xref: /kvm-unit-tests/x86/access.c (revision 2c96b77ec9d3b1fcec7525174e23a6240ee05949)
1 #include "libcflat.h"
2 #include "desc.h"
3 #include "processor.h"
4 #include "asm/page.h"
5 #include "x86/vm.h"
6 #include "access.h"
7 
8 #define true 1
9 #define false 0
10 
11 static _Bool verbose = false;
12 
13 typedef unsigned long pt_element_t;
14 static int invalid_mask;
15 
16 /* Test code/data is at 32MiB, paging structures at 33MiB. */
17 #define AT_CODE_DATA_PHYS	  32 * 1024 * 1024
18 #define AT_PAGING_STRUCTURES_PHYS 33 * 1024 * 1024
19 
20 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 36) - 1) & PAGE_MASK))
21 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
22 
23 #define CR0_WP_MASK (1UL << 16)
24 #define CR4_SMEP_MASK (1UL << 20)
25 
26 #define PFERR_PRESENT_MASK (1U << 0)
27 #define PFERR_WRITE_MASK (1U << 1)
28 #define PFERR_USER_MASK (1U << 2)
29 #define PFERR_RESERVED_MASK (1U << 3)
30 #define PFERR_FETCH_MASK (1U << 4)
31 #define PFERR_PK_MASK (1U << 5)
32 
33 #define MSR_EFER 0xc0000080
34 #define EFER_NX_MASK            (1ull << 11)
35 
36 #define PT_INDEX(address, level)       \
37 	  (((address) >> (12 + ((level)-1) * 9)) & 511)
38 
39 /*
40  * Page table access check tests.  Each number/bit represent an individual
41  * test case.  The main test will bump a counter by 1 to run all permutations
42  * of the below test cases (sans illegal combinations).
43  *
44  * Keep the PRESENT and reserved bits in the higher numbers so that they aren't
45  * toggled on every test, e.g. to keep entries in the TLB.
46  */
47 enum {
48 	AC_PTE_WRITABLE_BIT,
49 	AC_PTE_USER_BIT,
50 	AC_PTE_ACCESSED_BIT,
51 	AC_PTE_DIRTY_BIT,
52 	AC_PTE_NX_BIT,
53 	AC_PTE_PRESENT_BIT,
54 	AC_PTE_BIT51_BIT,
55 	AC_PTE_BIT36_BIT,
56 
57 	AC_PDE_WRITABLE_BIT,
58 	AC_PDE_USER_BIT,
59 	AC_PDE_ACCESSED_BIT,
60 	AC_PDE_DIRTY_BIT,
61 	AC_PDE_PSE_BIT,
62 	AC_PDE_NX_BIT,
63 	AC_PDE_PRESENT_BIT,
64 	AC_PDE_BIT51_BIT,
65 	AC_PDE_BIT36_BIT,
66 	AC_PDE_BIT13_BIT,
67 
68 	/*
69 	 *  special test case to DISABLE writable bit on page directory
70 	 *  pointer table entry.
71 	 */
72 	AC_PDPTE_NO_WRITABLE_BIT,
73 
74 	AC_PKU_AD_BIT,
75 	AC_PKU_WD_BIT,
76 	AC_PKU_PKEY_BIT,
77 
78 	AC_ACCESS_USER_BIT,
79 	AC_ACCESS_WRITE_BIT,
80 	AC_ACCESS_FETCH_BIT,
81 	AC_ACCESS_TWICE_BIT,
82 
83 	AC_CPU_EFER_NX_BIT,
84 	AC_CPU_CR0_WP_BIT,
85 	AC_CPU_CR4_SMEP_BIT,
86 	AC_CPU_CR4_PKE_BIT,
87 
88 	NR_AC_FLAGS
89 };
90 
91 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
92 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
93 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
94 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
95 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
96 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
97 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
98 #define AC_PTE_BIT36_MASK     (1 << AC_PTE_BIT36_BIT)
99 
100 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
101 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
102 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
103 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
104 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
105 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
106 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
107 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
108 #define AC_PDE_BIT36_MASK     (1 << AC_PDE_BIT36_BIT)
109 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
110 
111 #define AC_PDPTE_NO_WRITABLE_MASK  (1 << AC_PDPTE_NO_WRITABLE_BIT)
112 
113 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
114 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
115 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
116 
117 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
118 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
119 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
120 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
121 
122 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
123 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
124 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
125 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
126 
127 const char *ac_names[] = {
128 	[AC_PTE_PRESENT_BIT] = "pte.p",
129 	[AC_PTE_ACCESSED_BIT] = "pte.a",
130 	[AC_PTE_WRITABLE_BIT] = "pte.rw",
131 	[AC_PTE_USER_BIT] = "pte.user",
132 	[AC_PTE_DIRTY_BIT] = "pte.d",
133 	[AC_PTE_NX_BIT] = "pte.nx",
134 	[AC_PTE_BIT51_BIT] = "pte.51",
135 	[AC_PTE_BIT36_BIT] = "pte.36",
136 	[AC_PDE_PRESENT_BIT] = "pde.p",
137 	[AC_PDE_ACCESSED_BIT] = "pde.a",
138 	[AC_PDE_WRITABLE_BIT] = "pde.rw",
139 	[AC_PDE_USER_BIT] = "pde.user",
140 	[AC_PDE_DIRTY_BIT] = "pde.d",
141 	[AC_PDE_PSE_BIT] = "pde.pse",
142 	[AC_PDE_NX_BIT] = "pde.nx",
143 	[AC_PDE_BIT51_BIT] = "pde.51",
144 	[AC_PDE_BIT36_BIT] = "pde.36",
145 	[AC_PDE_BIT13_BIT] = "pde.13",
146 	[AC_PDPTE_NO_WRITABLE_BIT] = "pdpte.ro",
147 	[AC_PKU_AD_BIT] = "pkru.ad",
148 	[AC_PKU_WD_BIT] = "pkru.wd",
