xref: /kvm-unit-tests/x86/access.c (revision 1ad15f10ed31c9ac275320292ab4a2e255a1cd42)
1 
2 #include "libcflat.h"
3 #include "desc.h"
4 #include "processor.h"
5 #include "asm/page.h"
6 
7 #define smp_id() 0
8 
9 #define true 1
10 #define false 0
11 
12 static _Bool verbose = false;
13 
14 typedef unsigned long pt_element_t;
15 static int cpuid_7_ebx;
16 static int cpuid_7_ecx;
17 static int invalid_mask;
18 
19 #define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
20 #define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
21 
22 #define PT_PRESENT_MASK    ((pt_element_t)1 << 0)
23 #define PT_WRITABLE_MASK   ((pt_element_t)1 << 1)
24 #define PT_USER_MASK       ((pt_element_t)1 << 2)
25 #define PT_ACCESSED_MASK   ((pt_element_t)1 << 5)
26 #define PT_DIRTY_MASK      ((pt_element_t)1 << 6)
27 #define PT_PSE_MASK        ((pt_element_t)1 << 7)
28 #define PT_NX_MASK         ((pt_element_t)1 << 63)
29 
30 #define CR0_WP_MASK (1UL << 16)
31 #define CR4_SMEP_MASK (1UL << 20)
32 
33 #define PFERR_PRESENT_MASK (1U << 0)
34 #define PFERR_WRITE_MASK (1U << 1)
35 #define PFERR_USER_MASK (1U << 2)
36 #define PFERR_RESERVED_MASK (1U << 3)
37 #define PFERR_FETCH_MASK (1U << 4)
38 #define PFERR_PK_MASK (1U << 5)
39 
40 #define MSR_EFER 0xc0000080
41 #define EFER_NX_MASK		(1ull << 11)
42 
43 #define PT_INDEX(address, level)       \
44        ((address) >> (12 + ((level)-1) * 9)) & 511
45 
46 /*
47  * page table access check tests
48  */
49 
50 enum {
51     AC_PTE_PRESENT_BIT,
52     AC_PTE_WRITABLE_BIT,
53     AC_PTE_USER_BIT,
54     AC_PTE_ACCESSED_BIT,
55     AC_PTE_DIRTY_BIT,
56     AC_PTE_NX_BIT,
57     AC_PTE_BIT51_BIT,
58 
59     AC_PDE_PRESENT_BIT,
60     AC_PDE_WRITABLE_BIT,
61     AC_PDE_USER_BIT,
62     AC_PDE_ACCESSED_BIT,
63     AC_PDE_DIRTY_BIT,
64     AC_PDE_PSE_BIT,
65     AC_PDE_NX_BIT,
66     AC_PDE_BIT51_BIT,
67     AC_PDE_BIT13_BIT,
68 
69     AC_PKU_AD_BIT,
70     AC_PKU_WD_BIT,
71     AC_PKU_PKEY_BIT,
72 
73     AC_ACCESS_USER_BIT,
74     AC_ACCESS_WRITE_BIT,
75     AC_ACCESS_FETCH_BIT,
76     AC_ACCESS_TWICE_BIT,
77 
78     AC_CPU_EFER_NX_BIT,
79     AC_CPU_CR0_WP_BIT,
80     AC_CPU_CR4_SMEP_BIT,
81     AC_CPU_CR4_PKE_BIT,
82 
83     NR_AC_FLAGS
84 };
85 
86 #define AC_PTE_PRESENT_MASK   (1 << AC_PTE_PRESENT_BIT)
87 #define AC_PTE_WRITABLE_MASK  (1 << AC_PTE_WRITABLE_BIT)
88 #define AC_PTE_USER_MASK      (1 << AC_PTE_USER_BIT)
89 #define AC_PTE_ACCESSED_MASK  (1 << AC_PTE_ACCESSED_BIT)
90 #define AC_PTE_DIRTY_MASK     (1 << AC_PTE_DIRTY_BIT)
91 #define AC_PTE_NX_MASK        (1 << AC_PTE_NX_BIT)
92 #define AC_PTE_BIT51_MASK     (1 << AC_PTE_BIT51_BIT)
93 
94 #define AC_PDE_PRESENT_MASK   (1 << AC_PDE_PRESENT_BIT)
95 #define AC_PDE_WRITABLE_MASK  (1 << AC_PDE_WRITABLE_BIT)
96 #define AC_PDE_USER_MASK      (1 << AC_PDE_USER_BIT)
97 #define AC_PDE_ACCESSED_MASK  (1 << AC_PDE_ACCESSED_BIT)
98 #define AC_PDE_DIRTY_MASK     (1 << AC_PDE_DIRTY_BIT)
99 #define AC_PDE_PSE_MASK       (1 << AC_PDE_PSE_BIT)
100 #define AC_PDE_NX_MASK        (1 << AC_PDE_NX_BIT)
101 #define AC_PDE_BIT51_MASK     (1 << AC_PDE_BIT51_BIT)
102 #define AC_PDE_BIT13_MASK     (1 << AC_PDE_BIT13_BIT)
103 
104 #define AC_PKU_AD_MASK        (1 << AC_PKU_AD_BIT)
105 #define AC_PKU_WD_MASK        (1 << AC_PKU_WD_BIT)
106 #define AC_PKU_PKEY_MASK      (1 << AC_PKU_PKEY_BIT)
107 
108 #define AC_ACCESS_USER_MASK   (1 << AC_ACCESS_USER_BIT)
