xref: /kvm-unit-tests/x86/access.c (revision 7db17e21adeedeba0f421f4c23f13934577f0264)
1 
2 #include "libcflat.h"
3 #include "desc.h"
4 #include "processor.h"
5 #include "asm/page.h"
6 #include "x86/vm.h"
7 
8 #define smp_id() 0
9 
10 #define true 1
11 #define false 0
12 
13 static _Bool verbose = false;
14 
15 typedef unsigned long pt_element_t;
16 static int cpuid_7_ebx;
17 static int cpuid_7_ecx;
18 static int invalid_mask;
19 static int page_table_levels;
20 
21 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
22 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
23 
24 #define CR0_WP_MASK (1UL << 16)
25 #define CR4_SMEP_MASK (1UL << 20)
26 
27 #define PFERR_PRESENT_MASK (1U << 0)
28 #define PFERR_WRITE_MASK (1U << 1)
29 #define PFERR_USER_MASK (1U << 2)
30 #define PFERR_RESERVED_MASK (1U << 3)
31 #define PFERR_FETCH_MASK (1U << 4)
32 #define PFERR_PK_MASK (1U << 5)
33 
34 #define MSR_EFER 0xc0000080
35 #define EFER_NX_MASK		(1ull << 11)
36 
37 #define PT_INDEX(address, level)       \
38        ((address) >> (12 + ((level)-1) * 9)) & 511
39 
40 /*
41  * page table access check tests
42  */
43 
44 enum {
45     AC_PTE_PRESENT_BIT,
46     AC_PTE_WRITABLE_BIT,
47     AC_PTE_USER_BIT,
48     AC_PTE_ACCESSED_BIT,
49     AC_PTE_DIRTY_BIT,
50     AC_PTE_NX_BIT,
51     AC_PTE_BIT51_BIT,
52 
53     AC_PDE_PRESENT_BIT,
54     AC_PDE_WRITABLE_BIT,
55     AC_PDE_USER_BIT,
56     AC_PDE_ACCESSED_BIT,
57     AC_PDE_DIRTY_BIT,
58     AC_PDE_PSE_BIT,
59     AC_PDE_NX_BIT,
60     AC_PDE_BIT51_BIT,
61     AC_PDE_BIT13_BIT,
62 
63     AC_PKU_AD_BIT,
64     AC_PKU_WD_BIT,
65     AC_PKU_PKEY_BIT,
66 
67     AC_ACCESS_USER_BIT,
68     AC_ACCESS_WRITE_BIT,
69     AC_ACCESS_FETCH_BIT,
70     AC_ACCESS_TWICE_BIT,
71 
72     AC_CPU_EFER_NX_BIT,
73     AC_CPU_CR0_WP_BIT,
74     AC_CPU_CR4_SMEP_BIT,
75     AC_CPU_CR4_PKE_BIT,
76 
77     NR_AC_FLAGS
78 };
79 
80 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
81 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
82 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
83 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
84 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
85 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
86 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
87 
88 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
89 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
90 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
91 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
92 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
93 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
94 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
95 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
96 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
97 
98 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
99 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
100 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
101 
102 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
103 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
104 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
105 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
106 
107 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
108 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
109 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
110 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
111 
112 const char *ac_names[] = {
113     [AC_PTE_PRESENT_BIT] = "pte.p",
114     [AC_PTE_ACCESSED_BIT] = "pte.a",
115     [AC_PTE_WRITABLE_BIT] = "pte.rw",
116     [AC_PTE_USER_BIT] = "pte.user",
117     [AC_PTE_DIRTY_BIT] = "pte.d",
118     [AC_PTE_NX_BIT] = "pte.nx",
119     [AC_PTE_BIT51_BIT] = "pte.51",
120     [AC_PDE_PRESENT_BIT] = "pde.p",
121     [AC_PDE_ACCESSED_BIT] = "pde.a",
122     [AC_PDE_WRITABLE_BIT] = "pde.rw",
123     [AC_PDE_USER_BIT] = "pde.user",
124     [AC_PDE_DIRTY_BIT] = "pde.d",
125     [AC_PDE_PSE_BIT] = "pde.pse",
126     [AC_PDE_NX_BIT] = "pde.nx",
127     [AC_PDE_BIT51_BIT] = "pde.51",
