn)(pt_element_t *ptep, int level, unsigned long virt);
202 
203 /* Returns the size of the range covered by the last processed entry. */
204 static unsigned long walk_va(ac_test_t *at, int min_level, unsigned long virt,
205 			     walk_fn callback, bool leaf_only)
206 {
207 	unsigned long parent_pte = shadow_cr3;
208 	int i;
209 
210 	for (i = at->pt_levels; i >= min_level; --i) {
211 		pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK);
212 		unsigned int index = PT_INDEX(virt, i);
213 		pt_element_t *ptep = &parent_pt[index];
214 
215 		assert(!leaf_only || (*ptep & PT_PRESENT_MASK));
216 
217 		if (!leaf_only || i == 1 || (*ptep & PT_PAGE_SIZE_MASK))
218 			callback(ptep, i, virt);
219 
220 		if (i == 1 || *ptep & PT_PAGE_SIZE_MASK)
221 			break;
222 
223 		parent_pte = *ptep;
224 	}
225 
226 	return 1ul << PGDIR_BITS(i);
227 }
228 
229 static void walk_ptes(ac_test_t *at, unsigned long virt, unsigned long end,
230 		      walk_fn callback)
231 {
232 	unsigned long page_size;
233 
234 	for ( ; virt < end; virt = ALIGN_DOWN(virt + page_size, page_size))
235 		page_size = walk_va(at, 1, virt, callback, true);
236 }
237 
238 static void set_cr0_wp(int wp)
239 {
240 	unsigned long cr0 = shadow_cr0;
241 
242 	cr0 &= ~CR0_WP_MASK;
243 	if (wp)
244 		cr0 |= CR0_WP_MASK;
245 	if (cr0 != shadow_cr0) {
246 		write_cr0(cr0);
247 		shadow_cr0 = cr0;
248 	}
249 }
250 
251 static void clear_user_mask(pt_element_t *ptep, int level, unsigned long virt)
252 {
253 	*ptep &= ~PT_USER_MASK;
254 
255 	/* Flush to avoid spurious #PF */
256 	invlpg((void*)virt);
257 }
258 
259 static void set_user_mask(pt_element_t *ptep, int level, unsigned long virt)
260 {
261 	*ptep |= PT_USER_MASK;
262 
263 	/* Flush to avoid spurious #PF */
264 	invlpg((void*)virt);
265 }
266 
267 static unsigned set_cr4_smep(ac_test_t *at, int smep)
268 {
269 	extern char stext, etext;
270 	unsigned long code_start = (unsigned long)&stext;
271 	unsigned long code_end = (unsigned long)&etext;
272 	unsigned long cr4 = shadow_cr4;
273 	unsigned r;
274 
275 	cr4 &= ~CR4_SMEP_MASK;
276 	if (smep)
277 		cr4 |= CR4_SMEP_MASK;
278 	if (cr4 == shadow_cr4)
279 		return 0;
280 
281 	if (smep)
282 		walk_ptes(at, code_start, code_end, clear_user_mask);
283 	r = write_cr4_checking(cr4);
284 	if (r || !smep)
285 		walk_ptes(at, code_start, code_end, set_user_mask);
286 	if (!r)
287 		shadow_cr4 = cr4;
288 	return r;
289 }
290 
291 static void set_cr4_pke(int pke)
292 {
293 	unsigned long cr4 = shadow_cr4;
294 
295 	cr4 &= ~X86_CR4_PKE;
296 	if (pke)
297 		cr4 |= X86_CR4_PKE;
298 	if (cr4 == shadow_cr4)
299 		return;
300 
301 	/* Check that protection keys do not affect accesses when CR4.PKE=0.  */
302 	if ((shadow_cr4 & X86_CR4_PKE) && !pke)
303 		write_pkru(0xfffffffc);
304 	write_cr4(cr4);
305 	shadow_cr4 = cr4;
306 }
307 
308 static void set_efer_nx(int nx)
309 {
310 	unsigned long long efer = shadow_efer;
311 
312 	efer &= ~EFER_NX_MASK;
313 	if (nx)
314 		efer |= EFER_NX_MASK;
315 	if (efer != shadow_efer) {
316 		wrmsr(MSR_EFER, efer);
317 		shadow_efer = efer;
318 	}
319 }
320 
321 static void ac_env_int(ac_pt_env_t *pt_env, int page_table_levels)
322 {
323 	extern char page_fault, kernel_entry;
324 	set_idt_entry(14, &page_fault, 0);
325 	set_idt_entry(0x20, &kernel_entry, 3);
326 
327 	pt_env->pt_pool_pa = AT_PAGING_STRUCTURES_PHYS;
328 	pt_env->pt_pool_current = 0;
329 	pt_env->pt_levels = page_table_levels;
330 }
331 
332 static pt_element_t ac_test_alloc_pt(ac_pt_env_t *pt_env)
333 {
334 	pt_element_t pt;
335 
336 	/*
337 	 * Each test needs at most pt_levels-1 structures per virtual address,
338 	 * and no existing scenario uses more than four addresses.