109 #define AC_ACCESS_WRITE_MASK  (1 << AC_ACCESS_WRITE_BIT)
110 #define AC_ACCESS_FETCH_MASK  (1 << AC_ACCESS_FETCH_BIT)
111 #define AC_ACCESS_TWICE_MASK  (1 << AC_ACCESS_TWICE_BIT)
112 
113 #define AC_CPU_EFER_NX_MASK   (1 << AC_CPU_EFER_NX_BIT)
114 #define AC_CPU_CR0_WP_MASK    (1 << AC_CPU_CR0_WP_BIT)
115 #define AC_CPU_CR4_SMEP_MASK  (1 << AC_CPU_CR4_SMEP_BIT)
116 #define AC_CPU_CR4_PKE_MASK   (1 << AC_CPU_CR4_PKE_BIT)
117 
118 const char *ac_names[] = {
119     [AC_PTE_PRESENT_BIT] = "pte.p",
120     [AC_PTE_ACCESSED_BIT] = "pte.a",
121     [AC_PTE_WRITABLE_BIT] = "pte.rw",
122     [AC_PTE_USER_BIT] = "pte.user",
123     [AC_PTE_DIRTY_BIT] = "pte.d",
124     [AC_PTE_NX_BIT] = "pte.nx",
125     [AC_PTE_BIT51_BIT] = "pte.51",
126     [AC_PDE_PRESENT_BIT] = "pde.p",
127     [AC_PDE_ACCESSED_BIT] = "pde.a",
128     [AC_PDE_WRITABLE_BIT] = "pde.rw",
129     [AC_PDE_USER_BIT] = "pde.user",
130     [AC_PDE_DIRTY_BIT] = "pde.d",
131     [AC_PDE_PSE_BIT] = "pde.pse",
132     [AC_PDE_NX_BIT] = "pde.nx",
133     [AC_PDE_BIT51_BIT] = "pde.51",
134     [AC_PDE_BIT13_BIT] = "pde.13",
135     [AC_PKU_AD_BIT] = "pkru.ad",
136     [AC_PKU_WD_BIT] = "pkru.wd",
137     [AC_PKU_PKEY_BIT] = "pkey=1",
138     [AC_ACCESS_WRITE_BIT] = "write",
139     [AC_ACCESS_USER_BIT] = "user",
140     [AC_ACCESS_FETCH_BIT] = "fetch",
141     [AC_ACCESS_TWICE_BIT] = "twice",
142     [AC_CPU_EFER_NX_BIT] = "efer.nx",
143     [AC_CPU_CR0_WP_BIT] = "cr0.wp",
144     [AC_CPU_CR4_SMEP_BIT] = "cr4.smep",
145     [AC_CPU_CR4_PKE_BIT] = "cr4.pke",
146 };
147 
148 static inline void *va(pt_element_t phys)
149 {
150     return (void *)phys;
151 }
152 
153 typedef struct {
154     pt_element_t pt_pool;
155     unsigned pt_pool_size;
156     unsigned pt_pool_current;
157 } ac_pool_t;
158 
159 typedef struct {
160     unsigned flags;
161     void *virt;
162     pt_element_t phys;
163     pt_element_t *ptep;
164     pt_element_t expected_pte;
165     pt_element_t *pdep;
166     pt_element_t expected_pde;
167     pt_element_t ignore_pde;
168     int expected_fault;
169     unsigned expected_error;
170 } ac_test_t;
171 
172 typedef struct {
173     unsigned short limit;
174     unsigned long linear_addr;
175 } __attribute__((packed)) descriptor_table_t;
176 
177 
178 static void ac_test_show(ac_test_t *at);
179 
180 int write_cr4_checking(unsigned long val)
181 {
182     asm volatile(ASM_TRY("1f")
183             "mov %0,%%cr4\n\t"
184             "1:": : "r" (val));
185     return exception_vector();
186 }
187 
188 void set_cr0_wp(int wp)
189 {
190     unsigned long cr0 = read_cr0();
191     unsigned long old_cr0 = cr0;
192 
193     cr0 &= ~CR0_WP_MASK;
194     if (wp)
195 	cr0 |= CR0_WP_MASK;
196     if (old_cr0 != cr0)
197         write_cr0(cr0);
198 }
199 
200 void set_cr4_smep(int smep)
201 {
202     unsigned long cr4 = read_cr4();
203     unsigned long old_cr4 = cr4;
204     extern u64 ptl2[];
205 
206     cr4 &= ~CR4_SMEP_MASK;
207     if (smep)
208 	cr4 |= CR4_SMEP_MASK;
209     if (old_cr4 == cr4)
210         return;
211 
212     if (smep)
213         ptl2[2] &= ~PT_USER_MASK;
214     write_cr4(cr4);
215     if (!smep)
216         ptl2[2] |= PT_USER_MASK;
217 }
218 
219 void set_cr4_pke(int pke)
220 {
221     unsigned long cr4 = read_cr4();
222     unsigned long old_cr4 = cr4;
223 
224     cr4 &= ~X86_CR4_PKE;
225     if (pke)
226 	cr4 |= X86_CR4_PKE;