149 	[AC_PKU_PKEY_BIT] = "pkey=1",
150 	[AC_ACCESS_WRITE_BIT] = "write",
151 	[AC_ACCESS_USER_BIT] = "user",
152 	[AC_ACCESS_FETCH_BIT] = "fetch",
153 	[AC_ACCESS_TWICE_BIT] = "twice",
154 	[AC_CPU_EFER_NX_BIT] = "efer.nx",
155 	[AC_CPU_CR0_WP_BIT] = "cr0.wp",
156 	[AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
157 	[AC_CPU_CR4_PKE_BIT] = "cr4.pke",
158 };
159 
160 static inline void *va(pt_element_t phys)
161 {
162 	return (void *)phys;
163 }
164 
165 typedef struct {
166 	pt_element_t pt_pool_pa;
167 	unsigned int pt_pool_current;
168 	int pt_levels;
169 } ac_pt_env_t;
170 
171 typedef struct {
172 	unsigned flags;
173 	void *virt;
174 	pt_element_t phys;
175 	pt_element_t *ptep;
176 	pt_element_t expected_pte;
177 	pt_element_t *pdep;
178 	pt_element_t expected_pde;
179 	pt_element_t ignore_pde;
180 	int expected_fault;
181 	unsigned expected_error;
182 	int pt_levels;
183 
184 	/* 5-level paging, 1-based to avoid math. */
185 	pt_element_t page_tables[6];
186 } ac_test_t;
187 
188 typedef struct {
189 	unsigned short limit;
190 	unsigned long linear_addr;
191 } __attribute__((packed)) descriptor_table_t;
192 
193 
194 static void ac_test_show(ac_test_t *at);
195 
196 static unsigned long shadow_cr0;
197 static unsigned long shadow_cr3;
198 static unsigned long shadow_cr4;
199 static unsigned long long shadow_efer;
200 
201 typedef void (*walk_fn)(pt_element_t *ptep, int level, unsigned long virt);
202 
203 /* Returns the size of the range covered by the last processed entry. */
204 static unsigned long walk_va(ac_test_t *at, int min_level, unsigned long virt,
205 			     walk_fn callback, bool leaf_only)
206 {
207 	unsigned long parent_pte = shadow_cr3;
208 	int i;
209 
210 	for (i = at->pt_levels; i >= min_level; --i) {
211 		pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK);
212 		unsigned int index = PT_INDEX(virt, i);
213 		pt_element_t *ptep = &parent_pt[index];
214 
215 		assert(!leaf_only || (*ptep & PT_PRESENT_MASK));
216 
217 		if (!leaf_only || i == 1 || (*ptep & PT_PAGE_SIZE_MASK))
218 			callback(ptep, i, virt);
219 
220 		if (i == 1 || *ptep & PT_PAGE_SIZE_MASK)
221 			break;
222 
223 		parent_pte = *ptep;
224 	}
225 
226 	return 1ul << PGDIR_BITS(i);
227 }
228 
229 static void walk_ptes(ac_test_t *at, unsigned long virt, unsigned long end,
230 		      walk_fn callback)
231 {
232 	unsigned long page_size;
233 
234 	for ( ; virt < end; virt = ALIGN_DOWN(virt + page_size, page_size))
235 		page_size = walk_va(at, 1, virt, callback, true);
236 }
237 
238 static void set_cr0_wp(int wp)
239 {
240 	unsigned long cr0 = shadow_cr0;
241 
242 	cr0 &= ~CR0_WP_MASK;
243 	if (wp)
244 		cr0 |= CR0_WP_MASK;
245 	if (cr0 != shadow_cr0) {
246 		write_cr0(cr0);
247 		shadow_cr0 = cr0;
248 	}
249 }
250 
251 static void clear_user_mask(pt_element_t *ptep, int level, unsigned long virt)
252 {
253 	*ptep &= ~PT_USER_MASK;
254 }
255 
256 static void set_user_mask(pt_element_t *ptep, int level, unsigned long virt)
257 {
258 	*ptep |= PT_USER_MASK;
259 
260 	/* Flush to avoid spurious #PF */
261 	invlpg((void*)virt);
262 }
263 
264 static unsigned set_cr4_smep(ac_test_t *at, int smep)
265 {
266 	extern char stext, etext;
267 	unsigned long code_start = (unsigned long)&stext;
268 	unsigned long code_end = (unsigned long)&etext;
269 	unsigned long cr4 = shadow_cr4;
270 	unsigned r;
271 
272 	cr4 &= ~CR4_SMEP_MASK;
273 	if (smep)
274 		cr4 |= CR4_SMEP_MASK;
275 	if (cr4 == shadow_cr4)
276 		return 0;
277 
278 	if (smep)
279 		walk_ptes(at, code_start, code_end, clear_user_mask);
280 	r = write_cr4_checking(cr4);
281 	if (r || !smep)
282 		walk_ptes(at, code_start, code_end, set_user_mask);
283 	if (!r)
284 		shadow_cr4 = cr4;
285 	return r;
286 }
287 
288 static void set_cr4_pke(int pke)
289 {
290 	unsigned long cr4 = shadow_cr4;
291 
292 	cr4 &= ~X86_CR4_PKE;
293 	if (pke)
294 		cr4 |= X86_CR4_PKE;
295 	if (cr4 == shadow_cr4)
296 		return;
297 
298 	/* Check that protection keys do not affect accesses when CR4.PKE=0.  */
299 	if ((shadow_cr4 & X86_CR4_PKE) && !pke)
300 		write_pkru(0xfffffffc);
301 	write_cr4(cr4);
302 	shadow_cr4 = cr4;
303 }
304 
305 static void set_efer_nx(int nx)
306 {
307 	unsigned long long efer = shadow_efer;
308 
309 	efer &= ~EFER_NX_MASK;
310 	if (nx)
311 		efer |= EFER_NX_MASK;
312 	if (efer != shadow_efer) {
313 		wrmsr(MSR_EFER, efer);
314 		shadow_efer = efer;
315 	}
316 }
317 
318 static void ac_env_int(ac_pt_env_t *pt_env, int page_table_levels)
319 {
320 	extern char page_fault, kernel_entry;
321 	set_idt_entry(14, &page_fault, 0);
322 	set_idt_entry(0x20, &kernel_entry, 3);
323 
324 	pt_env->pt_pool_pa = AT_PAGING_STRUCTURES_PHYS;
325 	pt_env->pt_pool_current = 0;
326 	pt_env->pt_levels = page_table_levels;
327 }
328 
329 static pt_element_t ac_test_alloc_pt(ac_pt_env_t *pt_env)
330 {
331 	pt_element_t pt;
332 
333 	/*
334 	 * Each test needs at most pt_levels-1 structures per virtual address,
335 	 * and no existing scenario uses more than four addresses.