339 	 */
340 	assert(pt_env->pt_pool_current < (4 * (pt_env->pt_levels - 1)));
341 
342 	pt = pt_env->pt_pool_pa + (pt_env->pt_pool_current * PAGE_SIZE);
343 	pt_env->pt_pool_current++;
344 	memset(va(pt), 0, PAGE_SIZE);
345 	return pt;
346 }
347 
348 static void __ac_test_init(ac_test_t *at, unsigned long virt,
349 			   ac_pt_env_t *pt_env, ac_test_t *buddy)
350 {
351 	unsigned long buddy_virt = buddy ? (unsigned long)buddy->virt : 0;
352 	pt_element_t *root_pt = va(shadow_cr3 & PT_BASE_ADDR_MASK);
353 	int i;
354 
355 	/*
356 	 * The test infrastructure, e.g. this function, must use a different
357 	 * top-level SPTE than the test, otherwise modifying SPTEs can affect
358 	 * normal behavior, e.g. crash the test due to marking code SPTEs
359 	 * USER when CR4.SMEP=1.
360 	 */
361 	assert(PT_INDEX(virt, pt_env->pt_levels) !=
362 	       PT_INDEX((unsigned long)__ac_test_init, pt_env->pt_levels));
363 
364 	set_efer_nx(1);
365 	set_cr0_wp(1);
366 	at->flags = 0;
367 	at->virt = (void *)virt;
368 	at->phys = AT_CODE_DATA_PHYS;
369 	at->pt_levels = pt_env->pt_levels;
370 
371 	at->page_tables[0] = -1ull;
372 	at->page_tables[1] = -1ull;
373 
374 	/*
375 	 * Zap the existing top-level PTE as it may be reused from a previous
376 	 * sub-test.  This allows runtime PTE modification to assert that two
377 	 * overlapping walks don't try to install different paging structures.
378 	 */
379 	root_pt[PT_INDEX(virt, pt_env->pt_levels)] = 0;
380 
381 	for (i = at->pt_levels; i > 1; i--) {
382 		/*
383 		 * Buddies can reuse any part of the walk that share the same
384 		 * index.  This is weird, but intentional, as several tests
385 		 * want different walks to merge at lower levels.
386 		 */
387 		if (buddy && PT_INDEX(virt, i) == PT_INDEX(buddy_virt, i))
388 			at->page_tables[i] = buddy->page_tables[i];
389 		else
390 			at->page_tables[i] = ac_test_alloc_pt(pt_env);
391 	}
392 }
393 
394 static void ac_test_init(ac_test_t *at, unsigned long virt, ac_pt_env_t *pt_env)
395 {
396 	__ac_test_init(at, virt, pt_env, NULL);
397 }
398 
399 static int ac_test_bump_one(ac_test_t *at)
400 {
401 	at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
402 	return at->flags < (1 << NR_AC_FLAGS);
403 }
404 
405 #define F(x)  ((flags & x##_MASK) != 0)
406 
407 static _Bool ac_test_legal(ac_test_t *at)
408 {
409 	int flags = at->flags;
410 	unsigned reserved;
411 
412 	if (F(AC_CPU_CR4_SMEP))
413 		return false;
414 
415 	if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
416 		return false;
417 
418 	/*
419 	 * Since we convert current page to kernel page when cr4.smep=1,
420 	 * we can't switch to user mode.
421 	 */
422 	if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
423 		return false;
424 
425 	/*
426 	 * Only test protection key faults if CR4.PKE=1.
427 	 */
428 	if (!F(AC_CPU_CR4_PKE) &&
429 		(F(AC_PKU_AD) || F(AC_PKU_WD))) {
430 		return false;
431 	}
432 
433 	/*
434 	 * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
435 	 * meaningless if there is a PTE.
436 	 */
437 	if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
438 		return false;
439 
440 	/*
441 	 * Shorten the test by avoiding testing too many reserved bit combinations.
442 	 * Skip testing multiple reserved bits to shorten the test. Reserved bit
443 	 * page faults are terminal and multiple reserved bits do not affect the
444 	 * error code; the odds of a KVM bug are super low, and the odds of actually
445 	 * being able to detect a bug are even lower.