227     if (old_cr4 == cr4)
228         return;
229 
230     /* Check that protection keys do not affect accesses when CR4.PKE=0.  */
231     if ((read_cr4() & X86_CR4_PKE) && !pke) {
232         write_pkru(0xfffffffc);
233     }
234     write_cr4(cr4);
235 }
236 
237 void set_efer_nx(int nx)
238 {
239     unsigned long long efer = rdmsr(MSR_EFER);
240     unsigned long long old_efer = efer;
241 
242     efer &= ~EFER_NX_MASK;
243     if (nx)
244 	efer |= EFER_NX_MASK;
245     if (old_efer != efer)
246         wrmsr(MSR_EFER, efer);
247 }
248 
249 static void ac_env_int(ac_pool_t *pool)
250 {
251     extern char page_fault, kernel_entry;
252     set_idt_entry(14, &page_fault, 0);
253     set_idt_entry(0x20, &kernel_entry, 3);
254 
255     pool->pt_pool = 33 * 1024 * 1024;
256     pool->pt_pool_size = 120 * 1024 * 1024 - pool->pt_pool;
257     pool->pt_pool_current = 0;
258 }
259 
260 void ac_test_init(ac_test_t *at, void *virt)
261 {
262     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
263     set_cr0_wp(1);
264     at->flags = 0;
265     at->virt = virt;
266     at->phys = 32 * 1024 * 1024;
267 }
268 
269 int ac_test_bump_one(ac_test_t *at)
270 {
271     at->flags = ((at->flags | invalid_mask) + 1) & ~invalid_mask;
272     return at->flags < (1 << NR_AC_FLAGS);
273 }
274 
275 #define F(x)  ((flags & x##_MASK) != 0)
276 
277 _Bool ac_test_legal(ac_test_t *at)
278 {
279     int flags = at->flags;
280 
281     if (F(AC_ACCESS_FETCH) && F(AC_ACCESS_WRITE))
282 	return false;
283 
284     /*
285      * Since we convert current page to kernel page when cr4.smep=1,
286      * we can't switch to user mode.
287      */
288     if (F(AC_ACCESS_USER) && F(AC_CPU_CR4_SMEP))
289 	return false;
290 
291     /*
292      * Only test protection key faults if CR4.PKE=1.
293      */
294     if (!F(AC_CPU_CR4_PKE) &&
295         (F(AC_PKU_AD) || F(AC_PKU_WD))) {
296 	return false;
297     }
298 
299     /*
300      * pde.bit13 checks handling of reserved bits in largepage PDEs.  It is
301      * meaningless if there is a PTE.
302      */
303     if (!F(AC_PDE_PSE) && F(AC_PDE_BIT13))
304         return false;
305 
306     return true;
307 }
308 
309 int ac_test_bump(ac_test_t *at)
310 {
311     int ret;
312 
313     ret = ac_test_bump_one(at);
314     while (ret && !ac_test_legal(at))
315 	ret = ac_test_bump_one(at);
316     return ret;
317 }
318 
319 pt_element_t ac_test_alloc_pt(ac_pool_t *pool)
320 {
321     pt_element_t ret = pool->pt_pool + pool->pt_pool_current;
322     pool->pt_pool_current += PAGE_SIZE;
323     return ret;
324 }
325 
326 _Bool ac_test_enough_room(ac_pool_t *pool)
327 {
328     return pool->pt_pool_current + 4 * PAGE_SIZE <= pool->pt_pool_size;
329 }
330 
331 void ac_test_reset_pt_pool(ac_pool_t *pool)
332 {
333     pool->pt_pool_current = 0;
334 }
335 
336 pt_element_t ac_test_permissions(ac_test_t *at, unsigned flags, bool writable,
337                                  bool user, bool executable)
338 {
339     bool kwritable = !F(AC_CPU_CR0_WP) && !F(AC_ACCESS_USER);
340     pt_element_t expected = 0;
341 
342     if (F(AC_ACCESS_USER) && !user)
343 	at->expected_fault = 1;
344 
345     if (F(AC_ACCESS_WRITE) && !writable && !kwritable)
346 	at->expected_fault = 1;
347 
348     if (F(AC_ACCESS_FETCH) && !executable)
349 	at->expected_fault = 1;
350 
351     if (F(AC_ACCESS_FETCH) && user && F(AC_CPU_CR4_SMEP))