336 	 */
337 	assert(pt_env->pt_pool_current < (4 * (pt_env->pt_levels - 1)));
338 
339 	pt = pt_env->pt_pool_pa + (pt_env->pt_pool_current * PAGE_SIZE);
340 	pt_env->pt_pool_current++;
341 	memset(va(pt), 0, PAGE_SIZE);
342 	return pt;
343 }
344 
345 static void __ac_test_init(ac_test_t *at, unsigned long virt,
346 			   ac_pt_env_t *pt_env, ac_test_t *buddy)
347 {
348 	unsigned long buddy_virt = buddy ? (unsigned long)buddy->virt : 0;
349 	pt_element_t *root_pt = va(shadow_cr3 & PT_BASE_ADDR_MASK);
350 	int i;
351 
352 	/*
353 	 * The test infrastructure, e.g. this function, must use a different
354 	 * top-level SPTE than the test, otherwise modifying SPTEs can affect
355 	 * normal behavior, e.g. crash the test due to marking code SPTEs
356 	 * USER when CR4.SMEP=1.
357 	 */
358 	assert(PT_INDEX(virt, pt_env->pt_levels) !=
359 	       PT_INDEX((unsigned long)__ac_test_init, pt_env->pt_levels));
360 
361 	set_efer_nx(1);
362 	set_cr0_wp(1);
363 	at->flags = 0;
364 	at->virt = (void *)virt;
365 	at->phys = AT_CODE_DATA_PHYS;
366 	at->pt_levels = pt_env->pt_levels;
367 
368 	at->page_tables[0] = -1ull;
369 	at->page_tables[1] = -1ull;
370 
371 	/*
372 	 * Zap the existing top-level PTE as it may be reused from a previous
373 	 * sub-test.  This allows runtime PTE modification to assert that two
374 	 * overlapping walks don't try to install different paging structures.
375 	 */
376 	root_pt[PT_INDEX(virt, pt_env->pt_levels)] = 0;
377 
378 	for (i = at->pt_levels; i > 1; i--) {
379 		/*
380 		 * Buddies can reuse any part of the walk that share the same
381 		 * index.  This is weird, but intentional, as several tests
382 		 * want different walks to merge at lower levels.
383 		 */
384 		if (buddy && PT_INDEX(virt, i) == PT_INDEX(buddy_virt, i))
385 			at->page_tables[i] = buddy->page_tables[i];
386 		else
387 			at->page_tables[i] = ac_test_alloc_pt(pt_env);
388 	}
389 }
390 
391 static void ac_test_init(ac_test_t *at, unsigned long virt, ac_pt_env_t *pt_env)
392 {
393 	__ac_test_init(at, virt, pt_env, NULL);
394 }
395 
396 static int ac_test_bump_one(ac_test_t *at)
397 {
398 	at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
399 	return at->flags < (1 << NR_AC_FLAGS);
400 }
401 
402 #define F(x)  ((flags & x##_MASK) != 0)
403 
404 static _Bool ac_test_legal(ac_test_t *at)
405 {
406 	int flags = at->flags;
407 	unsigned reserved;
408 
409 	if (F(AC_CPU_CR4_SMEP))
410 		return false;
411 
412 	if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
413 		return false;
414 
415 	/*
416 	 * Since we convert current page to kernel page when cr4.smep=1,
417 	 * we can't switch to user mode.
418 	 */
419 	if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
420 		return false;
421 
422 	/*
423 	 * Only test protection key faults if CR4.PKE=1.
424 	 */
425 	if (!F(AC_CPU_CR4_PKE) &&
426 		(F(AC_PKU_AD) || F(AC_PKU_WD))) {
427 		return false;
428 	}
429 
430 	/*
431 	 * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
432 	 * meaningless if there is a PTE.
433 	 */
434 	if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
435 		return false;
436 
437 	/*
438 	 * Shorten the test by avoiding testing too many reserved bit combinations.
439 	 * Skip testing multiple reserved bits to shorten the test. Reserved bit
440 	 * page faults are terminal and multiple reserved bits do not affect the
441 	 * error code; the odds of a KVM bug are super low, and the odds of actually
442 	 * being able to detect a bug are even lower.