128     [AC_PDE_BIT13_BIT] = "pde.13",
129     [AC_PKU_AD_BIT] = "pkru.ad",
130     [AC_PKU_WD_BIT] = "pkru.wd",
131     [AC_PKU_PKEY_BIT] = "pkey=1",
132     [AC_ACCESS_WRITE_BIT] = "write",
133     [AC_ACCESS_USER_BIT] = "user",
134     [AC_ACCESS_FETCH_BIT] = "fetch",
135     [AC_ACCESS_TWICE_BIT] = "twice",
136     [AC_CPU_EFER_NX_BIT] = "efer.nx",
137     [AC_CPU_CR0_WP_BIT] = "cr0.wp",
138     [AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
139     [AC_CPU_CR4_PKE_BIT] = "cr4.pke",
140 };
141 
142 static inline void *va(pt_element_t phys)
143 {
144     return (void *)phys;
145 }
146 
147 typedef struct {
148     pt_element_t pt_pool;
149     unsigned pt_pool_size;
150     unsigned pt_pool_current;
151 } ac_pool_t;
152 
153 typedef struct {
154     unsigned flags;
155     void *virt;
156     pt_element_t phys;
157     pt_element_t *ptep;
158     pt_element_t expected_pte;
159     pt_element_t *pdep;
160     pt_element_t expected_pde;
161     pt_element_t ignore_pde;
162     int expected_fault;
163     unsigned expected_error;
164 } ac_test_t;
165 
166 typedef struct {
167     unsigned short limit;
168     unsigned long linear_addr;
169 } __attribute__((packed)) descriptor_table_t;
170 
171 
172 static void ac_test_show(ac_test_t *at);
173 
174 int write_cr4_checking(unsigned long val)
175 {
176     asm volatile(ASM_TRY("1f")
177             "mov %0,%%cr4\n\t"
178             "1:": : "r" (val));
179     return exception_vector();
180 }
181 
182 void set_cr0_wp(int wp)
183 {
184     unsigned long cr0 = read_cr0();
185     unsigned long old_cr0 = cr0;
186 
187     cr0 &= ~CR0_WP_MASK;
188     if (wp)
189 	cr0 |= CR0_WP_MASK;
190     if (old_cr0 != cr0)
191         write_cr0(cr0);
192 }
193 
194 unsigned set_cr4_smep(int smep)
195 {
196     unsigned long cr4 = read_cr4();
197     unsigned long old_cr4 = cr4;
198     extern u64 ptl2[];
199     unsigned r;
200 
201     cr4 &= ~CR4_SMEP_MASK;
202     if (smep)
203 	cr4 |= CR4_SMEP_MASK;
204     if (old_cr4 == cr4)
205         return 0;
206 
207     if (smep)
208         ptl2[2] &= ~PT_USER_MASK;
209     r = write_cr4_checking(cr4);
210     if (r || !smep)
211         ptl2[2] |= PT_USER_MASK;
212     return r;
213 }
214 
215 void set_cr4_pke(int pke)
216 {
217     unsigned long cr4 = read_cr4();
218     unsigned long old_cr4 = cr4;
219 
220     cr4 &= ~X86_CR4_PKE;
221     if (pke)
222 	cr4 |= X86_CR4_PKE;
223     if (old_cr4 == cr4)
224         return;
225 
226     /* Check that protection keys do not affect accesses when CR4.PKE=0.  */
227     if ((read_cr4() & X86_CR4_PKE) && !pke) {
228         write_pkru(0xfffffffc);
229     }
230     write_cr4(cr4);
231 }
232 
233 void set_efer_nx(int nx)
234 {
235     unsigned long long efer = rdmsr(MSR_EFER);
236     unsigned long long old_efer = efer;
237 
238     efer &= ~EFER_NX_MASK;
239     if (nx)
240 	efer |= EFER_NX_MASK;
241     if (old_efer != efer)
242         wrmsr(MSR_EFER, efer);
243 }
244 
245 static void ac_env_int(ac_pool_t *pool)
246 {
247     extern char page_fault, kernel_entry;
248     set_idt_entry(14, &page_fault, 0);
249     set_idt_entry(0x20, &kernel_entry, 3);
250 
251     pool->pt_pool = 33 * 1024 * 1024;
252     pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
253     pool->pt_pool_current = 0;
254 }
255 
256 void ac_test_init(ac_test_t *at, void *virt)
257 {
258     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
259     set_cr0_wp(1);
260     at->flags = 0;
261     at->virt = virt;
262     at->phys = 32 * 1024 * 1024;
263 }
264 
265 int ac_test_bump_one(ac_test_t *at)
266 {
267     at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
268     return at->flags < (1 << NR_AC_FLAGS);
269 }
270 
271 #define F(x)  ((flags & x##_MASK) != 0)
272 
273 _Bool ac_test_legal(ac_test_t *at)
274 {
275     int flags = at->flags;
276 
277     if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
278 	return false;
279 
280     /*
281      * Since we convert current page to kernel page when cr4.smep=1,
282      * we can't switch to user mode.