352         at->expected_fault = 1;
353 
354     if (user && !F(AC_ACCESS_FETCH) && F(AC_PKU_PKEY) && F(AC_CPU_CR4_PKE)) {
355         if (F(AC_PKU_AD)) {
356             at->expected_fault = 1;
357             at->expected_error |= PFERR_PK_MASK;
358         } else if (F(AC_ACCESS_WRITE) && F(AC_PKU_WD) && !kwritable) {
359             at->expected_fault = 1;
360             at->expected_error |= PFERR_PK_MASK;
361         }
362     }
363 
364     if (!at->expected_fault) {
365         expected |= PT_ACCESSED_MASK;
366         if (F(AC_ACCESS_WRITE))
367             expected |= PT_DIRTY_MASK;
368     }
369 
370     return expected;
371 }
372 
373 void ac_emulate_access(ac_test_t *at, unsigned flags)
374 {
375     bool pde_valid, pte_valid;
376     bool user, writable, executable;
377 
378     if (F(AC_ACCESS_USER))
379 	at->expected_error |= PFERR_USER_MASK;
380 
381     if (F(AC_ACCESS_WRITE))
382 	at->expected_error |= PFERR_WRITE_MASK;
383 
384     if (F(AC_ACCESS_FETCH))
385 	at->expected_error |= PFERR_FETCH_MASK;
386 
387     if (!F(AC_PDE_ACCESSED))
388         at->ignore_pde = PT_ACCESSED_MASK;
389 
390     pde_valid = F(AC_PDE_PRESENT)
391         && !F(AC_PDE_BIT51) && !F(AC_PDE_BIT13)
392         && !(F(AC_PDE_NX) && !F(AC_CPU_EFER_NX));
393 
394     if (!pde_valid) {
395         at->expected_fault = 1;
396 	if (F(AC_PDE_PRESENT)) {
397             at->expected_error |= PFERR_RESERVED_MASK;
398         } else {
399             at->expected_error &= ~PFERR_PRESENT_MASK;
400         }
401 	goto fault;
402     }
403 
404     writable = F(AC_PDE_WRITABLE);
405     user = F(AC_PDE_USER);
406     executable = !F(AC_PDE_NX);
407 
408     if (F(AC_PDE_PSE)) {
409         at->expected_pde |= ac_test_permissions(at, flags, writable, user,
410                                                 executable);
411 	goto no_pte;
412     }
413 
414     at->expected_pde |= PT_ACCESSED_MASK;
415 
416     pte_valid = F(AC_PTE_PRESENT)
417         && !F(AC_PTE_BIT51)
418         && !(F(AC_PTE_NX) && !F(AC_CPU_EFER_NX));
419 
420     if (!pte_valid) {
421         at->expected_fault = 1;
422 	if (F(AC_PTE_PRESENT)) {
423             at->expected_error |= PFERR_RESERVED_MASK;
424         } else {
425             at->expected_error &= ~PFERR_PRESENT_MASK;
426         }
427 	goto fault;
428     }
429 
430     writable &= F(AC_PTE_WRITABLE);
431     user &= F(AC_PTE_USER);
432     executable &= !F(AC_PTE_NX);
433 
434     at->expected_pte |= ac_test_permissions(at, flags, writable, user,
435                                             executable);
436 
437 no_pte:
438 fault:
439     if (!at->expected_fault)
440         at->ignore_pde = 0;
441     if (!F(AC_CPU_EFER_NX) && !F(AC_CPU_CR4_SMEP))
442         at->expected_error &= ~PFERR_FETCH_MASK;
443 }
444 
445 void ac_set_expected_status(ac_test_t *at)
446 {
447     invlpg(at->virt);
448 
449     if (at->ptep)
450 	at->expected_pte = *at->ptep;
451     at->expected_pde = *at->pdep;
452     at->ignore_pde = 0;
453     at->expected_fault = 0;
454     at->expected_error = PFERR_PRESENT_MASK;
455 
456     if (at->flags & AC_ACCESS_TWICE_MASK) {
457         ac_emulate_access(at, at->flags & ~AC_ACCESS_WRITE_MASK
458                           & ~AC_ACCESS_FETCH_MASK & ~AC_ACCESS_USER_MASK);
459         at->expected_fault = 0;
460 	at->expected_error = PFERR_PRESENT_MASK;
461         at->ignore_pde = 0;
