xref: /kvm-unit-tests/x86/access.c (revision 6ddcc298443c4bb21308f6294c5cea8864d74ebd)
1 
2 #include "libcflat.h"
3 #include "desc.h"
4 #include "processor.h"
5 #include "asm/page.h"
6 #include "x86/vm.h"
7 
8 #define smp_id() 0
9 
10 #define true 1
11 #define false 0
12 
13 static _Bool verbose = false;
14 
15 typedef unsigned long pt_element_t;
16 static int cpuid_7_ebx;
17 static int cpuid_7_ecx;
18 static int invalid_mask;
19 static int page_table_levels;
20 
21 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
22 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
23 
24 #define CR0_WP_MASK (1UL << 16)
25 #define CR4_SMEP_MASK (1UL << 20)
26 
27 #define PFERR_PRESENT_MASK (1U << 0)
28 #define PFERR_WRITE_MASK (1U << 1)
29 #define PFERR_USER_MASK (1U << 2)
30 #define PFERR_RESERVED_MASK (1U << 3)
31 #define PFERR_FETCH_MASK (1U << 4)
32 #define PFERR_PK_MASK (1U << 5)
33 
34 #define MSR_EFER 0xc0000080
35 #define EFER_NX_MASK		(1ull << 11)
36 
37 #define PT_INDEX(address, level)       \
38        ((address) >> (12 + ((level)-1) * 9)) & 511
39 
40 /*
41  * page table access check tests
42  */
43 
44 enum {
45     AC_PTE_PRESENT_BIT,
46     AC_PTE_WRITABLE_BIT,
47     AC_PTE_USER_BIT,
48     AC_PTE_ACCESSED_BIT,
49     AC_PTE_DIRTY_BIT,
50     AC_PTE_NX_BIT,
51     AC_PTE_BIT51_BIT,
52 
53     AC_PDE_PRESENT_BIT,
54     AC_PDE_WRITABLE_BIT,
55     AC_PDE_USER_BIT,
56     AC_PDE_ACCESSED_BIT,
57     AC_PDE_DIRTY_BIT,
58     AC_PDE_PSE_BIT,
59     AC_PDE_NX_BIT,
60     AC_PDE_BIT51_BIT,
61     AC_PDE_BIT13_BIT,
62 
63     AC_PKU_AD_BIT,
64     AC_PKU_WD_BIT,
65     AC_PKU_PKEY_BIT,
66 
67     AC_ACCESS_USER_BIT,
68     AC_ACCESS_WRITE_BIT,
69     AC_ACCESS_FETCH_BIT,
70     AC_ACCESS_TWICE_BIT,
71 
72     AC_CPU_EFER_NX_BIT,
73     AC_CPU_CR0_WP_BIT,
74     AC_CPU_CR4_SMEP_BIT,
75     AC_CPU_CR4_PKE_BIT,
76 
77     NR_AC_FLAGS
78 };
79 
80 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
81 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
82 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
83 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
84 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
85 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
86 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
87 
88 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
89 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
90 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
91 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
92 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
93 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
94 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
95 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
96 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
97 
98 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
99 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
100 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
101 
102 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
103 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
104 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
105 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
106 
107 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
108 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
109 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
110 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
111 
112 const char *ac_names[] = {
113     [AC_PTE_PRESENT_BIT] = "pte.p",
114     [AC_PTE_ACCESSED_BIT] = "pte.a",
115     [AC_PTE_WRITABLE_BIT] = "pte.rw",
116     [AC_PTE_USER_BIT] = "pte.user",
117     [AC_PTE_DIRTY_BIT] = "pte.d",
118     [AC_PTE_NX_BIT] = "pte.nx",
119     [AC_PTE_BIT51_BIT] = "pte.51",
120     [AC_PDE_PRESENT_BIT] = "pde.p",
121     [AC_PDE_ACCESSED_BIT] = "pde.a",
122     [AC_PDE_WRITABLE_BIT] = "pde.rw",
123     [AC_PDE_USER_BIT] = "pde.user",
124     [AC_PDE_DIRTY_BIT] = "pde.d",
125     [AC_PDE_PSE_BIT] = "pde.pse",
