xref: /kvm-unit-tests/x86/access.c (revision 3b50efe3dee7ad84f2aa76b94a6ddeebed622d65)
1 
2 #include "libcflat.h"
3 #include "desc.h"
4 #include "processor.h"
5 
6 #define smp_id() 0
7 
8 #define true 1
9 #define false 0
10 
11 static _Bool verbose = false;
12 
13 typedef unsigned long pt_element_t;
14 static int cpuid_7_ebx;
15 static int cpuid_7_ecx;
16 static int invalid_mask;
17 
18 #define PAGE_SIZE ((pt_element_t)4096)
19 #define PAGE_MASK (~(PAGE_SIZE-1))
20 
21 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
22 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
23 
24 #define PT_PRESENT_MASK    ((pt_element_t)1 << 0)
25 #define PT_WRITABLE_MASK   ((pt_element_t)1 << 1)
26 #define PT_USER_MASK       ((pt_element_t)1 << 2)
27 #define PT_ACCESSED_MASK   ((pt_element_t)1 << 5)
28 #define PT_DIRTY_MASK      ((pt_element_t)1 << 6)
29 #define PT_PSE_MASK        ((pt_element_t)1 << 7)
30 #define PT_NX_MASK         ((pt_element_t)1 << 63)
31 
32 #define CR0_WP_MASK (1UL << 16)
33 #define CR4_SMEP_MASK (1UL << 20)
34 
35 #define PFERR_PRESENT_MASK (1U << 0)
36 #define PFERR_WRITE_MASK (1U << 1)
37 #define PFERR_USER_MASK (1U << 2)
38 #define PFERR_RESERVED_MASK (1U << 3)
39 #define PFERR_FETCH_MASK (1U << 4)
40 #define PFERR_PK_MASK (1U << 5)
41 
42 #define MSR_EFER 0xc0000080
43 #define EFER_NX_MASK		(1ull << 11)
44 
45 #define PT_INDEX(address, level)       \
46        ((address) >> (12 + ((level)-1) * 9)) & 511
47 
48 /*
49  * page table access check tests
50  */
51 
52 enum {
53     AC_PTE_PRESENT_BIT,
54     AC_PTE_WRITABLE_BIT,
55     AC_PTE_USER_BIT,
56     AC_PTE_ACCESSED_BIT,
57     AC_PTE_DIRTY_BIT,
58     AC_PTE_NX_BIT,
59     AC_PTE_BIT51_BIT,
60 
61     AC_PDE_PRESENT_BIT,
62     AC_PDE_WRITABLE_BIT,
63     AC_PDE_USER_BIT,
64     AC_PDE_ACCESSED_BIT,
65     AC_PDE_DIRTY_BIT,
66     AC_PDE_PSE_BIT,
67     AC_PDE_NX_BIT,
68     AC_PDE_BIT51_BIT,
69     AC_PDE_BIT13_BIT,
70 
71     AC_PKU_AD_BIT,
72     AC_PKU_WD_BIT,
73     AC_PKU_PKEY_BIT,
74 
75     AC_ACCESS_USER_BIT,
76     AC_ACCESS_WRITE_BIT,
77     AC_ACCESS_FETCH_BIT,
78     AC_ACCESS_TWICE_BIT,
79 
80     AC_CPU_EFER_NX_BIT,
81     AC_CPU_CR0_WP_BIT,
82     AC_CPU_CR4_SMEP_BIT,
83     AC_CPU_CR4_PKE_BIT,
84 
85     NR_AC_FLAGS
86 };
87 
88 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
89 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
90 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
91 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
92 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
93 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
94 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
95 
96 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
97 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
98 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
99 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
100 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
101 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
102 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
103 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
104 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
105 
106 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
107 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
108 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
109 
110 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
111 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
112 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
113 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
114 
115 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
116 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