283      */
284     if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
285 	return false;
286 
287     /*
288      * Only test protection key faults if CR4.PKE=1.
289      */
290     if (!F(AC_CPU_CR4_PKE) &&
291         (F(AC_PKU_AD) || F(AC_PKU_WD))) {
292 	return false;
293     }
294 
295     /*
296      * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
297      * meaningless if there is a PTE.
298      */
299     if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
300         return false;
301 
302     return true;
303 }
304 
305 int ac_test_bump(ac_test_t *at)
306 {
307     int ret;
308 
309     ret = ac_test_bump_one(at);
310     while (ret && !ac_test_legal(at))
311 	ret = ac_test_bump_one(at);
312     return ret;
313 }
314 
315 pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
316 {
317     pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
318     pool->pt_pool_current += PAGE_SIZE;
319     return ret;
320 }
321 
322 _Bool ac_test_enough_room(ac_pool_t *pool)
323 {
324     return pool->pt_pool_current + 5 * PAGE_SIZE <= pool->pt_pool_size;
325 }
326 
327 void ac_test_reset_pt_pool(ac_pool_t *pool)
328 {
329     pool->pt_pool_current = 0;
330 }
331 
332 pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags, bool writable,
333                                  bool user, bool executable)
334 {
335     bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
336     pt_element_t expected = 0;
337 
338     if (F(AC_ACCESS_USER) && !user)
339 	at->expected_fault = 1;
340 
341     if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
342 	at->expected_fault = 1;
343 
344     if (F(AC_ACCESS_FETCH) && !executable)
345 	at->expected_fault = 1;
346 
347     if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
348         at->expected_fault = 1;
349 
350     if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
351         if (F(AC_PKU_AD)) {
352             at->expected_fault = 1;
353             at->expected_error |= PFERR_PK_MASK;
354         } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
355             at->expected_fault = 1;
356             at->expected_error |= PFERR_PK_MASK;
357         }
358     }
359 
360     if (!at->expected_fault) {
361         expected |= PT_ACCESSED_MASK;
362         if (F(AC_ACCESS_WRITE))
363             expected |= PT_DIRTY_MASK;
364     }
365 
366     return expected;
367 }
368 
369 void ac_emulate_access(ac_test_t *at, unsigned flags)
370 {
371     bool pde_valid, pte_valid;
372     bool user, writable, executable;
373 
374     if (F(AC_ACCESS_USER))
375 	at->expected_error |= PFERR_USER_MASK;
376 
377     if (F(AC_ACCESS_WRITE))
378 	at->expected_error |= PFERR_WRITE_MASK;
379 
380     if (F(AC_ACCESS_FETCH))
381 	at->expected_error |= PFERR_FETCH_MASK;
382 
383     if (!F(AC_PDE_ACCESSED))
384         at->ignore_pde = PT_ACCESSED_MASK;
385 
386     pde_valid = F(AC_PDE_PRESENT)
387         && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT13)