462     }
463 
464     ac_emulate_access(at, at->flags);
465 }
466 
467 void __ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool, u64 pd_page,
468 			       u64 pt_page)
469 
470 {
471     unsigned long root = read_cr3();
472     int flags = at->flags;
473 
474     if (!ac_test_enough_room(pool))
475 	ac_test_reset_pt_pool(pool);
476 
477     at->ptep = 0;
478     for (int i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
479 	pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
480 	unsigned index = PT_INDEX((unsigned long)at->virt, i);
481 	pt_element_t pte = 0;
482 	switch (i) {
483 	case 4:
484 	case 3:
485 	    pte = pd_page ? pd_page : ac_test_alloc_pt(pool);
486 	    pte |= PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
487 	    break;
488 	case 2:
489 	    if (!F(AC_PDE_PSE)) {
490 		pte = pt_page ? pt_page : ac_test_alloc_pt(pool);
491 		/* The protection key is ignored on non-leaf entries.  */
492                 if (F(AC_PKU_PKEY))
493                     pte |= 2ull << 59;
494 	    } else {
495 		pte = at->phys & PT_PSE_BASE_ADDR_MASK;
496 		pte |= PT_PSE_MASK;
497                 if (F(AC_PKU_PKEY))
498                     pte |= 1ull << 59;
499 	    }
500 	    if (F(AC_PDE_PRESENT))
501 		pte |= PT_PRESENT_MASK;
502 	    if (F(AC_PDE_WRITABLE))
503 		pte |= PT_WRITABLE_MASK;
504 	    if (F(AC_PDE_USER))
505 		pte |= PT_USER_MASK;
506 	    if (F(AC_PDE_ACCESSED))
507 		pte |= PT_ACCESSED_MASK;
508 	    if (F(AC_PDE_DIRTY))
509 		pte |= PT_DIRTY_MASK;
510 	    if (F(AC_PDE_NX))
511 		pte |= PT_NX_MASK;
512 	    if (F(AC_PDE_BIT51))
513 		pte |= 1ull << 51;
514 	    if (F(AC_PDE_BIT13))
515 		pte |= 1ull << 13;
516 	    at->pdep = &vroot[index];
517 	    break;
518 	case 1:
519 	    pte = at->phys & PT_BASE_ADDR_MASK;
520 	    if (F(AC_PKU_PKEY))
521 		pte |= 1ull << 59;
522 	    if (F(AC_PTE_PRESENT))
523 		pte |= PT_PRESENT_MASK;
524 	    if (F(AC_PTE_WRITABLE))
525 		pte |= PT_WRITABLE_MASK;
526 	    if (F(AC_PTE_USER))
527 		pte |= PT_USER_MASK;
528 	    if (F(AC_PTE_ACCESSED))
529 		pte |= PT_ACCESSED_MASK;
530 	    if (F(AC_PTE_DIRTY))
531 		pte |= PT_DIRTY_MASK;
532 	    if (F(AC_PTE_NX))
533 		pte |= PT_NX_MASK;
534 	    if (F(AC_PTE_BIT51))
535 		pte |= 1ull << 51;
536 	    at->ptep = &vroot[index];
537 	    break;
538 	}
539 	vroot[index] = pte;
540 	root = vroot[index];
541     }
542     ac_set_expected_status(at);
543 }
544 
545 static void ac_test_setup_pte(ac_test_t *at, ac_pool_t *pool)
546 {
547 	__ac_setup_specific_pages(at, pool, 0, 0);
548 }
549 
550 static void ac_setup_specific_pages(ac_test_t *at, ac_pool_t *pool,
551 				    u64 pd_page, u64 pt_page)
552 {
553 	return __ac_setup_specific_pages(at, pool, pd_page, pt_page);
554 }
555 
556 static void dump_mapping(ac_test_t *at)
557 {
558 	unsigned long root = read_cr3();
559         int flags = at->flags;
560 	int i;
561 
562 	printf("Dump mapping: address: %p\n", at->virt);
563 	for (i = 4; i >= 1 && (i >= 2 || !F(AC_PDE_PSE)); --i) {
564 		pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
565 		unsigned index = PT_INDEX((unsigned long)at->virt, i);
566 		pt_element_t pte = vroot[index];
567 
568 		printf("------L%d: %lx\n", i, pte);
569 		root = vroot[index];
570 	}
571 }
572 
573 static void ac_test_check(ac_test_t *at, _Bool *success_ret, _Bool cond,
574                           const char *fmt, ...)