117 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
118 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
119 
120 const char *ac_names[] = {
121     [AC_PTE_PRESENT_BIT] = "pte.p",
122     [AC_PTE_ACCESSED_BIT] = "pte.a",
123     [AC_PTE_WRITABLE_BIT] = "pte.rw",
124     [AC_PTE_USER_BIT] = "pte.user",
125     [AC_PTE_DIRTY_BIT] = "pte.d",
126     [AC_PTE_NX_BIT] = "pte.nx",
127     [AC_PTE_BIT51_BIT] = "pte.51",
128     [AC_PDE_PRESENT_BIT] = "pde.p",
129     [AC_PDE_ACCESSED_BIT] = "pde.a",
130     [AC_PDE_WRITABLE_BIT] = "pde.rw",
131     [AC_PDE_USER_BIT] = "pde.user",
132     [AC_PDE_DIRTY_BIT] = "pde.d",
133     [AC_PDE_PSE_BIT] = "pde.pse",
134     [AC_PDE_NX_BIT] = "pde.nx",
135     [AC_PDE_BIT51_BIT] = "pde.51",
136     [AC_PDE_BIT13_BIT] = "pde.13",
137     [AC_PKU_AD_BIT] = "pkru.ad",
138     [AC_PKU_WD_BIT] = "pkru.wd",
139     [AC_PKU_PKEY_BIT] = "pkey=1",
140     [AC_ACCESS_WRITE_BIT] = "write",
141     [AC_ACCESS_USER_BIT] = "user",
142     [AC_ACCESS_FETCH_BIT] = "fetch",
143     [AC_ACCESS_TWICE_BIT] = "twice",
144     [AC_CPU_EFER_NX_BIT] = "efer.nx",
145     [AC_CPU_CR0_WP_BIT] = "cr0.wp",
146     [AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
147     [AC_CPU_CR4_PKE_BIT] = "cr4.pke",
148 };
149 
150 static inline void *va(pt_element_t phys)
151 {
152     return (void *)phys;
153 }
154 
155 typedef struct {
156     pt_element_t pt_pool;
157     unsigned pt_pool_size;
158     unsigned pt_pool_current;
159 } ac_pool_t;
160 
161 typedef struct {
162     unsigned flags;
163     void *virt;
164     pt_element_t phys;
165     pt_element_t *ptep;
166     pt_element_t expected_pte;
167     pt_element_t *pdep;
168     pt_element_t expected_pde;
169     pt_element_t ignore_pde;
170     int expected_fault;
171     unsigned expected_error;
172 } ac_test_t;
173 
174 typedef struct {
175     unsigned short limit;
176     unsigned long linear_addr;
177 } __attribute__((packed)) descriptor_table_t;
178 
179 
180 static void ac_test_show(ac_test_t *at);
181 
182 int write_cr4_checking(unsigned long val)
183 {
184     asm volatile(ASM_TRY("1f")
185             "mov %0,%%cr4\n\t"
186             "1:": : "r" (val));
187     return exception_vector();
188 }
189 
190 void set_cr0_wp(int wp)
191 {
192     unsigned long cr0 = read_cr0();
193     unsigned long old_cr0 = cr0;
194 
195     cr0 &= ~CR0_WP_MASK;
196     if (wp)
197 	cr0 |= CR0_WP_MASK;
198     if (old_cr0 != cr0)
199         write_cr0(cr0);
200 }
201 
202 void set_cr4_smep(int smep)
203 {
204     unsigned long cr4 = read_cr4();
205     unsigned long old_cr4 = cr4;
206     extern u64 ptl2[];
207 
208     cr4 &= ~CR4_SMEP_MASK;
209     if (smep)
210 	cr4 |= CR4_SMEP_MASK;
211     if (old_cr4 == cr4)
212         return;
213 
214     if (smep)
215         ptl2[2] &= ~PT_USER_MASK;
216     write_cr4(cr4);
217     if (!smep)
218         ptl2[2] |= PT_USER_MASK;
219 }
220 
221 void set_cr4_pke(int pke)
222 {
223     unsigned long cr4 = read_cr4();
224     unsigned long old_cr4 = cr4;
225 
226     cr4 &= ~X86_CR4_PKE;
227     if (pke)
228 	cr4 |= X86_CR4_PKE;
229     if (old_cr4 == cr4)
230         return;
231 
232     /* Check that protection keys do not affect accesses when CR4.PKE=0.  */
233     if ((read_cr4() & X86_CR4_PKE) && !pke) {
234         write_pkru(0xfffffffc);
235     }
236     write_cr4(cr4);
237 }
238 
239 void set_efer_nx(int nx)
240 {
241     unsigned long long efer = rdmsr(MSR_EFER);
242     unsigned long long old_efer = efer;
243 
244     efer &= ~EFER_NX_MASK;
245     if (nx)
246 	efer |= EFER_NX_MASK;
247     if (old_efer != efer)
248         wrmsr(MSR_EFER, efer);
249 }
250 
251 static void ac_env_int(ac_pool_t *pool)
252 {