446 	 */
447 	reserved = (AC_PDE_BIT51_MASK | AC_PDE_BIT36_MASK | AC_PDE_BIT13_MASK |
448 		   AC_PTE_BIT51_MASK | AC_PTE_BIT36_MASK);
449 	if (!F(AC_CPU_EFER_NX))
450 		reserved |= AC_PDE_NX_MASK | AC_PTE_NX_MASK;
451 
452 	/* Only test one reserved bit at a time.  */
453 	reserved &= flags;
454 	if (reserved & (reserved - 1))
455 		return false;
456 
457 	return true;
458 }
459 
460 static int ac_test_bump(ac_test_t *at)
461 {
462 	int ret;
463 
464 	do {
465 		ret = ac_test_bump_one(at);
466 	} while (ret && !ac_test_legal(at));
467 
468 	return ret;
469 }
470 
471 static pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags,
472 					bool writable, bool user,
473 					bool executable)
474 {
475 	bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
476 	pt_element_t expected = 0;
477 
478 	if (F(AC_ACCESS_USER) && !user)
479 		at->expected_fault = 1;
480 
481 	if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
482 		at->expected_fault = 1;
483 
484 	if (F(AC_ACCESS_FETCH) && !executable)
485 		at->expected_fault = 1;
486 
487 	if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
488 		at->expected_fault = 1;
489 
490 	if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
491 		if (F(AC_PKU_AD)) {
492 			at->expected_fault = 1;
493 			at->expected_error |= PFERR_PK_MASK;
494 		} else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
495 			at->expected_fault = 1;
496 			at->expected_error |= PFERR_PK_MASK;
497 		}
498 	}
499 
500 	if (!at->expected_fault) {
501 		expected |= PT_ACCESSED_MASK;
502 		if (F(AC_ACCESS_WRITE))
503 			expected |= PT_DIRTY_MASK;
504 	}
505 
506 	return expected;
507 }
508 
509 static void ac_emulate_access(ac_test_t *at, unsigned flags)
510 {
511 	bool pde_valid, pte_valid;
512 	bool user, writable, executable;
513 
514 	if (F(AC_ACCESS_USER))
515 		at->expected_error |= PFERR_USER_MASK;
516 
517 	if (F(AC_ACCESS_WRITE))
518 		at->expected_error |= PFERR_WRITE_MASK;
519 
520 	if (F(AC_ACCESS_FETCH))
521 		at->expected_error |= PFERR_FETCH_MASK;
522 
523 	if (!F(AC_PDE_ACCESSED))
524 		at->ignore_pde = PT_ACCESSED_MASK;
525 
526 	pde_valid = F(AC_PDE_PRESENT)
527 		&& !F(AC_PDE_BIT51) && !F(AC_PDE_BIT36) && !F(AC_PDE_BIT13)
528 		&& !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
529 
530 	if (!pde_valid) {
531 		at->expected_fault = 1;
532 		if (F(AC_PDE_PRESENT)) {
533 			at->expected_error |= PFERR_RESERVED_MASK;
534 		} else {
535 			at->expected_error &= ~PFERR_PRESENT_MASK;
536 		}
537 		goto fault;
538 	}
539 
540 	writable = !F(AC_PDPTE_NO_WRITABLE) && F(AC_PDE_WRITABLE);
541 	user = F(AC_PDE_USER);
542 	executable = !F(AC_PDE_NX);
543 
544 	if (F(AC_PDE_PSE)) {
545 		at->expected_pde |= ac_test_permissions(at, flags, writable,
546 							user, executable);
547 		goto no_pte;
548 	}
549 
550 	at->expected_pde |= PT_ACCESSED_MASK;
551 
552 	pte_valid = F(AC_PTE_PRESENT)
553 		    && !F(AC_PTE_BIT51) && !F(AC_PTE_BIT36)
554 		    && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
555 
556 	if (!pte_valid) {
557 		at->expected_fault = 1;
558 		if (F(AC_PTE_PRESENT)) {
559 			at->expected_error |= PFERR_RESERVED_MASK;
560 		} else {
561 			at->expected_error &= ~PFERR_PRESENT_MASK;
562 		}
563 		goto fault;
564 	}
565 
566 	writable &= F(AC_PTE_WRITABLE);
567 	user &= F(AC_PTE_USER);
568 	executable &= !F(AC_PTE_NX);
569 
570 	at->expected_pte |= ac_test_permissions(at, flags, writable, user,
571 						executable);
572 
573 no_pte:
574 fault:
575 	if (!at->expected_fault)
576 		at->ignore_pde = 0;
577 	if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
578 		at->expected_error &= ~PFERR_FETCH_MASK;
579 }
580 
581 static void ac_set_expected_status(ac_test_t *at)
582 {
583 	invlpg(at->virt);
584 
585 	if (at->ptep)
586 		at->expected_pte = *at->ptep;
587 	at->expected_pde = *at->pdep;
588 	at->ignore_pde = 0;
589 	at->expected_fault = 0;
590 	at->expected_error = PFERR_PRESENT_MASK;
591 
592 	if (at->flags & AC_ACCESS_TWICE_MASK) {
593 		ac_emulate_access(at, at->flags &
594 				  ~AC_ACCESS_WRITE_MASK &
595 				  ~AC_ACCESS_FETCH_MASK &
596 				  ~AC_ACCESS_USER_MASK);
597 		at->expected_fault = 0;
598 		at->expected_error = PFERR_PRESENT_MASK;
599 		at->ignore_pde = 0;
600 	}
601 
602 	ac_emulate_access(at, at->flags);
603 }
604 
605 static pt_element_t ac_get_pt(ac_test_t *at, int i, pt_element_t *ptep)
606 {
607 	pt_element_t pte;
608 
609 	pte = *ptep;
610 	if (pte && !(pte & PT_PAGE_SIZE_MASK) &&
611 	    (pte & PT_BASE_ADDR_MASK) != at->page_tables[i]) {
612 		printf("\nPT collision.  VA = 0x%lx, level = %d, index = %ld, found PT = 0x%lx, want PT = 0x%lx\n",
613 			(unsigned long)at->virt, i,
614 			PT_INDEX((unsigned long)at->virt, i),
615 			pte, at->page_tables[i]);
616 		abort();
617 	}
618 
619 	/*
620 	 * Preserve A/D bits to avoid writing upper level PTEs,
621 	 * which cannot be unsyc'd when KVM uses shadow paging.