443 	 */
444 	reserved = (AC_PDE_BIT51_MASK | AC_PDE_BIT36_MASK | AC_PDE_BIT13_MASK |
445 		   AC_PTE_BIT51_MASK | AC_PTE_BIT36_MASK);
446 	if (!F(AC_CPU_EFER_NX))
447 		reserved |= AC_PDE_NX_MASK | AC_PTE_NX_MASK;
448 
449 	/* Only test one reserved bit at a time.  */
450 	reserved &= flags;
451 	if (reserved & (reserved - 1))
452 		return false;
453 
454 	return true;
455 }
456 
457 static int ac_test_bump(ac_test_t *at)
458 {
459 	int ret;
460 
461 	do {
462 		ret = ac_test_bump_one(at);
463 	} while (ret && !ac_test_legal(at));
464 
465 	return ret;
466 }
467 
468 static pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags,
469 					bool writable, bool user,
470 					bool executable)
471 {
472 	bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
473 	pt_element_t expected = 0;
474 
475 	if (F(AC_ACCESS_USER) && !user)
476 		at->expected_fault = 1;
477 
478 	if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
479 		at->expected_fault = 1;
480 
481 	if (F(AC_ACCESS_FETCH) && !executable)
482 		at->expected_fault = 1;
483 
484 	if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
485 		at->expected_fault = 1;
486 
487 	if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
488 		if (F(AC_PKU_AD)) {
489 			at->expected_fault = 1;
490 			at->expected_error |= PFERR_PK_MASK;
491 		} else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
492 			at->expected_fault = 1;
493 			at->expected_error |= PFERR_PK_MASK;
494 		}
495 	}
496 
497 	if (!at->expected_fault) {
498 		expected |= PT_ACCESSED_MASK;
499 		if (F(AC_ACCESS_WRITE))
500 			expected |= PT_DIRTY_MASK;
501 	}
502 
503 	return expected;
504 }
505 
506 static void ac_emulate_access(ac_test_t *at, unsigned flags)
507 {
508 	bool pde_valid, pte_valid;
509 	bool user, writable, executable;
510 
511 	if (F(AC_ACCESS_USER))
512 		at->expected_error |= PFERR_USER_MASK;
513 
514 	if (F(AC_ACCESS_WRITE))
515 		at->expected_error |= PFERR_WRITE_MASK;
516 
517 	if (F(AC_ACCESS_FETCH))
518 		at->expected_error |= PFERR_FETCH_MASK;
519 
520 	if (!F(AC_PDE_ACCESSED))
521 		at->ignore_pde = PT_ACCESSED_MASK;
522 
523 	pde_valid = F(AC_PDE_PRESENT)
524 		&& !F(AC_PDE_BIT51) && !F(AC_PDE_BIT36) && !F(AC_PDE_BIT13)
525 		&& !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
526 
527 	if (!pde_valid) {
528 		at->expected_fault = 1;
529 		if (F(AC_PDE_PRESENT)) {
530 			at->expected_error |= PFERR_RESERVED_MASK;
531 		} else {
532 			at->expected_error &= ~PFERR_PRESENT_MASK;
533 		}
534 		goto fault;
535 	}
536 
537 	writable = !F(AC_PDPTE_NO_WRITABLE) && F(AC_PDE_WRITABLE);
538 	user = F(AC_PDE_USER);
539 	executable = !F(AC_PDE_NX);
540 
541 	if (F(AC_PDE_PSE)) {
542 		at->expected_pde |= ac_test_permissions(at, flags, writable,
543 							user, executable);
544 		goto no_pte;
545 	}
546 
547 	at->expected_pde |= PT_ACCESSED_MASK;
548 
549 	pte_valid = F(AC_PTE_PRESENT)
550 		    && !F(AC_PTE_BIT51) && !F(AC_PTE_BIT36)
551 		    && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
552 
553 	if (!pte_valid) {
554 		at->expected_fault = 1;
555 		if (F(AC_PTE_PRESENT)) {
556 			at->expected_error |= PFERR_RESERVED_MASK;
557 		} else {
558 			at->expected_error &= ~PFERR_PRESENT_MASK;
559 		}
560 		goto fault;
561 	}
562 
563 	writable &= F(AC_PTE_WRITABLE);
564 	user &= F(AC_PTE_USER);
565 	executable &= !F(AC_PTE_NX);
566 
567 	at->expected_pte |= ac_test_permissions(at, flags, writable, user,
568 						executable);
569 
570 no_pte:
571 fault:
572 	if (!at->expected_fault)
573 		at->ignore_pde = 0;
574 	if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
575 		at->expected_error &= ~PFERR_FETCH_MASK;
576 }
577 
578 static void ac_set_expected_status(ac_test_t *at)
579 {
580 	invlpg(at->virt);
581 
582 	if (at->ptep)
583 		at->expected_pte = *at->ptep;
584 	at->expected_pde = *at->pdep;
585 	at->ignore_pde = 0;
586 	at->expected_fault = 0;
587 	at->expected_error = PFERR_PRESENT_MASK;
588 
589 	if (at->flags & AC_ACCESS_TWICE_MASK) {
590 		ac_emulate_access(at, at->flags &
591 				  ~AC_ACCESS_WRITE_MASK &
592 				  ~AC_ACCESS_FETCH_MASK &
593 				  ~AC_ACCESS_USER_MASK);
594 		at->expected_fault = 0;
595 		at->expected_error = PFERR_PRESENT_MASK;
596 		at->ignore_pde = 0;
597 	}
598 
599 	ac_emulate_access(at, at->flags);
600 }
601 
602 static pt_element_t ac_get_pt(ac_test_t *at, int i, pt_element_t *ptep)
603 {
604 	pt_element_t pte;
605 
606 	pte = *ptep;
607 	if (pte && !(pte & PT_PAGE_SIZE_MASK) &&
608 	    (pte & PT_BASE_ADDR_MASK) != at->page_tables[i]) {
609 		printf("\nPT collision.  VA = 0x%lx, level = %d, index = %ld, found PT = 0x%lx, want PT = 0x%lx\n",
610 			(unsigned long)at->virt, i,
611 			PT_INDEX((unsigned long)at->virt, i),
612 			pte, at->page_tables[i]);
613 		abort();
614 	}
615 
616 	/*
617 	 * Preserve A/D bits to avoid writing upper level PTEs,
618 	 * which cannot be unsyc'd when KVM uses shadow paging.