126     [AC_PDE_NX_BIT] = "pde.nx",
127     [AC_PDE_BIT51_BIT] = "pde.51",
128     [AC_PDE_BIT13_BIT] = "pde.13",
129     [AC_PKU_AD_BIT] = "pkru.ad",
130     [AC_PKU_WD_BIT] = "pkru.wd",
131     [AC_PKU_PKEY_BIT] = "pkey=1",
132     [AC_ACCESS_WRITE_BIT] = "write",
133     [AC_ACCESS_USER_BIT] = "user",
134     [AC_ACCESS_FETCH_BIT] = "fetch",
135     [AC_ACCESS_TWICE_BIT] = "twice",
136     [AC_CPU_EFER_NX_BIT] = "efer.nx",
137     [AC_CPU_CR0_WP_BIT] = "cr0.wp",
138     [AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
139     [AC_CPU_CR4_PKE_BIT] = "cr4.pke",
140 };
141 
142 static inline void *va(pt_element_t phys)
143 {
144     return (void *)phys;
145 }
146 
147 typedef struct {
148     pt_element_t pt_pool;
149     unsigned pt_pool_size;
150     unsigned pt_pool_current;
151 } ac_pool_t;
152 
153 typedef struct {
154     unsigned flags;
155     void *virt;
156     pt_element_t phys;
157     pt_element_t *ptep;
158     pt_element_t expected_pte;
159     pt_element_t *pdep;
160     pt_element_t expected_pde;
161     pt_element_t ignore_pde;
162     int expected_fault;
163     unsigned expected_error;
164 } ac_test_t;
165 
166 typedef struct {
167     unsigned short limit;
168     unsigned long linear_addr;
169 } __attribute__((packed)) descriptor_table_t;
170 
171 
172 static void ac_test_show(ac_test_t *at);
173 
174 static void set_cr0_wp(int wp)
175 {
176     unsigned long cr0 = read_cr0();
177     unsigned long old_cr0 = cr0;
178 
179     cr0 &= ~CR0_WP_MASK;
180     if (wp)
181 	cr0 |= CR0_WP_MASK;
182     if (old_cr0 != cr0)
183         write_cr0(cr0);
184 }
185 
186 static unsigned set_cr4_smep(int smep)
187 {
188     unsigned long cr4 = read_cr4();
189     unsigned long old_cr4 = cr4;
190     extern u64 ptl2[];
191     unsigned r;
192 
193     cr4 &= ~CR4_SMEP_MASK;
194     if (smep)
195 	cr4 |= CR4_SMEP_MASK;
196     if (old_cr4 == cr4)
197         return 0;
198 
199     if (smep)
200         ptl2[2] &= ~PT_USER_MASK;
201     r = write_cr4_checking(cr4);
202     if (r || !smep)
203         ptl2[2] |= PT_USER_MASK;
204     return r;
205 }
206 
207 static void set_cr4_pke(int pke)
208 {
209     unsigned long cr4 = read_cr4();
210     unsigned long old_cr4 = cr4;
211 
212     cr4 &= ~X86_CR4_PKE;
213     if (pke)
214 	cr4 |= X86_CR4_PKE;
215     if (old_cr4 == cr4)
216         return;
217 
218     /* Check that protection keys do not affect accesses when CR4.PKE=0.  */
219     if ((read_cr4() & X86_CR4_PKE) && !pke) {
220         write_pkru(0xfffffffc);
221     }
222     write_cr4(cr4);
223 }
224 
225 static void set_efer_nx(int nx)
226 {
227     unsigned long long efer = rdmsr(MSR_EFER);
228     unsigned long long old_efer = efer;
229 
230     efer &= ~EFER_NX_MASK;
231     if (nx)
232 	efer |= EFER_NX_MASK;
233     if (old_efer != efer)
234         wrmsr(MSR_EFER, efer);
235 }
236 
237 static void ac_env_int(ac_pool_t *pool)
238 {
239     extern char page_fault, kernel_entry;
240     set_idt_entry(14, &page_fault, 0);
241     set_idt_entry(0x20, &kernel_entry, 3);
242 
243     pool->pt_pool = 33 * 1024 * 1024;
244     pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
245     pool->pt_pool_current = 0;
246 }
247 
248 static void ac_test_init(ac_test_t *at, void *virt)
249 {
250     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
251     set_cr0_wp(1);
252     at->flags = 0;
253     at->virt = virt;
254     at->phys = 32 * 1024 * 1024;
255 }
256 
257 static int ac_test_bump_one(ac_test_t *at)
258 {
259     at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
260     return at->flags < (1 << NR_AC_FLAGS);
261 }
262 
263 #define F(x)  ((flags & x##_MASK) != 0)
264 
265 static _Bool ac_test_legal(ac_test_t *at)
266 {
267     int flags = at->flags;
268 
269     if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
270 	return false;
271 
272     /*
273      * Since we convert current page to kernel page when cr4.smep=1,
274      * we can't switch to user mode.