622 	 */
623 	pte = at->page_tables[i] | (pte & (PT_DIRTY_MASK | PT_ACCESSED_MASK));
624 	return pte;
625 }
626 
627 static void ac_test_setup_ptes(ac_test_t *at)
628 {
629 	unsigned long parent_pte = shadow_cr3;
630 	int flags = at->flags;
631 	int i;
632 
633 	at->ptep = 0;
634 	for (i = at->pt_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
635 		pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK);
636 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
637 		pt_element_t *ptep = &parent_pt[index];
638 		pt_element_t pte;
639 
640 		switch (i) {
641 		case 5:
642 		case 4:
643 			pte = ac_get_pt(at, i, ptep);
644 			pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
645 			break;
646 		case 3:
647 			pte = ac_get_pt(at, i, ptep);
648 			pte |= PT_PRESENT_MASK | PT_USER_MASK;
649 			if (!F(AC_PDPTE_NO_WRITABLE))
650 				pte |= PT_WRITABLE_MASK;
651 			break;
652 		case 2:
653 			if (!F(AC_PDE_PSE)) {
654 				pte = ac_get_pt(at, i, ptep);
655 
656 				/* The protection key is ignored on non-leaf entries.  */
657 				if (F(AC_PKU_PKEY))
658 					pte |= 2ull << 59;
659 			} else {
660 				pte = at->phys & PT_PSE_BASE_ADDR_MASK;
661 				pte |= PT_PAGE_SIZE_MASK;
662 				if (F(AC_PKU_PKEY))
663 					pte |= 1ull << 59;
664 			}
665 			if (F(AC_PDE_PRESENT))
666 				pte |= PT_PRESENT_MASK;
667 			if (F(AC_PDE_WRITABLE))
668 				pte |= PT_WRITABLE_MASK;
669 			if (F(AC_PDE_USER))
670 				pte |= PT_USER_MASK;
671 			if (F(AC_PDE_ACCESSED))
672 				pte |= PT_ACCESSED_MASK;
673 			if (F(AC_PDE_DIRTY))
674 				pte |= PT_DIRTY_MASK;
675 			if (F(AC_PDE_NX))
676 				pte |= PT64_NX_MASK;
677 			if (F(AC_PDE_BIT51))
678 				pte |= 1ull << 51;
679 			if (F(AC_PDE_BIT36))
680 				pte |= 1ull << 36;
681 			if (F(AC_PDE_BIT13))
682 				pte |= 1ull << 13;
683 			at->pdep = ptep;
684 			break;
685 		case 1:
686 			pte = at->phys & PT_BASE_ADDR_MASK;
687 			if (F(AC_PKU_PKEY))
688 				pte |= 1ull << 59;
689 			if (F(AC_PTE_PRESENT))
690 				pte |= PT_PRESENT_MASK;
691 			if (F(AC_PTE_WRITABLE))
692 				pte |= PT_WRITABLE_MASK;
693 			if (F(AC_PTE_USER))
694 				pte |= PT_USER_MASK;
695 			if (F(AC_PTE_ACCESSED))
696 				pte |= PT_ACCESSED_MASK;
697 			if (F(AC_PTE_DIRTY))
698 				pte |= PT_DIRTY_MASK;
699 			if (F(AC_PTE_NX))
700 				pte |= PT64_NX_MASK;
701 			if (F(AC_PTE_BIT51))
702 				pte |= 1ull << 51;
703 			if (F(AC_PTE_BIT36))
704 				pte |= 1ull << 36;
705 			at->ptep = ptep;
706 			break;
707 		default:
708 			assert(0);
709 		}
710 
711 		if (pte != *ptep)
712 			*ptep = pte;
713 
714 		parent_pte = pte;
715 	}
716 	ac_set_expected_status(at);
717 }
718 
719 static void __dump_pte(pt_element_t *ptep, int level, unsigned long virt)
720 {
721 	printf("------L%d I%lu: %lx\n", level, PT_INDEX(virt, level), *ptep);
722 }
723 
724 static void dump_mapping(ac_test_t *at)
725 {
726 	unsigned long virt = (unsigned long)at->virt;
727 	int flags = at->flags;
728 
729 	printf("Dump mapping: address: %p\n", at->virt);
730 	walk_va(at, F(AC_PDE_PSE) ? 2 : 1, virt, __dump_pte, false);
731 }
732 
733 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
734 			  const char *fmt, ...)
