xref: /kvm-unit-tests/lib/x86/vm.c (revision c604fa931a1cb70c3649ac1b7223178fc79eab6a)
1 #include "vm.h"
2 #include "libcflat.h"
3 #include "vmalloc.h"
4 #include "alloc_page.h"
5 #include "smp.h"
6 
7 static pteval_t pte_opt_mask;
8 
9 pteval_t *install_pte(pgd_t *cr3,
10 		      int pte_level,
11 		      void *virt,
12 		      pteval_t pte,
13 		      pteval_t *pt_page)
14 {
15     int level;
16     pteval_t *pt = cr3;
17     unsigned offset;
18 
19     for (level = PAGE_LEVEL; level > pte_level; --level) {
20 	offset = PGDIR_OFFSET((uintptr_t)virt, level);
21 	if (!(pt[offset] & PT_PRESENT_MASK)) {
22 	    pteval_t *new_pt = pt_page;
23             if (!new_pt)
24                 new_pt = alloc_page();
25             else
26                 pt_page = 0;
27 	    memset(new_pt, 0, PAGE_SIZE);
28 	    pt[offset] = virt_to_phys(new_pt) | PT_PRESENT_MASK | PT_WRITABLE_MASK | pte_opt_mask;
29 #ifdef CONFIG_EFI
30 	    pt[offset] |= get_amd_sev_c_bit_mask();
31 #endif /* CONFIG_EFI */
32 	}
33 	pt = phys_to_virt(pt[offset] & PT_ADDR_MASK);
34     }
35     offset = PGDIR_OFFSET((uintptr_t)virt, level);
36     pt[offset] = pte;
37     return &pt[offset];
38 }
39 
40 /*
41  * Finds last PTE in the mapping of @virt that's at or above @lowest_level. The
42  * returned PTE isn't necessarily present, but its parent is.
43  */
44 struct pte_search find_pte_level(pgd_t *cr3, void *virt,
45 				 int lowest_level)
46 {
47 	pteval_t *pt = cr3, pte;
48 	unsigned offset;
49 	unsigned shift;
50 	struct pte_search r;
51 
52 	assert(lowest_level >= 1 && lowest_level <= PAGE_LEVEL);
53 
54 	for (r.level = PAGE_LEVEL;; --r.level) {
55 		shift = (r.level - 1) * PGDIR_WIDTH + 12;
56 		offset = ((uintptr_t)virt >> shift) & PGDIR_MASK;
57 		r.pte = &pt[offset];
58 		pte = *r.pte;
59 
60 		if (!(pte & PT_PRESENT_MASK))
61 			return r;
62 
63 		if ((r.level == 2 || r.level == 3) && (pte & PT_PAGE_SIZE_MASK))
64 			return r;
65 
66 		if (r.level == lowest_level)
67 			return r;
68 
69 		pt = phys_to_virt(pte & PT_ADDR_MASK);
70 	}
71 }
72 
73 /*
74  * Returns the leaf PTE in the mapping of @virt (i.e., 4K PTE or a present huge
75  * PTE). Returns NULL if no leaf PTE exists.
76  */
77 pteval_t *get_pte(pgd_t *cr3, void *virt)
78 {
79 	struct pte_search search;
80 
81 	search = find_pte_level(cr3, virt, 1);
82 	return found_leaf_pte(search) ? search.pte : NULL;
83 }
84 
85 /*
86  * Returns the PTE in the mapping of @virt at the given level @pte_level.
87  * Returns NULL if the PT at @pte_level isn't present (i.e., the mapping at
88  * @pte_level - 1 isn't present).