388         && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
389 
390     if (!pde_valid) {
391         at->expected_fault = 1;
392 	if (F(AC_PDE_PRESENT)) {
393             at->expected_error |= PFERR_RESERVED_MASK;
394         } else {
395             at->expected_error &= ~PFERR_PRESENT_MASK;
396         }
397 	goto fault;
398     }
399 
400     writable = F(AC_PDE_WRITABLE);
401     user = F(AC_PDE_USER);
402     executable = !F(AC_PDE_NX);
403 
404     if (F(AC_PDE_PSE)) {
405         at->expected_pde |= ac_test_permissions(at, flags, writable, user,
406                                                 executable);
407 	goto no_pte;
408     }
409 
410     at->expected_pde |= PT_ACCESSED_MASK;
411 
412     pte_valid = F(AC_PTE_PRESENT)
413         && !F(AC_PTE_BIT51)
414         && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
415 
416     if (!pte_valid) {
417         at->expected_fault = 1;
418 	if (F(AC_PTE_PRESENT)) {
419             at->expected_error |= PFERR_RESERVED_MASK;
420         } else {
421             at->expected_error &= ~PFERR_PRESENT_MASK;
422         }
423 	goto fault;
424     }
425 
426     writable &= F(AC_PTE_WRITABLE);
427     user &= F(AC_PTE_USER);
428     executable &= !F(AC_PTE_NX);
429 
430     at->expected_pte |= ac_test_permissions(at, flags, writable, user,
431                                             executable);
432 
433 no_pte:
434 fault:
435     if (!at->expected_fault)
436         at->ignore_pde = 0;
437     if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
438         at->expected_error &= ~PFERR_FETCH_MASK;
439 }
440 
441 void ac_set_expected_status(ac_test_t *at)
442 {
443     invlpg(at->virt);
444 
445     if (at->ptep)
446 	at->expected_pte = *at->ptep;
447     at->expected_pde = *at->pdep;
448     at->ignore_pde = 0;
449     at->expected_fault = 0;
450     at->expected_error = PFERR_PRESENT_MASK;
451 
452     if (at->flags & AC_ACCESS_TWICE_MASK) {
453         ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
454                           & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
455         at->expected_fault = 0;
456 	at->expected_error = PFERR_PRESENT_MASK;
457         at->ignore_pde = 0;
458     }
459 
460     ac_emulate_access(at, at->flags);
461 }
462 
463 void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page,
464 			       u64 pt_page)
465 
466 {
467     unsigned long root = read_cr3();
468     int flags = at->flags;
469     bool skip = true;
470 
471     if (!ac_test_enough_room(pool))
472 	ac_test_reset_pt_pool(pool);
473 
474     at->ptep = 0;
475     for (int i = page_table_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
476 	pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
477 	unsigned index = PT_INDEX((unsigned long)at->virt, i);
478 	pt_element_t pte = 0;
479 
480 	/*
481 	 * Reuse existing page tables along the path to the test code and data
482 	 * (which is in the bottom 2MB).