735 {
736 	va_list ap;
737 	char buf[500];
738 
739 	if (!*success_ret) {
740 		return;
741 	}
742 
743 	if (!cond) {
744 		return;
745 	}
746 
747 	*success_ret = false;
748 
749 	if (!verbose) {
750 		puts("\n");
751 		ac_test_show(at);
752 	}
753 
754 	va_start(ap, fmt);
755 	vsnprintf(buf, sizeof(buf), fmt, ap);
756 	va_end(ap);
757 	printf("FAIL: %s\n", buf);
758 	dump_mapping(at);
759 }
760 
761 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
762 {
763 	pte1 &= ~ignore;
764 	pte2 &= ~ignore;
765 	return pte1 == pte2;
766 }
767 
768 static int ac_test_do_access(ac_test_t *at)
769 {
770 	static unsigned unique = 42;
771 	int fault = 0;
772 	unsigned e;
773 	static unsigned char user_stack[4096];
774 	unsigned long rsp;
775 	_Bool success = true;
776 	int flags = at->flags;
777 
778 	++unique;
779 	if (!(unique & 65535)) {
780 		puts(".");
781 	}
782 
783 	*((unsigned char *)at->phys) = 0xc3; /* ret */
784 
785 	unsigned r = unique;
786 	set_cr0_wp(F(AC_CPU_CR0_WP));
787 	set_efer_nx(F(AC_CPU_EFER_NX));
788 	set_cr4_pke(F(AC_CPU_CR4_PKE));
789 	if (F(AC_CPU_CR4_PKE)) {
790 		/* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
791 		write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
792 			   (F(AC_PKU_AD) ? 4 : 0));
793 	}
794 
795 	set_cr4_smep(at, F(AC_CPU_CR4_SMEP));
796 
797 	if (F(AC_ACCESS_TWICE)) {
798 		asm volatile ("mov $fixed2, %%rsi \n\t"
799 			      "mov (%[addr]), %[reg] \n\t"
800 			      "fixed2:"
801 			      : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
802 			      : [addr]"r"(at->virt)
803 			      : "rsi");
804 		fault = 0;
805 	}
806 
807 	asm volatile ("mov $fixed1, %%rsi \n\t"
808 		      "mov %%rsp, %[rsp0] \n\t"
809 		      "cmp $0, %[user] \n\t"
810 		      "jz do_access \n\t"
811 		      "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t"
812 		      "pushq %[user_ds] \n\t"
813 		      "pushq %[user_stack_top] \n\t"
814 		      "pushfq \n\t"
815 		      "pushq %[user_cs] \n\t"
816 		      "pushq $do_access \n\t"
817 		      "iretq \n"
818 		      "do_access: \n\t"
819 		      "cmp $0, %[fetch] \n\t"
820 		      "jnz 2f \n\t"
821 		      "cmp $0, %[write] \n\t"
822 		      "jnz 1f \n\t"
823 		      "mov (%[addr]), %[reg] \n\t"
824 		      "jmp done \n\t"
825 		      "1: mov %[reg], (%[addr]) \n\t"
826 		      "jmp done \n\t"
827 		      "2: call *%[addr] \n\t"
828 		      "done: \n"
829 		      "fixed1: \n"
830 		      "int %[kernel_entry_vector] \n\t"
831 		      ".section .text.entry \n\t"
832 		      "kernel_entry: \n\t"
833 		      "mov %[rsp0], %%rsp \n\t"
834 		      "jmp back_to_kernel \n\t"
835 		      ".section .text \n\t"
836 		      "back_to_kernel:"
837 		      : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp),
838 			[rsp0]"=m"(tss[0].rsp0)
839 		      : [addr]"r"(at->virt),
840 			[write]"r"(F(AC_ACCESS_WRITE)),
841 			[user]"r"(F(AC_ACCESS_USER)),
842 			[fetch]"r"(F(AC_ACCESS_FETCH)),
843 			[user_ds]"i"(USER_DS),
844 			[user_cs]"i"(USER_CS),
845 			[user_stack_top]"r"(user_stack + sizeof user_stack),
846 			[kernel_entry_vector]"i"(0x20)
847 		      : "rsi");
848 
849 	asm volatile (".section .text.pf \n\t"
850 		      "page_fault: \n\t"
851 		      "pop %rbx \n\t"
852 		      "mov %rsi, (%rsp) \n\t"
853 		      "movl $1, %eax \n\t"
854 		      "iretq \n\t"
855 		      ".section .text");
856 
857 	ac_test_check(at, &success, fault && !at->expected_fault,
858 		      "unexpected fault");
859 	ac_test_check(at, &success, !fault && at->expected_fault,
860 		      "unexpected access");
861 	ac_test_check(at, &success, fault && e != at->expected_error,
862 		      "error code %x expected %x", e, at->expected_error);
863 	if (at->ptep)
864 		ac_test_check(at, &success, *at->ptep != at->expected_pte,
865 			      "pte %x expected %x", *at->ptep, at->expected_pte);
866 	ac_test_check(at, &success,
867 		      !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
868 		      "pde %x expected %x", *at->pdep, at->expected_pde);
869 
870 	if (success && verbose) {
871 		if (at->expected_fault) {
872 			printf("PASS (%x)\n", at->expected_error);
873 		} else {
874 			printf("PASS\n");
875 		}
876 	}
877 	return success;
878 }
879 
880 static void ac_test_show(ac_test_t *at)
881 {
882 	char line[5000];
883 
884 	*line = 0;
885 	strcat(line, "test");
886 	for (int i = 0; i < NR_AC_FLAGS; ++i)
887 		if (at->flags & (1 << i)) {