619 	 */
620 	pte = at->page_tables[i] | (pte & (PT_DIRTY_MASK | PT_ACCESSED_MASK));
621 	return pte;
622 }
623 
624 static void ac_test_setup_ptes(ac_test_t *at)
625 {
626 	unsigned long parent_pte = shadow_cr3;
627 	int flags = at->flags;
628 	int i;
629 
630 	at->ptep = 0;
631 	for (i = at->pt_levels; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
632 		pt_element_t *parent_pt = va(parent_pte & PT_BASE_ADDR_MASK);
633 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
634 		pt_element_t *ptep = &parent_pt[index];
635 		pt_element_t pte;
636 
637 		switch (i) {
638 		case 5:
639 		case 4:
640 			pte = ac_get_pt(at, i, ptep);
641 			pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
642 			break;
643 		case 3:
644 			pte = ac_get_pt(at, i, ptep);
645 			pte |= PT_PRESENT_MASK | PT_USER_MASK;
646 			if (!F(AC_PDPTE_NO_WRITABLE))
647 				pte |= PT_WRITABLE_MASK;
648 			break;
649 		case 2:
650 			if (!F(AC_PDE_PSE)) {
651 				pte = ac_get_pt(at, i, ptep);
652 
653 				/* The protection key is ignored on non-leaf entries.  */
654 				if (F(AC_PKU_PKEY))
655 					pte |= 2ull << 59;
656 			} else {
657 				pte = at->phys & PT_PSE_BASE_ADDR_MASK;
658 				pte |= PT_PAGE_SIZE_MASK;
659 				if (F(AC_PKU_PKEY))
660 					pte |= 1ull << 59;
661 			}
662 			if (F(AC_PDE_PRESENT))
663 				pte |= PT_PRESENT_MASK;
664 			if (F(AC_PDE_WRITABLE))
665 				pte |= PT_WRITABLE_MASK;
666 			if (F(AC_PDE_USER))
667 				pte |= PT_USER_MASK;
668 			if (F(AC_PDE_ACCESSED))
669 				pte |= PT_ACCESSED_MASK;
670 			if (F(AC_PDE_DIRTY))
671 				pte |= PT_DIRTY_MASK;
672 			if (F(AC_PDE_NX))
673 				pte |= PT64_NX_MASK;
674 			if (F(AC_PDE_BIT51))
675 				pte |= 1ull << 51;
676 			if (F(AC_PDE_BIT36))
677 				pte |= 1ull << 36;
678 			if (F(AC_PDE_BIT13))
679 				pte |= 1ull << 13;
680 			at->pdep = ptep;
681 			break;
682 		case 1:
683 			pte = at->phys & PT_BASE_ADDR_MASK;
684 			if (F(AC_PKU_PKEY))
685 				pte |= 1ull << 59;
686 			if (F(AC_PTE_PRESENT))
687 				pte |= PT_PRESENT_MASK;
688 			if (F(AC_PTE_WRITABLE))
689 				pte |= PT_WRITABLE_MASK;
690 			if (F(AC_PTE_USER))
691 				pte |= PT_USER_MASK;
692 			if (F(AC_PTE_ACCESSED))
693 				pte |= PT_ACCESSED_MASK;
694 			if (F(AC_PTE_DIRTY))
695 				pte |= PT_DIRTY_MASK;
696 			if (F(AC_PTE_NX))
697 				pte |= PT64_NX_MASK;
698 			if (F(AC_PTE_BIT51))
699 				pte |= 1ull << 51;
700 			if (F(AC_PTE_BIT36))
701 				pte |= 1ull << 36;
702 			at->ptep = ptep;
703 			break;
704 		default:
705 			assert(0);
706 		}
707 
708 		if (pte != *ptep)
709 			*ptep = pte;
710 
711 		parent_pte = pte;
712 	}
713 	ac_set_expected_status(at);
714 }
715 
716 static void __dump_pte(pt_element_t *ptep, int level, unsigned long virt)
717 {
718 	printf("------L%d I%lu: %lx\n", level, PT_INDEX(virt, level), *ptep);
719 }
720 
721 static void dump_mapping(ac_test_t *at)
722 {
723 	unsigned long virt = (unsigned long)at->virt;
724 	int flags = at->flags;
725 
726 	printf("Dump mapping: address: %p\n", at->virt);
727 	walk_va(at, F(AC_PDE_PSE) ? 2 : 1, virt, __dump_pte, false);
728 }
729 
730 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
731 			  const char *fmt, ...)
732 {
733 	va_list ap;
734 	char buf[500];
735 
736 	if (!*success_ret) {
737 		return;
738 	}
739 
740 	if (!cond) {
741 		return;
742 	}
743 
744 	*success_ret = false;
745 
746 	if (!verbose) {
747 		puts("\n");
748 		ac_test_show(at);
749 	}
750 
751 	va_start(ap, fmt);
752 	vsnprintf(buf, sizeof(buf), fmt, ap);
753 	va_end(ap);
754 	printf("FAIL: %s\n", buf);
755 	dump_mapping(at);
756 }
757 
758 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
759 {
760 	pte1 &= ~ignore;
761 	pte2 &= ~ignore;
762 	return pte1 == pte2;
763 }
764 
765 static int ac_test_do_access(ac_test_t *at)
766 {
767 	static unsigned unique = 42;
768 	int fault = 0;
769 	unsigned e;
770 	static unsigned char user_stack[4096];
771 	unsigned long rsp;
772 	_Bool success = true;
773 	int flags = at->flags;
774 
775 	++unique;
776 	if (!(unique & 65535)) {
777 		puts(".");
778 	}
779 
780 	*((unsigned char *)at->phys) = 0xc3; /* ret */
781 
782 	unsigned r = unique;
783 	set_cr0_wp(F(AC_CPU_CR0_WP));
784 	set_efer_nx(F(AC_CPU_EFER_NX));
785 	set_cr4_pke(F(AC_CPU_CR4_PKE));
786 	if (F(AC_CPU_CR4_PKE)) {
787 		/* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
788 		write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
789 			   (F(AC_PKU_AD) ? 4 : 0));
790 	}
791 
792 	set_cr4_smep(at, F(AC_CPU_CR4_SMEP));
793 
794 	if (F(AC_ACCESS_TWICE)) {
795 		asm volatile ("mov $fixed2, %%rsi \n\t"
796 			      "mov (%[addr]), %[reg] \n\t"
797 			      "fixed2:"
798 			      : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
799 			      : [addr]"r"(at->virt)
800 			      : "rsi");
801 		fault = 0;
802 	}
803 
804 	asm volatile ("mov $fixed1, %%rsi \n\t"
805 		      "mov %%rsp, %[rsp0] \n\t"
806 		      "cmp $0, %[user] \n\t"