275      */
276     if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
277 	return false;
278 
279     /*
280      * Only test protection key faults if CR4.PKE=1.
281      */
282     if (!F(AC_CPU_CR4_PKE) &&
283         (F(AC_PKU_AD) || F(AC_PKU_WD))) {
284 	return false;
285     }
286 
287     /*
288      * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
289      * meaningless if there is a PTE.
290      */
291     if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
292         return false;
293 
294     return true;
295 }
296 
297 static int ac_test_bump(ac_test_t *at)
298 {
299     int ret;
300 
301     ret = ac_test_bump_one(at);
302     while (ret && !ac_test_legal(at))
303 	ret = ac_test_bump_one(at);
304     return ret;
305 }
306 
307 static pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
308 {
309     pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
310     pool->pt_pool_current += PAGE_SIZE;
311     return ret;
312 }
313 
314 static _Bool ac_test_enough_room(ac_pool_t *pool)
315 {
316     return pool->pt_pool_current + 5 * PAGE_SIZE <= pool->pt_pool_size;
317 }
318 
319 static void ac_test_reset_pt_pool(ac_pool_t *pool)
320 {
321     pool->pt_pool_current = 0;
322 }
323 
324 static pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags,
325                                         bool writable, bool user,
326                                         bool executable)
327 {
328     bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
329     pt_element_t expected = 0;
330 
331     if (F(AC_ACCESS_USER) && !user)
332 	at->expected_fault = 1;
333 
334     if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
335 	at->expected_fault = 1;
336 
337     if (F(AC_ACCESS_FETCH) && !executable)
338 	at->expected_fault = 1;
339 
340     if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
341         at->expected_fault = 1;
342 
343     if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
344         if (F(AC_PKU_AD)) {
345             at->expected_fault = 1;
346             at->expected_error |= PFERR_PK_MASK;
347         } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
348             at->expected_fault = 1;
349             at->expected_error |= PFERR_PK_MASK;
350         }
351     }
352 
353     if (!at->expected_fault) {
354         expected |= PT_ACCESSED_MASK;
355         if (F(AC_ACCESS_WRITE))
356             expected |= PT_DIRTY_MASK;
357     }
358 
359     return expected;
360 }
361 
362 static void ac_emulate_access(ac_test_t *at, unsigned flags)
363 {
364     bool pde_valid, pte_valid;
365     bool user, writable, executable;
366 
367     if (F(AC_ACCESS_USER))
368 	at->expected_error |= PFERR_USER_MASK;
369 
370     if (F(AC_ACCESS_WRITE))
371 	at->expected_error |= PFERR_WRITE_MASK;
372 
373     if (F(AC_ACCESS_FETCH))
374 	at->expected_error |= PFERR_FETCH_MASK;
375 
376     if (!F(AC_PDE_ACCESSED))
377         at->ignore_pde = PT_ACCESSED_MASK;
378 
379     pde_valid = F(AC_PDE_PRESENT)
380         && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT13)
381         && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
382 
383     if (!pde_valid) {
384         at->expected_fault = 1;
385 	if (F(AC_PDE_PRESENT)) {
386             at->expected_error |= PFERR_RESERVED_MASK;
387         } else {
388             at->expected_error &= ~PFERR_PRESENT_MASK;
389         }
390 	goto fault;
391     }
392 
393     writable = F(AC_PDE_WRITABLE);
394     user = F(AC_PDE_USER);
395     executable = !F(AC_PDE_NX);
396 
397     if (F(AC_PDE_PSE)) {