888 			strcat(line, " ");
889 			strcat(line, ac_names[i]);
890 		}
891 
892 	strcat(line, ": ");
893 	printf("%s", line);
894 }
895 
896 /*
897  * This test case is used to triger the bug which is fixed by
898  * commit e09e90a5 in the kvm tree
899  */
900 static int corrupt_hugepage_triger(ac_pt_env_t *pt_env)
901 {
902 	ac_test_t at1, at2;
903 
904 	ac_test_init(&at1, 0xffff923400000000ul, pt_env);
905 	__ac_test_init(&at2, 0xffffe66600000000ul, pt_env, &at1);
906 
907 	at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
908 	ac_test_setup_ptes(&at2);
909 	if (!ac_test_do_access(&at2))
910 		goto err;
911 
912 	at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
913 	ac_test_setup_ptes(&at1);
914 	if (!ac_test_do_access(&at1))
915 		goto err;
916 
917 	at1.flags |= AC_ACCESS_WRITE_MASK;
918 	ac_set_expected_status(&at1);
919 	if (!ac_test_do_access(&at1))
920 		goto err;
921 
922 	at2.flags |= AC_ACCESS_WRITE_MASK;
923 	ac_set_expected_status(&at2);
924 	if (!ac_test_do_access(&at2))
925 		goto err;
926 
927 	return 1;
928 
929 err:
930 	printf("corrupt_hugepage_triger test fail\n");
931 	return 0;
932 }
933 
934 /*
935  * This test case is used to triger the bug which is fixed by
936  * commit 3ddf6c06e13e in the kvm tree
937  */
938 static int check_pfec_on_prefetch_pte(ac_pt_env_t *pt_env)
939 {
940 	ac_test_t at1, at2;
941 
942 	ac_test_init(&at1, 0xffff923406001000ul, pt_env);
943 	__ac_test_init(&at2, 0xffff923406003000ul, pt_env, &at1);
944 
945 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
946 	ac_test_setup_ptes(&at1);
947 
948 	at2.flags = at1.flags | AC_PTE_NX_MASK;
949 	ac_test_setup_ptes(&at2);
950 
951 	if (!ac_test_do_access(&at1)) {
952 		printf("%s: prepare fail\n", __FUNCTION__);
953 			goto err;
954 	}
955 
956 	if (!ac_test_do_access(&at2)) {
957 		printf("%s: check PFEC on prefetch pte path fail\n",
958 		       __FUNCTION__);
959 		goto err;
960 	}
961 
962 	return 1;
963 
964 err:
965 	return 0;
966 }
967 
968 /*
969  * If the write-fault access is from supervisor and CR0.WP is not set on the
970  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
971  * and clears U bit. This is the chance that kvm can change pte access from
972  * readonly to writable.
973  *
974  * Unfortunately, the pte access is the access of 'direct' shadow page table,
975  * means direct sp.role.access = pte_access, then we will create a writable
976  * spte entry on the readonly shadow page table. It will cause Dirty bit is
977  * not tracked when two guest ptes point to the same large page. Note, it
978  * does not have other impact except Dirty bit since cr0.wp is encoded into
979  * sp.role.
980  *
981  * Note: to trigger this bug, hugepage should be disabled on host.
982  */
983 static int check_large_pte_dirty_for_nowp(ac_pt_env_t *pt_env)
984 {
985 	ac_test_t at1, at2;
986 
987 	ac_test_init(&at1, 0xffff923403000000ul, pt_env);
988 	__ac_test_init(&at2, 0xffffe66606000000ul, pt_env, &at1);
989 
990 	at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
991 	ac_test_setup_ptes(&at2);
992 	if (!ac_test_do_access(&at2)) {
993 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
994 		goto err;
995 	}
996 
997 	at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
998 	ac_test_setup_ptes(&at1);
999 	if (!ac_test_do_access(&at1)) {
1000 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
1001 		goto err;
1002 	}
1003 
1004 	at2.flags |= AC_ACCESS_WRITE_MASK;
1005 	ac_set_expected_status(&at2);
1006 	if (!ac_test_do_access(&at2)) {
1007 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
1008 		goto err;
1009 	}
1010 
1011 	return 1;
1012 
1013 err:
1014 	return 0;
1015 }
1016 
1017 static int check_smep_andnot_wp(ac_pt_env_t *pt_env)
1018 {
1019 	ac_test_t at1;
1020 	int err_prepare_andnot_wp, err_smep_andnot_wp;
1021 
1022 	if (!this_cpu_has(X86_FEATURE_SMEP)) {
1023 		return 1;
1024 	}
1025 
1026 	ac_test_init(&at1, 0xffff923406001000ul, pt_env);
1027 
1028 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
1029 		    AC_PDE_USER_MASK | AC_PTE_USER_MASK |
1030 		    AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
1031 		    AC_CPU_CR4_SMEP_MASK |
1032 		    AC_CPU_CR0_WP_MASK |
1033 		    AC_ACCESS_WRITE_MASK;
1034 	ac_test_setup_ptes(&at1);
1035 
1036 	/*
1037 	 * Here we write the ro user page when
1038 	 * cr0.wp=0, then we execute it and SMEP
1039 	 * fault should happen.