575 {
576     va_list ap;
577     char buf[500];
578 
579     if (!*success_ret) {
580         return;
581     }
582 
583     if (!cond) {
584         return;
585     }
586 
587     *success_ret = false;
588 
589     if (!verbose) {
590         puts("\n");
591         ac_test_show(at);
592     }
593 
594     va_start(ap, fmt);
595     vsnprintf(buf, sizeof(buf), fmt, ap);
596     va_end(ap);
597     printf("FAIL: %s\n", buf);
598     dump_mapping(at);
599 }
600 
601 static int pt_match(pt_element_t pte1, pt_element_t pte2, pt_element_t ignore)
602 {
603     pte1 &= ~ignore;
604     pte2 &= ~ignore;
605     return pte1 == pte2;
606 }
607 
608 int ac_test_do_access(ac_test_t *at)
609 {
610     static unsigned unique = 42;
611     int fault = 0;
612     unsigned e;
613     static unsigned char user_stack[4096];
614     unsigned long rsp;
615     _Bool success = true;
616     int flags = at->flags;
617 
618     ++unique;
619     if (!(unique & 65535)) {
620         puts(".");
621     }
622 
623     *((unsigned char *)at->phys) = 0xc3; /* ret */
624 
625     unsigned r = unique;
626     set_cr0_wp(F(AC_CPU_CR0_WP));
627     set_efer_nx(F(AC_CPU_EFER_NX));
628     set_cr4_pke(F(AC_CPU_CR4_PKE));
629     if (F(AC_CPU_CR4_PKE)) {
630         /* WD2=AD2=1, WD1=F(AC_PKU_WD), AD1=F(AC_PKU_AD) */
631         write_pkru(0x30 | (F(AC_PKU_WD) ? 8 : 0) |
632                    (F(AC_PKU_AD) ? 4 : 0));
633     }
634 
635     set_cr4_smep(F(AC_CPU_CR4_SMEP));
636 
637     if (F(AC_ACCESS_TWICE)) {
638 	asm volatile (
639 	    "mov $fixed2, %%rsi \n\t"
640 	    "mov (%[addr]), %[reg] \n\t"
641 	    "fixed2:"
642 	    : [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
643 	    : [addr]"r"(at->virt)
644 	    : "rsi"
645 	    );
646 	fault = 0;
647     }
648 
649     asm volatile ("mov $fixed1, %%rsi \n\t"
650 		  "mov %%rsp, %%rdx \n\t"
651 		  "cmp $0, %[user] \n\t"
652 		  "jz do_access \n\t"
653 		  "push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax  \n\t"
654 		  "pushq %[user_ds] \n\t"
655 		  "pushq %[user_stack_top] \n\t"
656 		  "pushfq \n\t"
657 		  "pushq %[user_cs] \n\t"
658 		  "pushq $do_access \n\t"
659 		  "iretq \n"
660 		  "do_access: \n\t"
661 		  "cmp $0, %[fetch] \n\t"
662 		  "jnz 2f \n\t"
663 		  "cmp $0, %[write] \n\t"
664 		  "jnz 1f \n\t"
665 		  "mov (%[addr]), %[reg] \n\t"
666 		  "jmp done \n\t"
667 		  "1: mov %[reg], (%[addr]) \n\t"
668 		  "jmp done \n\t"
669 		  "2: call *%[addr] \n\t"
670 		  "done: \n"
671 		  "fixed1: \n"
672 		  "int %[kernel_entry_vector] \n\t"
673 		  "back_to_kernel:"
674 		  : [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
675 		  : [addr]"r"(at->virt),
676 		    [write]"r"(F(AC_ACCESS_WRITE)),
677 		    [user]"r"(F(AC_ACCESS_USER)),
678 		    [fetch]"r"(F(AC_ACCESS_FETCH)),
679 		    [user_ds]"i"(USER_DS),
680 		    [user_cs]"i"(USER_CS),
681 		    [user_stack_top]"r"(user_stack + sizeof user_stack),
682 		    [kernel_entry_vector]"i"(0x20)
683 		  : "rsi");
684 
685     asm volatile (".section .text.pf \n\t"
686 		  "page_fault: \n\t"
687 		  "pop %rbx \n\t"
688 		  "mov %rsi, (%rsp) \n\t"
689 		  "movl $1, %eax \n\t"
690 		  "iretq \n\t"
691 		  ".section .text");
692 
693     asm volatile (".section .text.entry \n\t"
694 		  "kernel_entry: \n\t"
695 		  "mov %rdx, %rsp \n\t"
696 		  "jmp back_to_kernel \n\t"
697 		  ".section .text");
698 
699     ac_test_check(at, &success, fault && !at->expected_fault,
700                   "unexpected fault");
701     ac_test_check(at, &success, !fault && at->expected_fault,
702                   "unexpected access");
703     ac_test_check(at, &success, fault && e != at->expected_error,
704                   "error code %x expected %x", e, at->expected_error);
705     ac_test_check(at, &success, at->ptep && *at->ptep != at->expected_pte,
706                   "pte %x expected %x", *at->ptep, at->expected_pte);
707     ac_test_check(at, &success,
708                   !pt_match(*at->pdep, at->expected_pde, at->ignore_pde),
709                   "pde %x expected %x", *at->pdep, at->expected_pde);
710 
711     if (success && verbose) {
712 	if (at->expected_fault) {
713             printf("PASS (%x)\n", at->expected_error);
714 	} else {
715             printf("PASS\n");
716 	}
717     }
718     return success;
719 }
720 
721 static void ac_test_show(ac_test_t *at)
722 {
723     char line[5000];
724 
725     *line = 0;
726     strcat(line, "test");
727     for (int i = 0; i < NR_AC_FLAGS; ++i)
728 	if (at->flags & (1 << i)) {
729 	    strcat(line, " ");