398         at->expected_pde |= ac_test_permissions(at, flags, writable, user,
399                                                 executable);
400 	goto no_pte;
401     }
402 
403     at->expected_pde |= PT_ACCESSED_MASK;
404 
405     pte_valid = F(AC_PTE_PRESENT)
406         && !F(AC_PTE_BIT51)
407         && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
408 
409     if (!pte_valid) {
410         at->expected_fault = 1;
411 	if (F(AC_PTE_PRESENT)) {
412             at->expected_error |= PFERR_RESERVED_MASK;
413         } else {
414             at->expected_error &= ~PFERR_PRESENT_MASK;
415         }
416 	goto fault;
417     }
418 
419     writable &= F(AC_PTE_WRITABLE);
420     user &= F(AC_PTE_USER);
421     executable &= !F(AC_PTE_NX);
422 
423     at->expected_pte |= ac_test_permissions(at, flags, writable, user,
424                                             executable);
425 
426 no_pte:
427 fault:
428     if (!at->expected_fault)
429         at->ignore_pde = 0;
430     if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
431         at->expected_error &= ~PFERR_FETCH_MASK;
432 }
433 
434 static void ac_set_expected_status(ac_test_t *at)
435 {
436     invlpg(at->virt);
437 
438     if (at->ptep)
439 	at->expected_pte = *at->ptep;
440     at->expected_pde = *at->pdep;
441     at->ignore_pde = 0;
442     at->expected_fault = 0;
443     at->expected_error = PFERR_PRESENT_MASK;
444 
445     if (at->flags & AC_ACCESS_TWICE_MASK) {
446         ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
447                           & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
448         at->expected_fault = 0;
449 	at->expected_error = PFERR_PRESENT_MASK;
450         at->ignore_pde = 0;
451     }
452 
453     ac_emulate_access(at, at->flags);
454 }
455 
456 static void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
457 				      u64 pd_page, u64 pt_page)
458 
459 {
460     unsigned long root = read_cr3();
461     int flags = at->flags;
462     bool skip = true;
463 
464     if (!ac_test_enough_room(pool))
465 	ac_test_reset_pt_pool(pool);
466 
467     at->ptep = 0;
468     for (int i = page_table_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
469 	pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
470 	unsigned index = PT_INDEX((unsigned long)at->virt, i);
471 	pt_element_t pte = 0;
472 
473 	/*
474 	 * Reuse existing page tables along the path to the test code and data
475 	 * (which is in the bottom 2MB).
476 	 */
477 	if (skip && i >= 2 && index == 0) {
478 	    goto next;
479 	}
480 	skip = false;
481 
482 	switch (i) {
483 	case 5:
484 	case 4:
485 	case 3:
486 	    pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
487 	    pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
488 	    break;
489 	case 2:
490 	    if (!F(AC_PDE_PSE)) {
491 		pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
492 		/* The protection key is ignored on non-leaf entries.  */
493                 if (F(AC_PKU_PKEY))
494                     pte |= 2ull << 59;
495 	    } else {
496 		pte = at->phys & PT_PSE_BASE_ADDR_MASK;
497 		pte |= PT_PAGE_SIZE_MASK;
498                 if (F(AC_PKU_PKEY))
499                     pte |= 1ull << 59;
500 	    }
501 	    if (F(AC_PDE_PRESENT))
502 		pte |= PT_PRESENT_MASK;
503 	    if (F(AC_PDE_WRITABLE))
504 		pte |= PT_WRITABLE_MASK;
505 	    if (F(AC_PDE_USER))
506 		pte |= PT_USER_MASK;
507 	    if (F(AC_PDE_ACCESSED))
508 		pte |= PT_ACCESSED_MASK;
509 	    if (F(AC_PDE_DIRTY))
510 		pte |= PT_DIRTY_MASK;
511 	    if (F(AC_PDE_NX))
512 		pte |= PT64_NX_MASK;
513 	    if (F(AC_PDE_BIT51))
514 		pte |= 1ull << 51;