253     extern char page_fault, kernel_entry;
254     set_idt_entry(14, &page_fault, 0);
255     set_idt_entry(0x20, &kernel_entry, 3);
256 
257     pool->pt_pool = 33 * 1024 * 1024;
258     pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
259     pool->pt_pool_current = 0;
260 }
261 
262 void ac_test_init(ac_test_t *at, void *virt)
263 {
264     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
265     set_cr0_wp(1);
266     at->flags = 0;
267     at->virt = virt;
268     at->phys = 32 * 1024 * 1024;
269 }
270 
271 int ac_test_bump_one(ac_test_t *at)
272 {
273     at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
274     return at->flags < (1 << NR_AC_FLAGS);
275 }
276 
277 #define F(x)  ((flags & x##_MASK) != 0)
278 
279 _Bool ac_test_legal(ac_test_t *at)
280 {
281     int flags = at->flags;
282 
283     if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
284 	return false;
285 
286     /*
287      * Since we convert current page to kernel page when cr4.smep=1,
288      * we can't switch to user mode.
289      */
290     if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
291 	return false;
292 
293     /*
294      * Only test protection key faults if CR4.PKE=1.
295      */
296     if (!F(AC_CPU_CR4_PKE) &&
297         (F(AC_PKU_AD) || F(AC_PKU_WD))) {
298 	return false;
299     }
300 
301     /*
302      * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
303      * meaningless if there is a PTE.
304      */
305     if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
306         return false;
307 
308     return true;
309 }
310 
311 int ac_test_bump(ac_test_t *at)
312 {
313     int ret;
314 
315     ret = ac_test_bump_one(at);
316     while (ret && !ac_test_legal(at))
317 	ret = ac_test_bump_one(at);
318     return ret;
319 }
320 
321 pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
322 {
323     pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
324     pool->pt_pool_current += PAGE_SIZE;
325     return ret;
326 }
327 
328 _Bool ac_test_enough_room(ac_pool_t *pool)
329 {
330     return pool->pt_pool_current + 4 * PAGE_SIZE <= pool->pt_pool_size;
331 }
332 
333 void ac_test_reset_pt_pool(ac_pool_t *pool)
334 {
335     pool->pt_pool_current = 0;
336 }
337 
338 pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags, bool writable,
339                                  bool user, bool executable)
340 {
341     bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
342     pt_element_t expected = 0;
343 
344     if (F(AC_ACCESS_USER) && !user)
345 	at->expected_fault = 1;
346 
347     if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
348 	at->expected_fault = 1;
349 
350     if (F(AC_ACCESS_FETCH) && !executable)
351 	at->expected_fault = 1;
352 
353     if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
354         at->expected_fault = 1;
355 
356     if (user && !F(AC_ACCESS_FETCH) &&
357         F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE) &&
358         !at->expected_fault) {
359         if (F(AC_PKU_AD)) {
360             at->expected_fault = 1;
361             at->expected_error |= PFERR_PK_MASK;
362         } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
363             at->expected_fault = 1;
364             at->expected_error |= PFERR_PK_MASK;
365         }
366     }
367 
368     if (!at->expected_fault) {
369         expected |= PT_ACCESSED_MASK;
370         if (F(AC_ACCESS_WRITE))
371             expected |= PT_DIRTY_MASK;
372     }
373 
374     return expected;
375 }
376 
377 void ac_emulate_access(ac_test_t *at, unsigned flags)
378 {
379     bool pde_valid, pte_valid;
380     bool user, writable, executable;
381 
382     if (F(AC_ACCESS_USER))