1040 	 */
1041 	err_prepare_andnot_wp = ac_test_do_access(&at1);
1042 	if (!err_prepare_andnot_wp) {
1043 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
1044 		goto clean_up;
1045 	}
1046 
1047 	at1.flags &= ~AC_ACCESS_WRITE_MASK;
1048 	at1.flags |= AC_ACCESS_FETCH_MASK;
1049 	ac_set_expected_status(&at1);
1050 	err_smep_andnot_wp = ac_test_do_access(&at1);
1051 
1052 clean_up:
1053 	set_cr4_smep(&at1, 0);
1054 
1055 	if (!err_prepare_andnot_wp)
1056 		goto err;
1057 	if (!err_smep_andnot_wp) {
1058 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
1059 		goto err;
1060 	}
1061 	return 1;
1062 
1063 err:
1064 	return 0;
1065 }
1066 
1067 static int check_effective_sp_permissions(ac_pt_env_t *pt_env)
1068 {
1069 	unsigned long ptr1 = 0xffff923480000000;
1070 	unsigned long ptr2 = ptr1 + SZ_2M;
1071 	unsigned long ptr3 = ptr1 + SZ_1G;
1072 	unsigned long ptr4 = ptr3 + SZ_2M;
1073 	ac_test_t at1, at2, at3, at4;
1074 	int err_read_at1, err_write_at2;
1075 	int err_read_at3, err_write_at4;
1076 
1077 	/*
1078 	 * pgd[]   pud[]        pmd[]            virtual address pointers
1079 	 *                   /->pmd(u--)->pte1(uw-)->page1 <- ptr1 (u--)
1080 	 *      /->pud1(uw-)--->pmd(uw-)->pte2(uw-)->page2 <- ptr2 (uw-)
1081 	 * pgd-|
1082 	 *      \->pud2(u--)--->pmd(u--)->pte1(uw-)->page1 <- ptr3 (u--)
1083 	 *                   \->pmd(uw-)->pte2(uw-)->page2 <- ptr4 (u--)
1084 	 * pud1 and pud2 point to the same pmd page.
1085 	 */
1086 
1087 	ac_test_init(&at1, ptr1, pt_env);
1088 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
1089 		    AC_PDE_USER_MASK | AC_PTE_USER_MASK |
1090 		    AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
1091 		    AC_PTE_WRITABLE_MASK | AC_ACCESS_USER_MASK;
1092 	ac_test_setup_ptes(&at1);
1093 
1094 	__ac_test_init(&at2, ptr2, pt_env, &at1);
1095 	at2.flags = at1.flags | AC_PDE_WRITABLE_MASK | AC_PTE_DIRTY_MASK | AC_ACCESS_WRITE_MASK;
1096 	ac_test_setup_ptes(&at2);
1097 
1098 	__ac_test_init(&at3, ptr3, pt_env, &at1);
1099 	/* Override the PMD (1-based index) to point at ptr1's PMD. */
1100 	at3.page_tables[3] = at1.page_tables[3];
1101 	at3.flags = AC_PDPTE_NO_WRITABLE_MASK | at1.flags;
1102 	ac_test_setup_ptes(&at3);
1103 
1104 	/* Alias ptr2, only the PMD will differ; manually override the PMD. */
1105 	__ac_test_init(&at4, ptr4, pt_env, &at2);
1106 	at4.page_tables[3] = at1.page_tables[3];
1107 	at4.flags = AC_PDPTE_NO_WRITABLE_MASK | at2.flags;
1108 	ac_test_setup_ptes(&at4);
1109 
1110 	err_read_at1 = ac_test_do_access(&at1);
1111 	if (!err_read_at1) {
1112 		printf("%s: read access at1 fail\n", __FUNCTION__);
1113 		return 0;
1114 	}
1115 
1116 	err_write_at2 = ac_test_do_access(&at2);
1117 	if (!err_write_at2) {
1118 		printf("%s: write access at2 fail\n", __FUNCTION__);
1119 		return 0;
1120 	}
1121 
1122 	err_read_at3 = ac_test_do_access(&at3);
1123 	if (!err_read_at3) {
1124 		printf("%s: read access at3 fail\n", __FUNCTION__);
1125 		return 0;
1126 	}
1127 
1128 	err_write_at4 = ac_test_do_access(&at4);
1129 	if (!err_write_at4) {
1130 		printf("%s: write access at4 should fail\n", __FUNCTION__);