807 		      "jz do_access \n\t"
808 		      "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t"
809 		      "pushq %[user_ds] \n\t"
810 		      "pushq %[user_stack_top] \n\t"
811 		      "pushfq \n\t"
812 		      "pushq %[user_cs] \n\t"
813 		      "pushq $do_access \n\t"
814 		      "iretq \n"
815 		      "do_access: \n\t"
816 		      "cmp $0, %[fetch] \n\t"
817 		      "jnz 2f \n\t"
818 		      "cmp $0, %[write] \n\t"
819 		      "jnz 1f \n\t"
820 		      "mov (%[addr]), %[reg] \n\t"
821 		      "jmp done \n\t"
822 		      "1: mov %[reg], (%[addr]) \n\t"
823 		      "jmp done \n\t"
824 		      "2: call *%[addr] \n\t"
825 		      "done: \n"
826 		      "fixed1: \n"
827 		      "int %[kernel_entry_vector] \n\t"
828 		      ".section .text.entry \n\t"
829 		      "kernel_entry: \n\t"
830 		      "mov %[rsp0], %%rsp \n\t"
831 		      "jmp back_to_kernel \n\t"
832 		      ".section .text \n\t"
833 		      "back_to_kernel:"
834 		      : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp),
835 			[rsp0]"=m"(tss[0].rsp0)
836 		      : [addr]"r"(at->virt),
837 			[write]"r"(F(AC_ACCESS_WRITE)),
838 			[user]"r"(F(AC_ACCESS_USER)),
839 			[fetch]"r"(F(AC_ACCESS_FETCH)),
840 			[user_ds]"i"(USER_DS),
841 			[user_cs]"i"(USER_CS),
842 			[user_stack_top]"r"(user_stack + sizeof user_stack),
843 			[kernel_entry_vector]"i"(0x20)
844 		      : "rsi");
845 
846 	asm volatile (".section .text.pf \n\t"
847 		      "page_fault: \n\t"
848 		      "pop %rbx \n\t"
849 		      "mov %rsi, (%rsp) \n\t"
850 		      "movl $1, %eax \n\t"
851 		      "iretq \n\t"
852 		      ".section .text");
853 
854 	ac_test_check(at, &success, fault && !at->expected_fault,
855 		      "unexpected fault");
856 	ac_test_check(at, &success, !fault && at->expected_fault,
857 		      "unexpected access");
858 	ac_test_check(at, &success, fault && e != at->expected_error,
859 		      "error code %x expected %x", e, at->expected_error);
860 	if (at->ptep)
861 		ac_test_check(at, &success, *at->ptep != at->expected_pte,
862 			      "pte %x expected %x", *at->ptep, at->expected_pte);
863 	ac_test_check(at, &success,
864 		      !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
865 		      "pde %x expected %x", *at->pdep, at->expected_pde);
866 
867 	if (success && verbose) {
868 		if (at->expected_fault) {
869 			printf("PASS (%x)\n", at->expected_error);
870 		} else {
871 			printf("PASS\n");
872 		}
873 	}
874 	return success;
875 }
876 
877 static void ac_test_show(ac_test_t *at)
878 {
879 	char line[5000];
880 
881 	*line = 0;
882 	strcat(line, "test");
883 	for (int i = 0; i < NR_AC_FLAGS; ++i)
884 		if (at->flags & (1 << i)) {
885 			strcat(line, " ");
886 			strcat(line, ac_names[i]);
887 		}
888 
889 	strcat(line, ": ");
890 	printf("%s", line);
891 }
892 
893 /*
894  * This test case is used to triger the bug which is fixed by
895  * commit e09e90a5 in the kvm tree
896  */
897 static int corrupt_hugepage_triger(ac_pt_env_t *pt_env)
898 {
899 	ac_test_t at1, at2;
900 
901 	ac_test_init(&at1, 0xffff923400000000ul, pt_env);
902 	__ac_test_init(&at2, 0xffffe66600000000ul, pt_env, &at1);
903 
904 	at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
905 	ac_test_setup_ptes(&at2);
906 	if (!ac_test_do_access(&at2))
907 		goto err;
908 
909 	at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
910 	ac_test_setup_ptes(&at1);
911 	if (!ac_test_do_access(&at1))
912 		goto err;
913 
914 	at1.flags |= AC_ACCESS_WRITE_MASK;
915 	ac_set_expected_status(&at1);
916 	if (!ac_test_do_access(&at1))
917 		goto err;
918 
919 	at2.flags |= AC_ACCESS_WRITE_MASK;
920 	ac_set_expected_status(&at2);
921 	if (!ac_test_do_access(&at2))
922 		goto err;
923 
924 	return 1;
925 
926 err:
927 	printf("corrupt_hugepage_triger test fail\n");
928 	return 0;
929 }
930 
931 /*
932  * This test case is used to triger the bug which is fixed by
933  * commit 3ddf6c06e13e in the kvm tree
934  */
935 static int check_pfec_on_prefetch_pte(ac_pt_env_t *pt_env)
936 {
937 	ac_test_t at1, at2;
938 
939 	ac_test_init(&at1, 0xffff923406001000ul, pt_env);
940 	__ac_test_init(&at2, 0xffff923406003000ul, pt_env, &at1);
941 
942 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
943 	ac_test_setup_ptes(&at1);
944 
945 	at2.flags = at1.flags | AC_PTE_NX_MASK;
946 	ac_test_setup_ptes(&at2);
947 
948 	if (!ac_test_do_access(&at1)) {
949 		printf("%s: prepare fail\n", __FUNCTION__);
950 			goto err;
951 	}
952 
953 	if (!ac_test_do_access(&at2)) {
954 		printf("%s: check PFEC on prefetch pte path fail\n",
955 		       __FUNCTION__);
956 		goto err;
957 	}
958 
959 	return 1;
960 
961 err:
962 	return 0;
963 }
964 
965 /*
966  * If the write-fault access is from supervisor and CR0.WP is not set on the
967  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
968  * and clears U bit. This is the chance that kvm can change pte access from
969  * readonly to writable.