383 	at->expected_error |= PFERR_USER_MASK;
384 
385     if (F(AC_ACCESS_WRITE))
386 	at->expected_error |= PFERR_WRITE_MASK;
387 
388     if (F(AC_ACCESS_FETCH))
389 	at->expected_error |= PFERR_FETCH_MASK;
390 
391     if (!F(AC_PDE_ACCESSED))
392         at->ignore_pde = PT_ACCESSED_MASK;
393 
394     pde_valid = F(AC_PDE_PRESENT)
395         && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT13)
396         && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
397 
398     if (!pde_valid) {
399         at->expected_fault = 1;
400 	if (F(AC_PDE_PRESENT)) {
401             at->expected_error |= PFERR_RESERVED_MASK;
402         } else {
403             at->expected_error &= ~PFERR_PRESENT_MASK;
404         }
405 	goto fault;
406     }
407 
408     writable = F(AC_PDE_WRITABLE);
409     user = F(AC_PDE_USER);
410     executable = !F(AC_PDE_NX);
411 
412     if (F(AC_PDE_PSE)) {
413         at->expected_pde |= ac_test_permissions(at, flags, writable, user,
414                                                 executable);
415 	goto no_pte;
416     }
417 
418     at->expected_pde |= PT_ACCESSED_MASK;
419 
420     pte_valid = F(AC_PTE_PRESENT)
421         && !F(AC_PTE_BIT51)
422         && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
423 
424     if (!pte_valid) {
425         at->expected_fault = 1;
426 	if (F(AC_PTE_PRESENT)) {
427             at->expected_error |= PFERR_RESERVED_MASK;
428         } else {
429             at->expected_error &= ~PFERR_PRESENT_MASK;
430         }
431 	goto fault;
432     }
433 
434     writable &= F(AC_PTE_WRITABLE);
435     user &= F(AC_PTE_USER);
436     executable &= !F(AC_PTE_NX);
437 
438     at->expected_pte |= ac_test_permissions(at, flags, writable, user,
439                                             executable);
440 
441 no_pte:
442 fault:
443     if (!at->expected_fault)
444         at->ignore_pde = 0;
445     if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
446         at->expected_error &= ~PFERR_FETCH_MASK;
447 }
448 
449 void ac_set_expected_status(ac_test_t *at)
450 {
451     invlpg(at->virt);
452 
453     if (at->ptep)
454 	at->expected_pte = *at->ptep;
455     at->expected_pde = *at->pdep;
456     at->ignore_pde = 0;
457     at->expected_fault = 0;
458     at->expected_error = PFERR_PRESENT_MASK;
459 
460     if (at->flags & AC_ACCESS_TWICE_MASK) {
461         ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
462                           & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
463         at->expected_fault = 0;
464 	at->expected_error = PFERR_PRESENT_MASK;
465         at->ignore_pde = 0;
466     }
467 
468     ac_emulate_access(at, at->flags);
469 }
470 
471 void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page,
472 			       u64 pt_page)
473 
474 {
475     unsigned long root = read_cr3();
476     int flags = at->flags;
477 
478     if (!ac_test_enough_room(pool))
479 	ac_test_reset_pt_pool(pool);
480 
481     at->ptep = 0;
482     for (int i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
483 	pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
484 	unsigned index = PT_INDEX((unsigned long)at->virt, i);
485 	pt_element_t pte = 0;
486 	switch (i) {
487 	case 4:
488 	case 3:
489 	    pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
490 	    pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
491 	    break;
492 	case 2:
493 	    if (!F(AC_PDE_PSE)) {
494 		pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
495 		/* The protection key is ignored on non-leaf entries.  */
496                 if (F(AC_PKU_PKEY))
497                     pte |= 2ull << 59;
498 	    } else {
499 		pte = at->phys & PT_PSE_BASE_ADDR_MASK;
500 		pte |= PT_PSE_MASK;