730 	    strcat(line, ac_names[i]);
731 	}
732     strcat(line, ": ");
733     printf("%s", line);
734 }
735 
736 /*
737  * This test case is used to triger the bug which is fixed by
738  * commit e09e90a5 in the kvm tree
739  */
740 static int corrupt_hugepage_triger(ac_pool_t *pool)
741 {
742     ac_test_t at1, at2;
743 
744     ac_test_init(&at1, (void *)(0x123400000000));
745     ac_test_init(&at2, (void *)(0x666600000000));
746 
747     at2.flags = AC_CPU_CR0_WP_MASK | AC_PDE_PSE_MASK | AC_PDE_PRESENT_MASK;
748     ac_test_setup_pte(&at2, pool);
749     if (!ac_test_do_access(&at2))
750         goto err;
751 
752     at1.flags = at2.flags | AC_PDE_WRITABLE_MASK;
753     ac_test_setup_pte(&at1, pool);
754     if (!ac_test_do_access(&at1))
755         goto err;
756 
757     at1.flags |= AC_ACCESS_WRITE_MASK;
758     ac_set_expected_status(&at1);
759     if (!ac_test_do_access(&at1))
760         goto err;
761 
762     at2.flags |= AC_ACCESS_WRITE_MASK;
763     ac_set_expected_status(&at2);
764     if (!ac_test_do_access(&at2))
765         goto err;
766 
767     return 1;
768 
769 err:
770     printf("corrupt_hugepage_triger test fail\n");
771     return 0;
772 }
773 
774 /*
775  * This test case is used to triger the bug which is fixed by
776  * commit 3ddf6c06e13e in the kvm tree
777  */
778 static int check_pfec_on_prefetch_pte(ac_pool_t *pool)
779 {
780 	ac_test_t at1, at2;
781 
782 	ac_test_init(&at1, (void *)(0x123406001000));
783 	ac_test_init(&at2, (void *)(0x123406003000));
784 
785 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK;
786 	ac_setup_specific_pages(&at1, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
787 
788         at2.flags = at1.flags | AC_PTE_NX_MASK;
789 	ac_setup_specific_pages(&at2, pool, 30 * 1024 * 1024, 30 * 1024 * 1024);
790 
791 	if (!ac_test_do_access(&at1)) {
792 		printf("%s: prepare fail\n", __FUNCTION__);
793 		goto err;
794 	}
795 
796 	if (!ac_test_do_access(&at2)) {
797 		printf("%s: check PFEC on prefetch pte path fail\n",
798 			__FUNCTION__);
799 		goto err;
800 	}
801 
802 	return 1;
803 
804 err:
805     return 0;
806 }
807 
808 /*
809  * If the write-fault access is from supervisor and CR0.WP is not set on the
810  * vcpu, kvm will fix it by adjusting pte access - it sets the W bit on pte
811  * and clears U bit. This is the chance that kvm can change pte access from
812  * readonly to writable.
813  *
814  * Unfortunately, the pte access is the access of 'direct' shadow page table,
815  * means direct sp.role.access = pte_access, then we will create a writable
816  * spte entry on the readonly shadow page table. It will cause Dirty bit is
817  * not tracked when two guest ptes point to the same large page. Note, it
818  * does not have other impact except Dirty bit since cr0.wp is encoded into
819  * sp.role.
820  *
821  * Note: to trigger this bug, hugepage should be disabled on host.
822  */
823 static int check_large_pte_dirty_for_nowp(ac_pool_t *pool)
824 {
825 	ac_test_t at1, at2;
826 
827 	ac_test_init(&at1, (void *)(0x123403000000));
828 	ac_test_init(&at2, (void *)(0x666606000000));
829 
830         at2.flags = AC_PDE_PRESENT_MASK | AC_PDE_PSE_MASK;
831 	ac_test_setup_pte(&at2, pool);
832 	if (!ac_test_do_access(&at2)) {
833 		printf("%s: read on the first mapping fail.\n", __FUNCTION__);
834 		goto err;
835 	}
836 
837         at1.flags = at2.flags | AC_ACCESS_WRITE_MASK;
838 	ac_test_setup_pte(&at1, pool);
839 	if (!ac_test_do_access(&at1)) {
840 		printf("%s: write on the second mapping fail.\n", __FUNCTION__);
841 		goto err;
842 	}
843 
844 	at2.flags |= AC_ACCESS_WRITE_MASK;
845 	ac_set_expected_status(&at2);
846 	if (!ac_test_do_access(&at2)) {
847 		printf("%s: write on the first mapping fail.\n", __FUNCTION__);
848 		goto err;
849 	}
850 
851 	return 1;
852 
853 err:
854 	return 0;
855 }
856 
857 static int check_smep_andnot_wp(ac_pool_t *pool)
858 {
859 	ac_test_t at1;
860 	int err_prepare_andnot_wp, err_smep_andnot_wp;
861 
862 	if (!(cpuid_7_ebx & (1 << 7))) {
863 	    return 1;
864 	}
865 
866 	ac_test_init(&at1, (void *)(0x123406001000));
867 
868 	at1.flags = AC_PDE_PRESENT_MASK | AC_PTE_PRESENT_MASK |
869             AC_PDE_USER_MASK | AC_PTE_USER_MASK |
870             AC_PDE_ACCESSED_MASK | AC_PTE_ACCESSED_MASK |
871             AC_CPU_CR4_SMEP_MASK |
872             AC_CPU_CR0_WP_MASK |
873             AC_ACCESS_WRITE_MASK;
874 	ac_test_setup_pte(&at1, pool);
875 
876 	/*
877 	 * Here we write the ro user page when
878 	 * cr0.wp=0, then we execute it and SMEP
879 	 * fault should happen.