970  *
971  * Unfortunately, the pte access is the access of 'direct' shadow page table,
972  * means direct sp.role.access = pte_access, then we will create a writable
973  * spte entry on the readonly shadow page table. It will cause Dirty bit is
974  * not tracked when two guest ptes point to the same large page. Note, it
975  * does not have other impact except Dirty bit since cr0.wp is encoded into
976  * sp.role.
977  *
978  * Note: to trigger this bug, hugepage should be disabled on host.
979  */
980 static int check_large_pte_dirty_for_nowp(ac_pt_env_t *pt_env)
981 {
982 	ac_test_t at1, at2;
983 
984 	ac_test_init(&at1, 0xffff923403000000ul, pt_env);
985 	__ac_test_init(&at2, 0xffffe66606000000ul, pt_env, &at1);
986 
987 	at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
988 	ac_test_setup_ptes(&at2);
989 	if (!ac_test_do_access(&at2)) {
990 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
991 		goto err;
992 	}
993 
994 	at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
995 	ac_test_setup_ptes(&at1);
996 	if (!ac_test_do_access(&at1)) {
997 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
998 		goto err;
999 	}
1000 
1001 	at2.flags |= AC_ACCESS_WRITE_MASK;
1002 	ac_set_expected_status(&at2);
1003 	if (!ac_test_do_access(&at2)) {
1004 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
1005 		goto err;
1006 	}
1007 
1008 	return 1;
1009 
1010 err:
1011 	return 0;
1012 }
1013 
1014 static int check_smep_andnot_wp(ac_pt_env_t *pt_env)
1015 {
1016 	ac_test_t at1;
1017 	int err_prepare_andnot_wp, err_smep_andnot_wp;
1018 
1019 	if (!this_cpu_has(X86_FEATURE_SMEP)) {
1020 		return 1;
1021 	}
1022 
1023 	ac_test_init(&at1, 0xffff923406001000ul, pt_env);
1024 
1025 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
1026 		    AC_PDE_USER_MASK | AC_PTE_USER_MASK |
1027 		    AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
1028 		    AC_CPU_CR4_SMEP_MASK |
1029 		    AC_CPU_CR0_WP_MASK |
1030 		    AC_ACCESS_WRITE_MASK;
1031 	ac_test_setup_ptes(&at1);
1032 
1033 	/*
1034 	 * Here we write the ro user page when
1035 	 * cr0.wp=0, then we execute it and SMEP
1036 	 * fault should happen.
1037 	 */
1038 	err_prepare_andnot_wp = ac_test_do_access(&at1);
1039 	if (!err_prepare_andnot_wp) {
1040 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
1041 		goto clean_up;
1042 	}
1043 
1044 	at1.flags &= ~AC_ACCESS_WRITE_MASK;
1045 	at1.flags |= AC_ACCESS_FETCH_MASK;
1046 	ac_set_expected_status(&at1);
1047 	err_smep_andnot_wp = ac_test_do_access(&at1);
1048 
1049 clean_up:
1050 	set_cr4_smep(&at1, 0);
1051 
1052 	if (!err_prepare_andnot_wp)
1053 		goto err;
1054 	if (!err_smep_andnot_wp) {
1055 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
1056 		goto err;
1057 	}
1058 	return 1;
1059 
1060 err:
1061 	return 0;
1062 }
1063 
1064 static int check_effective_sp_permissions(ac_pt_env_t *pt_env)
1065 {
1066 	unsigned long ptr1 = 0xffff923480000000;
1067 	unsigned long ptr2 = ptr1 + SZ_2M;
1068 	unsigned long ptr3 = ptr1 + SZ_1G;
1069 	unsigned long ptr4 = ptr3 + SZ_2M;
1070 	ac_test_t at1, at2, at3, at4;
1071 	int err_read_at1, err_write_at2;
1072 	int err_read_at3, err_write_at4;
1073 
1074 	/*
1075 	 * pgd[]   pud[]        pmd[]            virtual address pointers
1076 	 *                   /->pmd(u--)->pte1(uw-)->page1 <- ptr1 (u--)
1077 	 *      /->pud1(uw-)--->pmd(uw-)->pte2(uw-)->page2 <- ptr2 (uw-)
1078 	 * pgd-|
1079 	 *      \->pud2(u--)--->pmd(u--)->pte1(uw-)->page1 <- ptr3 (u--)
1080 	 *                   \->pmd(uw-)->pte2(uw-)->page2 <- ptr4 (u--)
1081 	 * pud1 and pud2 point to the same pmd page.