501                 if (F(AC_PKU_PKEY))
502                     pte |= 1ull << 59;
503 	    }
504 	    if (F(AC_PDE_PRESENT))
505 		pte |= PT_PRESENT_MASK;
506 	    if (F(AC_PDE_WRITABLE))
507 		pte |= PT_WRITABLE_MASK;
508 	    if (F(AC_PDE_USER))
509 		pte |= PT_USER_MASK;
510 	    if (F(AC_PDE_ACCESSED))
511 		pte |= PT_ACCESSED_MASK;
512 	    if (F(AC_PDE_DIRTY))
513 		pte |= PT_DIRTY_MASK;
514 	    if (F(AC_PDE_NX))
515 		pte |= PT_NX_MASK;
516 	    if (F(AC_PDE_BIT51))
517 		pte |= 1ull << 51;
518 	    if (F(AC_PDE_BIT13))
519 		pte |= 1ull << 13;
520 	    at->pdep = &vroot[index];
521 	    break;
522 	case 1:
523 	    pte = at->phys & PT_BASE_ADDR_MASK;
524 	    if (F(AC_PKU_PKEY))
525 		pte |= 1ull << 59;
526 	    if (F(AC_PTE_PRESENT))
527 		pte |= PT_PRESENT_MASK;
528 	    if (F(AC_PTE_WRITABLE))
529 		pte |= PT_WRITABLE_MASK;
530 	    if (F(AC_PTE_USER))
531 		pte |= PT_USER_MASK;
532 	    if (F(AC_PTE_ACCESSED))
533 		pte |= PT_ACCESSED_MASK;
534 	    if (F(AC_PTE_DIRTY))
535 		pte |= PT_DIRTY_MASK;
536 	    if (F(AC_PTE_NX))
537 		pte |= PT_NX_MASK;
538 	    if (F(AC_PTE_BIT51))
539 		pte |= 1ull << 51;
540 	    at->ptep = &vroot[index];
541 	    break;
542 	}
543 	vroot[index] = pte;
544 	root = vroot[index];
545     }
546     ac_set_expected_status(at);
547 }
548 
549 static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
550 {
551 	__ac_setup_specific_pages(at, pool, 0, 0);
552 }
553 
554 static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
555 				    u64 pd_page, u64 pt_page)
556 {
557 	return __ac_setup_specific_pages(at, pool, pd_page, pt_page);
558 }
559 
560 static void dump_mapping(ac_test_t *at)
561 {
562 	unsigned long root = read_cr3();
563         int flags = at->flags;
564 	int i;
565 
566 	printf("Dump mapping: address: %p\n", at->virt);
567 	for (i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
568 		pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
569 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
570 		pt_element_t pte = vroot[index];
571 
572 		printf("------L%d: %lx\n", i, pte);
573 		root = vroot[index];
574 	}
575 }
576 
577 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
578                           const char *fmt, ...)
579 {
580     va_list ap;
581     char buf[500];
582 
583     if (!*success_ret) {
584         return;
585     }
586 
587     if (!cond) {
588         return;
589     }
590 
591     *success_ret = false;
592 
593     if (!verbose) {
594         puts("\n");
595         ac_test_show(at);
596     }
597 
598     va_start(ap, fmt);
599     vsnprintf(buf, sizeof(buf), fmt, ap);
600     va_end(ap);
601     printf("FAIL: %s\n", buf);
602     dump_mapping(at);
603 }
604 
605 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
606 {
607     pte1 &= ~ignore;
608     pte2 &= ~ignore;
609     return pte1 == pte2;
610 }
611 
612 int ac_test_do_access(ac_test_t *at)
613 {
614     static unsigned unique = 42;
615     int fault = 0;
616     unsigned e;
617     static unsigned char user_stack[4096];
618     unsigned long rsp;
619     _Bool success = true;
620     int flags = at->flags;
621 
622     ++unique;
623     if (!(unique & 65535)) {
624         puts(".");
625     }
626 
627     *((unsigned char *)at->phys) = 0xc3; /* ret */
628 
629     unsigned r = unique;
630     set_cr0_wp(F(AC_CPU_CR0_WP));
631     set_efer_nx(F(AC_CPU_EFER_NX));
632     set_cr4_pke(F(AC_CPU_CR4_PKE));
633     if (F(AC_CPU_CR4_PKE)) {
634         /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
635         write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
636                    (F(AC_PKU_AD) ? 4 : 0));
637     }
638 
639     set_cr4_smep(F(AC_CPU_CR4_SMEP));
640 