483 	 */
484 	if (skip && i >= 2 && index == 0) {
485 	    goto next;
486 	}
487 	skip = false;
488 
489 	switch (i) {
490 	case 5:
491 	case 4:
492 	case 3:
493 	    pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
494 	    pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
495 	    break;
496 	case 2:
497 	    if (!F(AC_PDE_PSE)) {
498 		pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
499 		/* The protection key is ignored on non-leaf entries.  */
500                 if (F(AC_PKU_PKEY))
501                     pte |= 2ull << 59;
502 	    } else {
503 		pte = at->phys & PT_PSE_BASE_ADDR_MASK;
504 		pte |= PT_PAGE_SIZE_MASK;
505                 if (F(AC_PKU_PKEY))
506                     pte |= 1ull << 59;
507 	    }
508 	    if (F(AC_PDE_PRESENT))
509 		pte |= PT_PRESENT_MASK;
510 	    if (F(AC_PDE_WRITABLE))
511 		pte |= PT_WRITABLE_MASK;
512 	    if (F(AC_PDE_USER))
513 		pte |= PT_USER_MASK;
514 	    if (F(AC_PDE_ACCESSED))
515 		pte |= PT_ACCESSED_MASK;
516 	    if (F(AC_PDE_DIRTY))
517 		pte |= PT_DIRTY_MASK;
518 	    if (F(AC_PDE_NX))
519 		pte |= PT64_NX_MASK;
520 	    if (F(AC_PDE_BIT51))
521 		pte |= 1ull << 51;
522 	    if (F(AC_PDE_BIT13))
523 		pte |= 1ull << 13;
524 	    at->pdep = &vroot[index];
525 	    break;
526 	case 1:
527 	    pte = at->phys & PT_BASE_ADDR_MASK;
528 	    if (F(AC_PKU_PKEY))
529 		pte |= 1ull << 59;
530 	    if (F(AC_PTE_PRESENT))
531 		pte |= PT_PRESENT_MASK;
532 	    if (F(AC_PTE_WRITABLE))
533 		pte |= PT_WRITABLE_MASK;
534 	    if (F(AC_PTE_USER))
535 		pte |= PT_USER_MASK;
536 	    if (F(AC_PTE_ACCESSED))
537 		pte |= PT_ACCESSED_MASK;
538 	    if (F(AC_PTE_DIRTY))
539 		pte |= PT_DIRTY_MASK;
540 	    if (F(AC_PTE_NX))
541 		pte |= PT64_NX_MASK;
542 	    if (F(AC_PTE_BIT51))
543 		pte |= 1ull << 51;
544 	    at->ptep = &vroot[index];
545 	    break;
546 	}
547 	vroot[index] = pte;
548  next:
549 	root = vroot[index];
550     }
551     ac_set_expected_status(at);
552 }
553 
554 static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
555 {
556 	__ac_setup_specific_pages(at, pool, 0, 0);
557 }
558 
559 static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
560 				    u64 pd_page, u64 pt_page)
561 {
562 	return __ac_setup_specific_pages(at, pool, pd_page, pt_page);
563 }
564 
565 static void dump_mapping(ac_test_t *at)
566 {
567 	unsigned long root = read_cr3();
568         int flags = at->flags;
569 	int i;
570 
571 	printf("Dump mapping: address: %p\n", at->virt);
572 	for (i = page_table_levels ; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
573 		pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
574 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
575 		pt_element_t pte = vroot[index];
576 
577 		printf("------L%d: %lx\n", i, pte);
578 		root = vroot[index];
579 	}
580 }
581 
582 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
583                           const char *fmt, ...)
584 {
585     va_list ap;
586     char buf[500];
587 
588     if (!*success_ret) {
589         return;
590     }
591 
592     if (!cond) {
593         return;
594     }
595 
596     *success_ret = false;
597 
598     if (!verbose) {
599         puts("\n");
600         ac_test_show(at);
601     }
602 
603     va_start(ap, fmt);
604     vsnprintf(buf, sizeof(buf), fmt, ap);
605     va_end(ap);
606     printf("FAIL: %s\n", buf);
607     dump_mapping(at);
608 }
609 
610 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
611 {
612     pte1 &= ~ignore;
613     pte2 &= ~ignore;
614     return pte1 == pte2;
615 }
616 
617 int ac_test_do_access(ac_test_t *at)
618 {
619     static unsigned unique = 42;
620     int fault = 0;
621     unsigned e;
622     static unsigned char user_stack[4096];
623     unsigned long rsp;
624     _Bool success = true;
625     int flags = at->flags;
626 
627     ++unique;
628     if (!(unique & 65535)) {
629         puts(".");
630     }
631 
632     *((unsigned char *)at->phys) = 0xc3; /* ret */
633 