1082 	 */
1083 
1084 	ac_test_init(&at1, ptr1, pt_env);
1085 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
1086 		    AC_PDE_USER_MASK | AC_PTE_USER_MASK |
1087 		    AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
1088 		    AC_PTE_WRITABLE_MASK | AC_ACCESS_USER_MASK;
1089 	ac_test_setup_ptes(&at1);
1090 
1091 	__ac_test_init(&at2, ptr2, pt_env, &at1);
1092 	at2.flags = at1.flags | AC_PDE_WRITABLE_MASK | AC_PTE_DIRTY_MASK | AC_ACCESS_WRITE_MASK;
1093 	ac_test_setup_ptes(&at2);
1094 
1095 	__ac_test_init(&at3, ptr3, pt_env, &at1);
1096 	/* Override the PMD (1-based index) to point at ptr1's PMD. */
1097 	at3.page_tables[3] = at1.page_tables[3];
1098 	at3.flags = AC_PDPTE_NO_WRITABLE_MASK | at1.flags;
1099 	ac_test_setup_ptes(&at3);
1100 
1101 	/* Alias ptr2, only the PMD will differ; manually override the PMD. */
1102 	__ac_test_init(&at4, ptr4, pt_env, &at2);
1103 	at4.page_tables[3] = at1.page_tables[3];
1104 	at4.flags = AC_PDPTE_NO_WRITABLE_MASK | at2.flags;
1105 	ac_test_setup_ptes(&at4);
1106 
1107 	err_read_at1 = ac_test_do_access(&at1);
1108 	if (!err_read_at1) {
1109 		printf("%s: read access at1 fail\n", __FUNCTION__);
1110 		return 0;
1111 	}
1112 
1113 	err_write_at2 = ac_test_do_access(&at2);
1114 	if (!err_write_at2) {
1115 		printf("%s: write access at2 fail\n", __FUNCTION__);
1116 		return 0;
1117 	}
1118 
1119 	err_read_at3 = ac_test_do_access(&at3);
1120 	if (!err_read_at3) {
1121 		printf("%s: read access at3 fail\n", __FUNCTION__);
1122 		return 0;
1123 	}
1124 
1125 	err_write_at4 = ac_test_do_access(&at4);
1126 	if (!err_write_at4) {
1127 		printf("%s: write access at4 should fail\n", __FUNCTION__);
1128 		return 0;
1129 	}
1130 
1131 	return 1;
1132 }
1133 
1134 static int ac_test_exec(ac_test_t *at, ac_pt_env_t *pt_env)
1135 {
1136 	int r;
1137 
1138 	if (verbose) {
1139 		ac_test_show(at);
1140 	}
1141 	ac_test_setup_ptes(at);
1142 	r = ac_test_do_access(at);
1143 	return r;
1144 }
1145 
1146 typedef int (*ac_test_fn)(ac_pt_env_t *pt_env);
1147 const ac_test_fn ac_test_cases[] =
1148 {
1149 	corrupt_hugepage_triger,
1150 	check_pfec_on_prefetch_pte,
1151 	check_large_pte_dirty_for_nowp,
1152 	check_smep_andnot_wp,
1153 	check_effective_sp_permissions,
1154 };
1155 
1156 int ac_test_run(int pt_levels)
1157 {
1158 	ac_test_t at;
1159 	ac_pt_env_t pt_env;
1160 	int i, tests, successes;
1161 
1162 	printf("run\n");
1163 	tests = successes = 0;
1164 
1165 	shadow_cr0 = read_cr0();
1166 	shadow_cr4 = read_cr4();
1167 	shadow_cr3 = read_cr3();
1168 	shadow_efer = rdmsr(MSR_EFER);
1169 
1170 	if (cpuid_maxphyaddr() >= 52) {
1171 		invalid_mask |= AC_PDE_BIT51_MASK;
1172 		invalid_mask |= AC_PTE_BIT51_MASK;
1173 	}
1174 	if (cpuid_maxphyaddr() >= 37) {
1175 		invalid_mask |= AC_PDE_BIT36_MASK;
1176 		invalid_mask |= AC_PTE_BIT36_MASK;
1177 	}
1178 
1179 	ac_env_int(&pt_env, pt_levels);
1180 	ac_test_init(&at, 0xffff923400000000ul, &pt_env);
1181 
1182 	if (this_cpu_has(X86_FEATURE_PKU)) {
1183 		set_cr4_pke(1);
1184 		set_cr4_pke(0);
1185 		/* Now PKRU = 0xFFFFFFFF.  */
1186 	} else {
1187 		tests++;
1188 		if (write_cr4_checking(shadow_cr4 | X86_CR4_PKE) == GP_VECTOR) {
1189 			successes++;
1190 			invalid_mask |= AC_PKU_AD_MASK;
1191 			invalid_mask |= AC_PKU_WD_MASK;
1192 			invalid_mask |= AC_PKU_PKEY_MASK;
1193 			invalid_mask |= AC_CPU_CR4_PKE_MASK;
1194 			printf("CR4.PKE not available, disabling PKE tests\n");
1195 		} else {
1196 			printf("Set PKE in CR4 - expect #GP: FAIL!\n");
1197 			set_cr4_pke(0);
1198 		}
1199 	}
1200 
1201 	if (!this_cpu_has(X86_FEATURE_SMEP)) {
1202 		tests++;
1203 		if (set_cr4_smep(&at, 1) == GP_VECTOR) {
1204 			successes++;
1205 			invalid_mask |= AC_CPU_CR4_SMEP_MASK;
1206 			printf("CR4.SMEP not available, disabling SMEP tests\n");
1207 		} else {
1208 			printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
1209 			set_cr4_smep(&at, 0);
1210 		}
1211 	}
1212 
1213 	/* Toggling LA57 in 64-bit mode (guaranteed for this test) is illegal. */
1214 	if (this_cpu_has(X86_FEATURE_LA57)) {
1215 		tests++;
1216 		if (write_cr4_checking(shadow_cr4 ^ X86_CR4_LA57) == GP_VECTOR)
1217 			successes++;
1218 
1219 		/* Force a VM-Exit on KVM, which doesn't intercept LA57 itself. */
1220 		tests++;
1221 		if (write_cr4_checking(shadow_cr4 ^ (X86_CR4_LA57 | X86_CR4_PSE)) == GP_VECTOR)
1222 			successes++;
1223 	}
1224 
1225 	do {
1226 		++tests;
1227 		successes += ac_test_exec(&at, &pt_env);
1228 	} while (ac_test_bump(&at));
1229 
1230 	for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
1231 		ac_env_int(&pt_env, pt_levels);
1232 
1233 		++tests;
1234 		successes += ac_test_cases[i](&pt_env);
1235 	}
1236 
1237 	printf("\n%d tests, %d failures\n", tests, tests - successes);
1238 
1239 	return successes == tests;
1240 }
1241