641     if (F(AC_ACCESS_TWICE)) {
642 	asm volatile (
643 	    "mov $fixed2, %%rsi \n\t"
644 	    "mov (%[addr]), %[reg] \n\t"
645 	    "fixed2:"
646 	    : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
647 	    : [addr]"r"(at->virt)
648 	    : "rsi"
649 	    );
650 	fault = 0;
651     }
652 
653     asm volatile ("mov $fixed1, %%rsi \n\t"
654 		  "mov %%rsp, %%rdx \n\t"
655 		  "cmp $0, %[user] \n\t"
656 		  "jz do_access \n\t"
657 		  "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax  \n\t"
658 		  "pushq %[user_ds] \n\t"
659 		  "pushq %[user_stack_top] \n\t"
660 		  "pushfq \n\t"
661 		  "pushq %[user_cs] \n\t"
662 		  "pushq $do_access \n\t"
663 		  "iretq \n"
664 		  "do_access: \n\t"
665 		  "cmp $0, %[fetch] \n\t"
666 		  "jnz 2f \n\t"
667 		  "cmp $0, %[write] \n\t"
668 		  "jnz 1f \n\t"
669 		  "mov (%[addr]), %[reg] \n\t"
670 		  "jmp done \n\t"
671 		  "1: mov %[reg], (%[addr]) \n\t"
672 		  "jmp done \n\t"
673 		  "2: call *%[addr] \n\t"
674 		  "done: \n"
675 		  "fixed1: \n"
676 		  "int %[kernel_entry_vector] \n\t"
677 		  "back_to_kernel:"
678 		  : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
679 		  : [addr]"r"(at->virt),
680 		    [write]"r"(F(AC_ACCESS_WRITE)),
681 		    [user]"r"(F(AC_ACCESS_USER)),
682 		    [fetch]"r"(F(AC_ACCESS_FETCH)),
683 		    [user_ds]"i"(USER_DS),
684 		    [user_cs]"i"(USER_CS),
685 		    [user_stack_top]"r"(user_stack + sizeof user_stack),
686 		    [kernel_entry_vector]"i"(0x20)
687 		  : "rsi");
688 
689     asm volatile (".section .text.pf \n\t"
690 		  "page_fault: \n\t"
691 		  "pop %rbx \n\t"
692 		  "mov %rsi, (%rsp) \n\t"
693 		  "movl $1, %eax \n\t"
694 		  "iretq \n\t"
695 		  ".section .text");
696 
697     asm volatile (".section .text.entry \n\t"
698 		  "kernel_entry: \n\t"
699 		  "mov %rdx, %rsp \n\t"
700 		  "jmp back_to_kernel \n\t"
701 		  ".section .text");
702 
703     ac_test_check(at, &success, fault && !at->expected_fault,
704                   "unexpected fault");
705     ac_test_check(at, &success, !fault && at->expected_fault,
706                   "unexpected access");
707     ac_test_check(at, &success, fault && e != at->expected_error,
708                   "error code %x expected %x", e, at->expected_error);
709     ac_test_check(at, &success, at->ptep && *at->ptep != at->expected_pte,
710                   "pte %x expected %x", *at->ptep, at->expected_pte);
711     ac_test_check(at, &success,
712                   !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
713                   "pde %x expected %x", *at->pdep, at->expected_pde);
714 
715     if (success && verbose) {
716         printf("PASS\n");
717     }
718     return success;
719 }
720 
721 static void ac_test_show(ac_test_t *at)
722 {
723     char line[5000];
724 
725     *line = 0;
726     strcat(line, "test");
727     for (int i = 0; i < NR_AC_FLAGS; ++i)
728 	if (at->flags & (1 << i)) {
729 	    strcat(line, " ");
730 	    strcat(line, ac_names[i]);
731 	}
732     strcat(line, ": ");
733     printf("%s", line);
734 }
735 
736 /*
737  * This test case is used to triger the bug which is fixed by
738  * commit e09e90a5 in the kvm tree
739  */
740 static int corrupt_hugepage_triger(ac_pool_t *pool)
741 {
742     ac_test_t at1, at2;
743 
744     ac_test_init(&at1, (void *)(0x123400000000));
745     ac_test_init(&at2, (void *)(0x666600000000));
746 
747     at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
748     ac_test_setup_pte(&at2, pool);
749     if (!ac_test_do_access(&at2))
750         goto err;
751 
752     at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
753     ac_test_setup_pte(&at1, pool);
754     if (!ac_test_do_access(&at1))
755         goto err;