634     unsigned r = unique;
635     set_cr0_wp(F(AC_CPU_CR0_WP));
636     set_efer_nx(F(AC_CPU_EFER_NX));
637     set_cr4_pke(F(AC_CPU_CR4_PKE));
638     if (F(AC_CPU_CR4_PKE)) {
639         /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
640         write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
641                    (F(AC_PKU_AD) ? 4 : 0));
642     }
643 
644     set_cr4_smep(F(AC_CPU_CR4_SMEP));
645 
646     if (F(AC_ACCESS_TWICE)) {
647 	asm volatile (
648 	    "mov $fixed2, %%rsi \n\t"
649 	    "mov (%[addr]), %[reg] \n\t"
650 	    "fixed2:"
651 	    : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
652 	    : [addr]"r"(at->virt)
653 	    : "rsi"
654 	    );
655 	fault = 0;
656     }
657 
658     asm volatile ("mov $fixed1, %%rsi \n\t"
659 		  "mov %%rsp, %%rdx \n\t"
660 		  "cmp $0, %[user] \n\t"
661 		  "jz do_access \n\t"
662 		  "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax  \n\t"
663 		  "pushq %[user_ds] \n\t"
664 		  "pushq %[user_stack_top] \n\t"
665 		  "pushfq \n\t"
666 		  "pushq %[user_cs] \n\t"
667 		  "pushq $do_access \n\t"
668 		  "iretq \n"
669 		  "do_access: \n\t"
670 		  "cmp $0, %[fetch] \n\t"
671 		  "jnz 2f \n\t"
672 		  "cmp $0, %[write] \n\t"
673 		  "jnz 1f \n\t"
674 		  "mov (%[addr]), %[reg] \n\t"
675 		  "jmp done \n\t"
676 		  "1: mov %[reg], (%[addr]) \n\t"
677 		  "jmp done \n\t"
678 		  "2: call *%[addr] \n\t"
679 		  "done: \n"
680 		  "fixed1: \n"
681 		  "int %[kernel_entry_vector] \n\t"
682 		  "back_to_kernel:"
683 		  : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
684 		  : [addr]"r"(at->virt),
685 		    [write]"r"(F(AC_ACCESS_WRITE)),
686 		    [user]"r"(F(AC_ACCESS_USER)),
687 		    [fetch]"r"(F(AC_ACCESS_FETCH)),
688 		    [user_ds]"i"(USER_DS),
689 		    [user_cs]"i"(USER_CS),
690 		    [user_stack_top]"r"(user_stack + sizeof user_stack),
691 		    [kernel_entry_vector]"i"(0x20)
692 		  : "rsi");
693 
694     asm volatile (".section .text.pf \n\t"
695 		  "page_fault: \n\t"
696 		  "pop %rbx \n\t"
697 		  "mov %rsi, (%rsp) \n\t"
698 		  "movl $1, %eax \n\t"
699 		  "iretq \n\t"
700 		  ".section .text");
701 
702     asm volatile (".section .text.entry \n\t"
703 		  "kernel_entry: \n\t"
704 		  "mov %rdx, %rsp \n\t"
705 		  "jmp back_to_kernel \n\t"
706 		  ".section .text");
707 
708     ac_test_check(at, &success, fault && !at->expected_fault,
709                   "unexpected fault");
710     ac_test_check(at, &success, !fault && at->expected_fault,
711                   "unexpected access");
712     ac_test_check(at, &success, fault && e != at->expected_error,
713                   "error code %x expected %x", e, at->expected_error);
714     ac_test_check(at, &success, at->ptep && *at->ptep != at->expected_pte,
715                   "pte %x expected %x", *at->ptep, at->expected_pte);
716     ac_test_check(at, &success,
717                   !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
718                   "pde %x expected %x", *at->pdep, at->expected_pde);
719 
720     if (success && verbose) {
721 	if (at->expected_fault) {
722             printf("PASS (%x)\n", at->expected_error);
723 	} else {
724             printf("PASS\n");
725 	}
726     }
727     return success;
728 }
729 
730 static void ac_test_show(ac_test_t *at)
731 {
732     char line[5000];
733 
734     *line = 0;
735     strcat(line, "test");
736     for (int i = 0; i < NR_AC_FLAGS; ++i)
737 	if (at->flags & (1 << i)) {
738 	    strcat(line, " ");
739 	    strcat(line, ac_names[i]);
740 	}
741     strcat(line, ": ");
742     printf("%s", line);
743 }
744 
745 /*
746  * This test case is used to triger the bug which is fixed by
747  * commit e09e90a5 in the kvm tree
748  */
749 static int corrupt_hugepage_triger(ac_pool_t *pool)
750 {
751     ac_test_t at1, at2;
752 
753     ac_test_init(&at1, (void *)(0x123400000000));
754     ac_test_init(&at2, (void *)(0x666600000000));
755 
756     at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