880 	 */
881 	err_prepare_andnot_wp = ac_test_do_access(&at1);
882 	if (!err_prepare_andnot_wp) {
883 		printf("%s: SMEP prepare fail\n", __FUNCTION__);
884 		goto clean_up;
885 	}
886 
887         at1.flags &= ~AC_ACCESS_WRITE_MASK;
888         at1.flags |= AC_ACCESS_FETCH_MASK;
889         ac_set_expected_status(&at1);
890         err_smep_andnot_wp = ac_test_do_access(&at1);
891 
892 clean_up:
893 	set_cr4_smep(0);
894 
895 	if (!err_prepare_andnot_wp)
896 		goto err;
897 	if (!err_smep_andnot_wp) {
898 		printf("%s: check SMEP without wp fail\n", __FUNCTION__);
899 		goto err;
900 	}
901 	return 1;
902 
903 err:
904 	return 0;
905 }
906 
907 int ac_test_exec(ac_test_t *at, ac_pool_t *pool)
908 {
909     int r;
910 
911     if (verbose) {
912         ac_test_show(at);
913     }
914     ac_test_setup_pte(at, pool);
915     r = ac_test_do_access(at);
916     return r;
917 }
918 
919 typedef int (*ac_test_fn)(ac_pool_t *pool);
920 const ac_test_fn ac_test_cases[] =
921 {
922 	corrupt_hugepage_triger,
923 	check_pfec_on_prefetch_pte,
924 	check_large_pte_dirty_for_nowp,
925 	check_smep_andnot_wp
926 };
927 
928 int ac_test_run(void)
929 {
930     ac_test_t at;
931     ac_pool_t pool;
932     int i, tests, successes;
933 
934     printf("run\n");
935     tests = successes = 0;
936 
937     if (cpuid_7_ecx & (1 << 3)) {
938         set_cr4_pke(1);
939         set_cr4_pke(0);
940         /* Now PKRU = 0xFFFFFFFF.  */
941     } else {
942 	unsigned long cr4 = read_cr4();
943 	tests++;
944 	if (write_cr4_checking(cr4 | X86_CR4_PKE) == GP_VECTOR) {
945             successes++;
946             invalid_mask |= AC_PKU_AD_MASK;
947             invalid_mask |= AC_PKU_WD_MASK;
948             invalid_mask |= AC_PKU_PKEY_MASK;
949             invalid_mask |= AC_CPU_CR4_PKE_MASK;
950             printf("CR4.PKE not available, disabling PKE tests\n");
951 	} else {
952             printf("Set PKE in CR4 - expect #GP: FAIL!\n");
953             set_cr4_pke(0);
954 	}
955     }
956 
957     if (!(cpuid_7_ebx & (1 << 7))) {
958 	unsigned long cr4 = read_cr4();
959 	tests++;
960 	if (write_cr4_checking(cr4 | CR4_SMEP_MASK) == GP_VECTOR) {
961             successes++;
962             invalid_mask |= AC_CPU_CR4_SMEP_MASK;
963             printf("CR4.SMEP not available, disabling SMEP tests\n");
964 	} else {
965             printf("Set SMEP in CR4 - expect #GP: FAIL!\n");
966             set_cr4_smep(0);
967 	}
968     }
969 
970     ac_env_int(&pool);
971     ac_test_init(&at, (void *)(0x123400000000 + 16 * smp_id()));
972     do {
973 	++tests;
974 	successes += ac_test_exec(&at, &pool);
975     } while (ac_test_bump(&at));
976 
977     for (i = 0; i < ARRAY_SIZE(ac_test_cases); i++) {
978 	++tests;
979 	successes += ac_test_cases[i](&pool);
980     }
981 
982     printf("\n%d tests, %d failures\n", tests, tests - successes);
983 
984     return successes == tests;
985 }
986 
987 int main()
988 {
989     int r;
990 
991     setup_idt();
992 
993     cpuid_7_ebx = cpuid(7).b;
994     cpuid_7_ecx = cpuid(7).c;
995 
996     printf("starting test\n\n");
997     r = ac_test_run();
998     return r ? 0 : 1;
999 }
1000