756 
757     at1.flags |= AC_ACCESS_WRITE_MASK;
758     ac_set_expected_status(&at1);
759     if (!ac_test_do_access(&at1))
760         goto err;
761 
762     at2.flags |= AC_ACCESS_WRITE_MASK;
763     ac_set_expected_status(&at2);
764     if (!ac_test_do_access(&at2))
765         goto err;
766 
767     return 1;
768 
769 err:
770     printf("corrupt_hugepage_triger test fail\n");
771     return 0;
772 }
773 
774 /*
775  * This test case is used to triger the bug which is fixed by
776  * commit 3ddf6c06e13e in the kvm tree
777  */
778 static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
779 {
780 	ac_test_t at1, at2;
781 
782 	ac_test_init(&at1, (void *)(0x123406001000));
783 	ac_test_init(&at2, (void *)(0x123406003000));
784 
785 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
786 	ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
787 
788         at2.flags = at1.flags | AC_PTE_NX_MASK;
789 	ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
790 
791 	if (!ac_test_do_access(&at1)) {
792 		printf("%s: prepare fail\n", __FUNCTION__);
793 		goto err;
794 	}
795 
796 	if (!ac_test_do_access(&at2)) {
797 		printf("%s: check PFEC on prefetch pte path fail\n",
798 			__FUNCTION__);
799 		goto err;
800 	}
801 
802 	return 1;
803 
804 err:
805     return 0;
806 }
807 
808 /*
809  * If the write-fault access is from supervisor and CR0.WP is not set on the
810  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
811  * and clears U bit. This is the chance that kvm can change pte access from
812  * readonly to writable.
813  *
814  * Unfortunately, the pte access is the access of 'direct' shadow page table,
815  * means direct sp.role.access = pte_access, then we will create a writable
816  * spte entry on the readonly shadow page table. It will cause Dirty bit is
817  * not tracked when two guest ptes point to the same large page. Note, it
818  * does not have other impact except Dirty bit since cr0.wp is encoded into
819  * sp.role.
820  *
821  * Note: to trigger this bug, hugepage should be disabled on host.
822  */
823 static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
824 {
825 	ac_test_t at1, at2;
826 
827 	ac_test_init(&at1, (void *)(0x123403000000));
828 	ac_test_init(&at2, (void *)(0x666606000000));
829 
830         at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
831 	ac_test_setup_pte(&at2, pool);
832 	if (!ac_test_do_access(&at2)) {
833 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
834 		goto err;
835 	}
836 
837         at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
838 	ac_test_setup_pte(&at1, pool);
839 	if (!ac_test_do_access(&at1)) {
840 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
841 		goto err;
842 	}
843 
844 	at2.flags |= AC_ACCESS_WRITE_MASK;
845 	ac_set_expected_status(&at2);
846 	if (!ac_test_do_access(&at2)) {
847 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
848 		goto err;
849 	}
850 
851 	return 1;
852 
853 err:
854 	return 0;
855 }
856 
857 static int check_smep_andnot_wp(ac_pool_t *pool)
858 {
859 	ac_test_t at1;
860 	int err_prepare_andnot_wp, err_smep_andnot_wp;
861 
862 	if (!(cpuid_7_ebx & (1 << 7))) {
863 	    return 1;
864 	}
865 
866 	ac_test_init(&at1, (void *)(0x123406001000));
867 
868 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
869             AC_PDE_USER_MASK | AC_PTE_USER_MASK |
870             AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
871             AC_CPU_CR4_SMEP_MASK |
872             AC_CPU_CR0_WP_MASK |
873             AC_ACCESS_WRITE_MASK;
874 	ac_test_setup_pte(&at1, pool);
875 
876 	/*
877 	 * Here we write the ro user page when
878 	 * cr0.wp=0, then we execute it and SMEP
879 	 * fault should happen.