757     ac_test_setup_pte(&at2, pool);
758     if (!ac_test_do_access(&at2))
759         goto err;
760 
761     at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
762     ac_test_setup_pte(&at1, pool);
763     if (!ac_test_do_access(&at1))
764         goto err;
765 
766     at1.flags |= AC_ACCESS_WRITE_MASK;
767     ac_set_expected_status(&at1);
768     if (!ac_test_do_access(&at1))
769         goto err;
770 
771     at2.flags |= AC_ACCESS_WRITE_MASK;
772     ac_set_expected_status(&at2);
773     if (!ac_test_do_access(&at2))
774         goto err;
775 
776     return 1;
777 
778 err:
779     printf("corrupt_hugepage_triger test fail\n");
780     return 0;
781 }
782 
783 /*
784  * This test case is used to triger the bug which is fixed by
785  * commit 3ddf6c06e13e in the kvm tree
786  */
787 static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
788 {
789 	ac_test_t at1, at2;
790 
791 	ac_test_init(&at1, (void *)(0x123406001000));
792 	ac_test_init(&at2, (void *)(0x123406003000));
793 
794 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
795 	ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
796 
797         at2.flags = at1.flags | AC_PTE_NX_MASK;
798 	ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
799 
800 	if (!ac_test_do_access(&at1)) {
801 		printf("%s: prepare fail\n", __FUNCTION__);
802 		goto err;
803 	}
804 
805 	if (!ac_test_do_access(&at2)) {
806 		printf("%s: check PFEC on prefetch pte path fail\n",
807 			__FUNCTION__);
808 		goto err;
809 	}
810 
811 	return 1;
812 
813 err:
814     return 0;
815 }
816 
817 /*
818  * If the write-fault access is from supervisor and CR0.WP is not set on the
819  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
820  * and clears U bit. This is the chance that kvm can change pte access from
821  * readonly to writable.
822  *
823  * Unfortunately, the pte access is the access of 'direct' shadow page table,
824  * means direct sp.role.access = pte_access, then we will create a writable
825  * spte entry on the readonly shadow page table. It will cause Dirty bit is
826  * not tracked when two guest ptes point to the same large page. Note, it
827  * does not have other impact except Dirty bit since cr0.wp is encoded into
828  * sp.role.
829  *
830  * Note: to trigger this bug, hugepage should be disabled on host.
831  */
832 static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
833 {
834 	ac_test_t at1, at2;
835 
836 	ac_test_init(&at1, (void *)(0x123403000000));
837 	ac_test_init(&at2, (void *)(0x666606000000));
838 
839         at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
840 	ac_test_setup_pte(&at2, pool);
841 	if (!ac_test_do_access(&at2)) {
842 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
843 		goto err;
844 	}
845 
846         at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
847 	ac_test_setup_pte(&at1, pool);
848 	if (!ac_test_do_access(&at1)) {
849 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
850 		goto err;
851 	}
852 
853 	at2.flags |= AC_ACCESS_WRITE_MASK;
854 	ac_set_expected_status(&at2);
855 	if (!ac_test_do_access(&at2)) {
856 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
857 		goto err;
858 	}
859 
860 	return 1;
861 
862 err:
863 	return 0;
864 }
865 
866 static int check_smep_andnot_wp(ac_pool_t *pool)
867 {
868 	ac_test_t at1;
869 	int err_prepare_andnot_wp, err_smep_andnot_wp;
870 
871 	if (!(cpuid_7_ebx & (1 << 7))) {
872 	    return 1;
873 	}
874 
875 	ac_test_init(&at1, (void *)(0x123406001000));
876 
877 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
878             AC_PDE_USER_MASK | AC_PTE_USER_MASK |
879             AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
880             AC_CPU_CR4_SMEP_MASK |
881             AC_CPU_CR0_WP_MASK |
882             AC_ACCESS_WRITE_MASK;
883 	ac_test_setup_pte(&at1, pool);
884 
885 	/*
886 	 * Here we write the ro user page when
887 	 * cr0.wp=0, then we execute it and SMEP
888 	 * fault should happen.