1131 		return 0;
1132 	}
1133 
1134 	return 1;
1135 }
1136 
1137 static int ac_test_exec(ac_test_t *at, ac_pt_env_t *pt_env)
1138 {
1139 	int r;
1140 
1141 	if (verbose) {
1142 		ac_test_show(at);
1143 	}
1144 	ac_test_setup_ptes(at);
1145 	r = ac_test_do_access(at);
1146 	return r;
1147 }
1148 
1149 typedef int (*ac_test_fn)(ac_pt_env_t *pt_env);
1150 const ac_test_fn ac_test_cases[] =
1151 {
1152 	corrupt_hugepage_triger,
1153 	check_pfec_on_prefetch_pte,
1154 	check_large_pte_dirty_for_nowp,
1155 	check_smep_andnot_wp,
1156 	check_effective_sp_permissions,
1157 };
1158 
1159 int ac_test_run(int pt_levels)
1160 {
1161 	ac_test_t at;
1162 	ac_pt_env_t pt_env;
1163 	int i, tests, successes;
1164 
1165 	printf("run\n");
1166 	tests = successes = 0;
1167 
1168 	shadow_cr0 = read_cr0();
1169 	shadow_cr4 = read_cr4();
1170 	shadow_cr3 = read_cr3();
1171 	shadow_efer = rdmsr(MSR_EFER);
1172 
1173 	if (cpuid_maxphyaddr() >= 52) {
1174 		invalid_mask |= AC_PDE_BIT51_MASK;
1175 		invalid_mask |= AC_PTE_BIT51_MASK;
1176 	}
1177 	if (cpuid_maxphyaddr() >= 37) {
1178 		invalid_mask |= AC_PDE_BIT36_MASK;
1179 		invalid_mask |= AC_PTE_BIT36_MASK;
1180 	}
1181 
1182 	ac_env_int(&pt_env, pt_levels);
1183 	ac_test_init(&at, 0xffff923400000000ul, &pt_env);
1184 
1185 	if (this_cpu_has(X86_FEATURE_PKU)) {
1186 		set_cr4_pke(1);
1187 		set_cr4_pke(0);
1188 		/* Now PKRU = 0xFFFFFFFF.  */
1189 	} else {
1190 		tests++;
1191 		if (write_cr4_checking(shadow_cr4 | X86_CR4_PKE) == GP_VECTOR) {
1192 			successes++;
1193 			invalid_mask |= AC_PKU_AD_MASK;
1194 			invalid_mask |= AC_PKU_WD_MASK;
1195 			invalid_mask |= AC_PKU_PKEY_MASK;
1196 			invalid_mask |= AC_CPU_CR4_PKE_MASK;
1197 			printf("CR4.PKE not available, disabling PKE tests\n");
1198 		} else {
1199 			printf("Set PKE in CR4 - expect #GP: FAIL!\n");
1200 			set_cr4_pke(0);
1201 		}
1202 	}
1203 
1204 	if (!this_cpu_has(X86_FEATURE_SMEP)) {
1205 		tests++;
1206 		if (set_cr4_smep(&at, 1) == GP_VECTOR) {
1207 			successes++;
1208 			invalid_mask |= AC_CPU_CR4_SMEP_MASK;
1209 			printf("CR4.SMEP not available, disabling SMEP tests\n");
1210 		} else {
1211 			printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
1212 			set_cr4_smep(&at, 0);
1213 		}
1214 	}
1215 
1216 	/* Toggling LA57 in 64-bit mode (guaranteed for this test) is illegal. */
1217 	if (this_cpu_has(X86_FEATURE_LA57)) {
1218 		tests++;
1219 		if (write_cr4_checking(shadow_cr4 ^ X86_CR4_LA57) == GP_VECTOR)
1220 			successes++;
1221 
1222 		/* Force a VM-Exit on KVM, which doesn't intercept LA57 itself. */
1223 		tests++;
1224 		if (write_cr4_checking(shadow_cr4 ^ (X86_CR4_LA57 | X86_CR4_PSE)) == GP_VECTOR)
1225 			successes++;
1226 	}
1227 
1228 	do {
1229 		++tests;
1230 		successes += ac_test_exec(&at, &pt_env);
1231 	} while (ac_test_bump(&at));
1232 
1233 	for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
1234 		ac_env_int(&pt_env, pt_levels);
1235 
1236 		++tests;
1237 		successes += ac_test_cases[i](&pt_env);
1238 	}
1239 
1240 	printf("\n%d tests, %d failures\n", tests, tests - successes);
1241 
1242 	return successes == tests;
1243 }
1244