880 	 */
881 	err_prepare_andnot_wp = ac_test_do_access(&at1);
882 	if (!err_prepare_andnot_wp) {
883 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
884 		goto clean_up;
885 	}
886 
887         at1.flags &= ~AC_ACCESS_WRITE_MASK;
888         at1.flags |= AC_ACCESS_FETCH_MASK;
889         ac_set_expected_status(&at1);
890         err_smep_andnot_wp = ac_test_do_access(&at1);
891 
892 clean_up:
893 	set_cr4_smep(0);
894 
895 	if (!err_prepare_andnot_wp)
896 		goto err;
897 	if (!err_smep_andnot_wp) {
898 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
899 		goto err;
900 	}
901 	return 1;
902 
903 err:
904 	return 0;
905 }
906 
907 int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
908 {
909     int r;
910 
911     if (verbose) {
912         ac_test_show(at);
913     }
914     ac_test_setup_pte(at, pool);
915     r = ac_test_do_access(at);
916     return r;
917 }
918 
919 typedef int (*ac_test_fn)(ac_pool_t *pool);
920 const ac_test_fn ac_test_cases[] =
921 {
922 	corrupt_hugepage_triger,
923 	check_pfec_on_prefetch_pte,
924 	check_large_pte_dirty_for_nowp,
925 	check_smep_andnot_wp
926 };
927 
928 int ac_test_run(void)
929 {
930     ac_test_t at;
931     ac_pool_t pool;
932     int i, tests, successes;
933 
934     printf("run\n");
935     tests = successes = 0;
936 
937     if (cpuid_7_ecx & (1 << 3)) {
938         set_cr4_pke(1);
939         set_cr4_pke(0);
940         /* Now PKRU = 0xFFFFFFFF.  */
941     } else {
942 	unsigned long cr4 = read_cr4();
943 	tests++;
944 	if (write_cr4_checking(cr4 | X86_CR4_PKE) == GP_VECTOR) {
945             successes++;
946             invalid_mask |= AC_PKU_AD_MASK;
947             invalid_mask |= AC_PKU_WD_MASK;
948             invalid_mask |= AC_PKU_PKEY_MASK;
949             invalid_mask |= AC_CPU_CR4_PKE_MASK;
950             printf("CR4.PKE not available, disabling PKE tests\n");
951 	} else {
952             printf("Set PKE in CR4 - expect #GP: FAIL!\n");
953             set_cr4_pke(0);
954 	}
955     }
956 
957     if (!(cpuid_7_ebx & (1 << 7))) {
958 	unsigned long cr4 = read_cr4();
959 	tests++;
960 	if (write_cr4_checking(cr4 | CR4_SMEP_MASK) == GP_VECTOR) {
961             successes++;
962             invalid_mask |= AC_CPU_CR4_SMEP_MASK;
963             printf("CR4.SMEP not available, disabling SMEP tests\n");
964 	} else {
965             printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
966             set_cr4_smep(0);
967 	}
968     }
969 
970     ac_env_int(&pool);
971     ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
972     do {
973 	++tests;
974 	successes += ac_test_exec(&at, &pool);
975     } while (ac_test_bump(&at));
976 
977     for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
978 	++tests;
979 	successes += ac_test_cases[i](&pool);
980     }
981 
982     printf("\n%d tests, %d failures\n", tests, tests - successes);
983 
984     return successes == tests;
985 }
986 
987 int main()
988 {
989     int r;
990 
991     setup_idt();
992 
993     cpuid_7_ebx = cpuid(7).b;
994     cpuid_7_ecx = cpuid(7).c;
995 
996     printf("starting test\n\n");
997     r = ac_test_run();
998     return r ? 0 : 1;
999 }
1000