889 	 */
890 	err_prepare_andnot_wp = ac_test_do_access(&at1);
891 	if (!err_prepare_andnot_wp) {
892 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
893 		goto clean_up;
894 	}
895 
896         at1.flags &= ~AC_ACCESS_WRITE_MASK;
897         at1.flags |= AC_ACCESS_FETCH_MASK;
898         ac_set_expected_status(&at1);
899         err_smep_andnot_wp = ac_test_do_access(&at1);
900 
901 clean_up:
902 	set_cr4_smep(0);
903 
904 	if (!err_prepare_andnot_wp)
905 		goto err;
906 	if (!err_smep_andnot_wp) {
907 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
908 		goto err;
909 	}
910 	return 1;
911 
912 err:
913 	return 0;
914 }
915 
916 int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
917 {
918     int r;
919 
920     if (verbose) {
921         ac_test_show(at);
922     }
923     ac_test_setup_pte(at, pool);
924     r = ac_test_do_access(at);
925     return r;
926 }
927 
928 typedef int (*ac_test_fn)(ac_pool_t *pool);
929 const ac_test_fn ac_test_cases[] =
930 {
931 	corrupt_hugepage_triger,
932 	check_pfec_on_prefetch_pte,
933 	check_large_pte_dirty_for_nowp,
934 	check_smep_andnot_wp
935 };
936 
937 int ac_test_run(void)
938 {
939     ac_test_t at;
940     ac_pool_t pool;
941     int i, tests, successes;
942 
943     printf("run\n");
944     tests = successes = 0;
945 
946     if (cpuid_7_ecx & (1 << 3)) {
947         set_cr4_pke(1);
948         set_cr4_pke(0);
949         /* Now PKRU = 0xFFFFFFFF.  */
950     } else {
951 	unsigned long cr4 = read_cr4();
952 	tests++;
953 	if (write_cr4_checking(cr4 | X86_CR4_PKE) == GP_VECTOR) {
954             successes++;
955             invalid_mask |= AC_PKU_AD_MASK;
956             invalid_mask |= AC_PKU_WD_MASK;
957             invalid_mask |= AC_PKU_PKEY_MASK;
958             invalid_mask |= AC_CPU_CR4_PKE_MASK;
959             printf("CR4.PKE not available, disabling PKE tests\n");
960 	} else {
961             printf("Set PKE in CR4 - expect #GP: FAIL!\n");
962             set_cr4_pke(0);
963 	}
964     }
965 
966     if (!(cpuid_7_ebx & (1 << 7))) {
967 	tests++;
968 	if (set_cr4_smep(1) == GP_VECTOR) {
969             successes++;
970             invalid_mask |= AC_CPU_CR4_SMEP_MASK;
971             printf("CR4.SMEP not available, disabling SMEP tests\n");
972 	} else {
973             printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
974             set_cr4_smep(0);
975 	}
976     }
977 
978     ac_env_int(&pool);
979     ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
980     do {
981 	++tests;
982 	successes += ac_test_exec(&at, &pool);
983     } while (ac_test_bump(&at));
984 
985     for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
986 	++tests;
987 	successes += ac_test_cases[i](&pool);
988     }
989 
990     printf("\n%d tests, %d failures\n", tests, tests - successes);
991 
992     return successes == tests;
993 }
994 
995 int main(void)
996 {
997     int r;
998 
999     setup_idt();
1000 
1001     cpuid_7_ebx = cpuid(7).b;
1002     cpuid_7_ecx = cpuid(7).c;
1003 
1004     printf("starting test\n\n");
1005     page_table_levels = 4;
1006     r = ac_test_run();
1007 
1008     if (cpuid_7_ecx & (1 << 16)) {
1009         page_table_levels = 5;
1010         setup_5level_page_table();
1011         printf("starting 5-level paging test.\n\n");
1012         r = ac_test_run();
1013     }
1014 
1015     return r ? 0 : 1;
1016 }
1017