515 	    if (F(AC_PDE_BIT13))
516 		pte |= 1ull << 13;
517 	    at->pdep = &vroot[index];
518 	    break;
519 	case 1:
520 	    pte = at->phys & PT_BASE_ADDR_MASK;
521 	    if (F(AC_PKU_PKEY))
522 		pte |= 1ull << 59;
523 	    if (F(AC_PTE_PRESENT))
524 		pte |= PT_PRESENT_MASK;
525 	    if (F(AC_PTE_WRITABLE))
526 		pte |= PT_WRITABLE_MASK;
527 	    if (F(AC_PTE_USER))
528 		pte |= PT_USER_MASK;
529 	    if (F(AC_PTE_ACCESSED))
530 		pte |= PT_ACCESSED_MASK;
531 	    if (F(AC_PTE_DIRTY))
532 		pte |= PT_DIRTY_MASK;
533 	    if (F(AC_PTE_NX))
534 		pte |= PT64_NX_MASK;
535 	    if (F(AC_PTE_BIT51))
536 		pte |= 1ull << 51;
537 	    at->ptep = &vroot[index];
538 	    break;
539 	}
540 	vroot[index] = pte;
541  next:
542 	root = vroot[index];
543     }
544     ac_set_expected_status(at);
545 }
546 
547 static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
548 {
549 	__ac_setup_specific_pages(at, pool, 0, 0);
550 }
551 
552 static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
553 				    u64 pd_page, u64 pt_page)
554 {
555 	return __ac_setup_specific_pages(at, pool, pd_page, pt_page);
556 }
557 
558 static void dump_mapping(ac_test_t *at)
559 {
560 	unsigned long root = read_cr3();
561         int flags = at->flags;
562 	int i;
563 
564 	printf("Dump mapping: address: %p\n", at->virt);
565 	for (i = page_table_levels ; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
566 		pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
567 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
568 		pt_element_t pte = vroot[index];
569 
570 		printf("------L%d: %lx\n", i, pte);
571 		root = vroot[index];
572 	}
573 }
574 
575 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
576                           const char *fmt, ...)
577 {
578     va_list ap;
579     char buf[500];
580 
581     if (!*success_ret) {
582         return;
583     }
584 
585     if (!cond) {
586         return;
587     }
588 
589     *success_ret = false;
590 
591     if (!verbose) {
592         puts("\n");
593         ac_test_show(at);
594     }
595 
596     va_start(ap, fmt);
597     vsnprintf(buf, sizeof(buf), fmt, ap);
598     va_end(ap);
599     printf("FAIL: %s\n", buf);
600     dump_mapping(at);
601 }
602 
603 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
604 {
605     pte1 &= ~ignore;
606     pte2 &= ~ignore;
607     return pte1 == pte2;
608 }
609 
610 static int ac_test_do_access(ac_test_t *at)
611 {
612     static unsigned unique = 42;
613     int fault = 0;
614     unsigned e;
615     static unsigned char user_stack[4096];
616     unsigned long rsp;
617     _Bool success = true;
618     int flags = at->flags;
619 
620     ++unique;
621     if (!(unique & 65535)) {
622         puts(".");
623     }
624 
625     *((unsigned char *)at->phys) = 0xc3; /* ret */
626 
627     unsigned r = unique;
628     set_cr0_wp(F(AC_CPU_CR0_WP));
629     set_efer_nx(F(AC_CPU_EFER_NX));
630     set_cr4_pke(F(AC_CPU_CR4_PKE));
631     if (F(AC_CPU_CR4_PKE)) {
632         /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
633         write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
634                    (F(AC_PKU_AD) ? 4 : 0));
635     }
636 
637     set_cr4_smep(F(AC_CPU_CR4_SMEP));
638 
639     if (F(AC_ACCESS_TWICE)) {
640 	asm volatile (
641 	    "mov $fixed2, %%rsi \n\t"
642 	    "mov (%[addr]), %[reg] \n\t"
643 	    "fixed2:"
644 	    : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
645 	    : [addr]"r"(at->virt)
646 	    : "rsi"
647 	    );
648 	fault = 0;
649     }
650 
651     asm volatile ("mov $fixed1, %%rsi \n\t"
652 		  "mov %%rsp, %%rdx \n\t"
653 		  "cmp $0, %[user] \n\t"
654 		  "jz do_access \n\t"
655 		  "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax  \n\t"
656 		  "pushq %[user_ds] \n\t"
657 		  "pushq %[user_stack_top] \n\t"
658 		  "pushfq \n\t"
659 		  "pushq %[user_cs] \n\t"
660 		  "pushq $do_access \n\t"
661 		  "iretq \n"
662 		  "do_access: \n\t"
663 		  "cmp $0, %[fetch] \n\t"
664 		  "jnz 2f \n\t"
665 		  "cmp $0, %[write] \n\t"
666 		  "jnz 1f \n\t"
667 		  "mov (%[addr]), %[reg] \n\t"
668 		  "jmp done \n\t"
669 		  "1: mov %[reg], (%[addr]) \n\t"
670 		  "jmp done \n\t"
671 		  "2: call *%[addr] \n\t"
672 		  "done: \n"
673 		  "fixed1: \n"
674 		  "int %[kernel_entry_vector] \n\t"
675 		  "back_to_kernel:"
676 		  : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
677 		  : [addr]"r"(at->virt),
678 		    [write]"r"(F(AC_ACCESS_WRITE)),
679 		    [user]"r"(F(AC_ACCESS_USER)),
680 		    [fetch]"r"(F(AC_ACCESS_FETCH)),
681 		    [user_ds]"i"(USER_DS),
682 		    [user_cs]"i"(USER_CS),
683 		    [user_stack_top]"r"(user_stack + sizeof user_stack),
684 		    [kernel_entry_vector]"i"(0x20)
685 		  : "rsi");
686 
687     asm volatile (".section .text.pf \n\t"
688 		  "page_fault: \n\t"
689 		  "pop %rbx \n\t"
690 		  "mov %rsi, (%rsp) \n\t"
691 		  "movl $1, %eax \n\t"
692 		  "iretq \n\t"
693 		  ".section .text");
694 
695     asm volatile (".section .text.entry \n\t"
696 		  "kernel_entry: \n\t"
697 		  "mov %rdx, %rsp \n\t"
698 		  "jmp back_to_kernel \n\t"
699 		  ".section .text");
700 
701     ac_test_check(at, &success, fault && !at->expected_fault,
702                   "unexpected fault");
703     ac_test_check(at, &success, !fault && at->expected_fault,
704                   "unexpected access");
705     ac_test_check(at, &success, fault && e != at->expected_error,
706                   "error code %x expected %x", e, at->expected_error);
707     if (at->ptep)
708         ac_test_check(at, &success, *at->ptep != at->expected_pte,
709                       "pte %x expected %x", *at->ptep, at->expected_pte);
710     ac_test_check(at, &success,
711                   !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
712                   "pde %x expected %x", *at->pdep, at->expected_pde);
713 
714     if (success && verbose) {
715 	if (at->expected_fault) {
716             printf("PASS (%x)\n", at->expected_error);
717 	} else {
718             printf("PASS\n");
719 	}
720     }
721     return success;
722 }
723 
724 static void ac_test_show(ac_test_t *at)
725 {
726     char line[5000];
727 
728     *line = 0;
729     strcat(line, "test");
730     for (int i = 0; i < NR_AC_FLAGS; ++i)
731 	if (at->flags & (1 << i)) {
732 	    strcat(line, " ");
733 	    strcat(line, ac_names[i]);
734 	}
735     strcat(line, ": ");
736     printf("%s", line);
737 }
738 
739 /*
740  * This test case is used to triger the bug which is fixed by
741  * commit e09e90a5 in the kvm tree
742  */
743 static int corrupt_hugepage_triger(ac_pool_t *pool)
744 {
745     ac_test_t at1, at2;
746 
747     ac_test_init(&at1, (void *)(0x123400000000));
748     ac_test_init(&at2, (void *)(0x666600000000));
749 
750     at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
751     ac_test_setup_pte(&at2, pool);
752     if (!ac_test_do_access(&at2))
753         goto err;
754 
755     at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
756     ac_test_setup_pte(&at1, pool);
757     if (!ac_test_do_access(&at1))
758         goto err;
759 
760     at1.flags |= AC_ACCESS_WRITE_MASK;
761     ac_set_expected_status(&at1);
762     if (!ac_test_do_access(&at1))
763         goto err;
764 
765     at2.flags |= AC_ACCESS_WRITE_MASK;
766     ac_set_expected_status(&at2);
767     if (!ac_test_do_access(&at2))
768         goto err;
769 
770     return 1;
771 
772 err:
773     printf("corrupt_hugepage_triger test fail\n");
774     return 0;
775 }
776 
777 /*
778  * This test case is used to triger the bug which is fixed by
779  * commit 3ddf6c06e13e in the kvm tree
780  */
781 static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
782 {
783 	ac_test_t at1, at2;
784 
785 	ac_test_init(&at1, (void *)(0x123406001000));
786 	ac_test_init(&at2, (void *)(0x123406003000));
787 
788 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
789 	ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
790 
791         at2.flags = at1.flags | AC_PTE_NX_MASK;
792 	ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
793 
794 	if (!ac_test_do_access(&at1)) {
795 		printf("%s: prepare fail\n", __FUNCTION__);
796 		goto err;
797 	}
798 
799 	if (!ac_test_do_access(&at2)) {
800 		printf("%s: check PFEC on prefetch pte path fail\n",
801 			__FUNCTION__);
802 		goto err;
803 	}
804 
805 	return 1;
806 
807 err:
808     return 0;
809 }
810 
811 /*
812  * If the write-fault access is from supervisor and CR0.WP is not set on the
813  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
814  * and clears U bit. This is the chance that kvm can change pte access from
815  * readonly to writable.
816  *
817  * Unfortunately, the pte access is the access of 'direct' shadow page table,
818  * means direct sp.role.access = pte_access, then we will create a writable
819  * spte entry on the readonly shadow page table. It will cause Dirty bit is
820  * not tracked when two guest ptes point to the same large page. Note, it
821  * does not have other impact except Dirty bit since cr0.wp is encoded into
822  * sp.role.
823  *
824  * Note: to trigger this bug, hugepage should be disabled on host.
825  */
826 static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
827 {
828 	ac_test_t at1, at2;
829 
830 	ac_test_init(&at1, (void *)(0x123403000000));
831 	ac_test_init(&at2, (void *)(0x666606000000));
832 
833         at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
834 	ac_test_setup_pte(&at2, pool);
835 	if (!ac_test_do_access(&at2)) {
836 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
837 		goto err;
838 	}
839 
840         at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
841 	ac_test_setup_pte(&at1, pool);
842 	if (!ac_test_do_access(&at1)) {
843 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
844 		goto err;
845 	}
846 
847 	at2.flags |= AC_ACCESS_WRITE_MASK;
848 	ac_set_expected_status(&at2);
849 	if (!ac_test_do_access(&at2)) {
850 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
851 		goto err;
852 	}
853 
854 	return 1;
855 
856 err:
857 	return 0;
858 }
859 
860 static int check_smep_andnot_wp(ac_pool_t *pool)
861 {
862 	ac_test_t at1;
863 	int err_prepare_andnot_wp, err_smep_andnot_wp;
864 
865 	if (!(cpuid_7_ebx & (1 << 7))) {
866 	    return 1;
867 	}
868 
869 	ac_test_init(&at1, (void *)(0x123406001000));
870 
871 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
872             AC_PDE_USER_MASK | AC_PTE_USER_MASK |
873             AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
874             AC_CPU_CR4_SMEP_MASK |
875             AC_CPU_CR0_WP_MASK |
876             AC_ACCESS_WRITE_MASK;
877 	ac_test_setup_pte(&at1, pool);
878 
879 	/*
880 	 * Here we write the ro user page when
881 	 * cr0.wp=0, then we execute it and SMEP
882 	 * fault should happen.
883 	 */
884 	err_prepare_andnot_wp = ac_test_do_access(&at1);
885 	if (!err_prepare_andnot_wp) {
886 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
887 		goto clean_up;
888 	}
889 
890         at1.flags &= ~AC_ACCESS_WRITE_MASK;
891         at1.flags |= AC_ACCESS_FETCH_MASK;
892         ac_set_expected_status(&at1);
893         err_smep_andnot_wp = ac_test_do_access(&at1);
894 
895 clean_up:
896 	set_cr4_smep(0);
897 
898 	if (!err_prepare_andnot_wp)
899 		goto err;
900 	if (!err_smep_andnot_wp) {
901 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
902 		goto err;
903 	}
904 	return 1;
905 
906 err:
907 	return 0;
908 }
909 
910 static int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
911 {
912     int r;
913 
914     if (verbose) {
915         ac_test_show(at);
916     }
917     ac_test_setup_pte(at, pool);
918     r = ac_test_do_access(at);
919     return r;
920 }
921 
922 typedef int (*ac_test_fn)(ac_pool_t *pool);
923 const ac_test_fn ac_test_cases[] =
924 {
925 	corrupt_hugepage_triger,
926 	check_pfec_on_prefetch_pte,
927 	check_large_pte_dirty_for_nowp,
928 	check_smep_andnot_wp
929 };
930 
931 static int ac_test_run(void)
932 {
933     ac_test_t at;
934     ac_pool_t pool;
935     int i, tests, successes;
936 
937     printf("run\n");
938     tests = successes = 0;
939 
940     if (cpuid_7_ecx & (1 << 3)) {
941         set_cr4_pke(1);
942         set_cr4_pke(0);
943         /* Now PKRU = 0xFFFFFFFF.  */
944     } else {
945 	unsigned long cr4 = read_cr4();
946 	tests++;
947 	if (write_cr4_checking(cr4 | X86_CR4_PKE) == GP_VECTOR) {
948             successes++;
949             invalid_mask |= AC_PKU_AD_MASK;
950             invalid_mask |= AC_PKU_WD_MASK;
951             invalid_mask |= AC_PKU_PKEY_MASK;
952             invalid_mask |= AC_CPU_CR4_PKE_MASK;
953             printf("CR4.PKE not available, disabling PKE tests\n");
954 	} else {
955             printf("Set PKE in CR4 - expect #GP: FAIL!\n");
956             set_cr4_pke(0);
957 	}
958     }
959 
960     if (!(cpuid_7_ebx & (1 << 7))) {
961 	tests++;
962 	if (set_cr4_smep(1) == GP_VECTOR) {
963             successes++;
964             invalid_mask |= AC_CPU_CR4_SMEP_MASK;
965             printf("CR4.SMEP not available, disabling SMEP tests\n");
966 	} else {
967             printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
968             set_cr4_smep(0);
969 	}
970     }
971 
972     ac_env_int(&pool);
973     ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
974     do {
975 	++tests;
976 	successes += ac_test_exec(&at, &pool);
977     } while (ac_test_bump(&at));
978 
979     for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
980 	++tests;
981 	successes += ac_test_cases[i](&pool);
982     }
983 
984     printf("\n%d tests, %d failures\n", tests, tests - successes);
985 
986     return successes == tests;
987 }
988 
989 int main(void)
990 {
991     int r;
992 
993     setup_idt();
994 
995     cpuid_7_ebx = cpuid(7).b;
996     cpuid_7_ecx = cpuid(7).c;
997 
998     printf("starting test\n\n");
999     page_table_levels = 4;
1000     r = ac_test_run();
1001 
1002     if (cpuid_7_ecx & (1 << 16)) {
1003         page_table_levels = 5;
1004         setup_5level_page_table();
1005         printf("starting 5-level paging test.\n\n");
1006         r = ac_test_run();
1007     }
1008 
1009     return r ? 0 : 1;
1010 }
1011