89  */
90 pteval_t *get_pte_level(pgd_t *cr3, void *virt, int pte_level)
91 {
92 	struct pte_search search;
93 
94 	search = find_pte_level(cr3, virt, pte_level);
95 	return search.level == pte_level ? search.pte : NULL;
96 }
97 
98 pteval_t *install_large_page(pgd_t *cr3, phys_addr_t phys, void *virt)
99 {
100     phys_addr_t flags = PT_PRESENT_MASK | PT_WRITABLE_MASK | pte_opt_mask | PT_PAGE_SIZE_MASK;
101 #ifdef CONFIG_EFI
102     flags |= get_amd_sev_c_bit_mask();
103 #endif /* CONFIG_EFI */
104     return install_pte(cr3, 2, virt, phys | flags, 0);
105 }
106 
107 pteval_t *install_page(pgd_t *cr3, phys_addr_t phys, void *virt)
108 {
109     phys_addr_t flags = PT_PRESENT_MASK | PT_WRITABLE_MASK | pte_opt_mask;
110 #ifdef CONFIG_EFI
111     flags |= get_amd_sev_c_bit_mask();
112 #endif /* CONFIG_EFI */
113     return install_pte(cr3, 1, virt, phys | flags, 0);
114 }
115 
116 void install_pages(pgd_t *cr3, phys_addr_t phys, size_t len, void *virt)
117 {
118 	phys_addr_t max = (u64)len + (u64)phys;
119 	assert(phys % PAGE_SIZE == 0);
120 	assert((uintptr_t) virt % PAGE_SIZE == 0);
121 	assert(len % PAGE_SIZE == 0);
122 
123 	while (phys + PAGE_SIZE <= max) {
124 		install_page(cr3, phys, virt);
125 		phys += PAGE_SIZE;
126 		virt = (char *) virt + PAGE_SIZE;
127 	}
128 }
129 
130 bool any_present_pages(pgd_t *cr3, void *virt, size_t len)
131 {
132 	uintptr_t max = (uintptr_t) virt + len;
133 	uintptr_t curr;
134 
135 	for (curr = (uintptr_t) virt; curr < max; curr += PAGE_SIZE) {
136 		pteval_t *ptep = get_pte(cr3, (void *) curr);
137 		if (ptep && (*ptep & PT_PRESENT_MASK))
138 			return true;
139 	}
140 	return false;
141 }
142 
143 static void setup_mmu_range(pgd_t *cr3, phys_addr_t start, size_t len)
144 {
145 	u64 max = (u64)len + (u64)start;
146 	u64 phys = start;
147 
148 	while (phys + LARGE_PAGE_SIZE <= max) {
149 		install_large_page(cr3, phys, (void *)(ulong)phys);
150 		phys += LARGE_PAGE_SIZE;
151 	}
152 	install_pages(cr3, phys, max - phys, (void *)(ulong)phys);
153 }
154 
155 static void set_additional_vcpu_vmregs(struct vm_vcpu_info *info)
156 {
157 	write_cr3(info->cr3);
158 	write_cr4(info->cr4);
159 	write_cr0(info->cr0);
160 }
161 
162 void *setup_mmu(phys_addr_t end_of_memory, void *opt_mask)
163 {
164     pgd_t *cr3 = alloc_page();
165     struct vm_vcpu_info info;
166     int i;
167 
168     if (opt_mask)
169 	pte_opt_mask = *(pteval_t *)opt_mask;
170     else
171 	pte_opt_mask = PT_USER_MASK;
172 
173     memset(cr3, 0, PAGE_SIZE);
174 
175 #ifdef __x86_64__
176     if (end_of_memory < (1ul << 32))
177         end_of_memory = (1ul << 32);  /* map mmio 1:1 */
178 
179     setup_mmu_range(cr3, 0, end_of_memory);
180 #else
181     setup_mmu_range(cr3, 0, (2ul << 30));
182     setup_mmu_range(cr3, 3ul << 30, (1ul << 30));
183     init_alloc_vpage((void*)(3ul << 30));
184 #endif
185 
186     write_cr3(virt_to_phys(cr3));
187 #ifndef __x86_64__
188     write_cr4(X86_CR4_PSE);
189 #endif
190     write_cr0(X86_CR0_PG |X86_CR0_PE | X86_CR0_WP);
191 
192     printf("paging enabled\n");
193     printf("cr0 = %lx\n", read_cr0());
194     printf("cr3 = %lx\n", read_cr3());
195     printf("cr4 = %lx\n", read_cr4());
196 
197     info.cr3 = read_cr3();
198     info.cr4 = read_cr4();
199     info.cr0 = read_cr0();
200 
201     for (i = 1; i < cpu_count(); i++)
202         on_cpu(i, (void *)set_additional_vcpu_vmregs, &info);
203 
204     return cr3;
205 }
206 
207 phys_addr_t virt_to_pte_phys(pgd_t *cr3, void *mem)
208 {
209     return (*get_pte(cr3, mem) & PT_ADDR_MASK) + ((ulong)mem & (PAGE_SIZE - 1));
210 }
211 
212 /*
213  * split_large_page: Split a 2M/1G large page into 512 smaller PTEs.
214  *   @ptep : large page table entry to split
215  *   @level : level of ptep (2 or 3)
216  */
217 void split_large_page(unsigned long *ptep, int level)
218 {
219 	unsigned long *new_pt;
220 	unsigned long pa;
221 	unsigned long pte;
222 	unsigned long prototype;
223 	int i;
224 
225 	pte = *ptep;
226 	assert(pte & PT_PRESENT_MASK);
227 	assert(pte & PT_PAGE_SIZE_MASK);
228 	assert(level == 2 || level == 3);
229 
230 	new_pt = alloc_page();
231 	assert(new_pt);
232 
233 	prototype = pte & ~PT_ADDR_MASK;
234 	if (level == 2)
235 		prototype &= ~PT_PAGE_SIZE_MASK;
236 
237 	pa = pte & PT_ADDR_MASK;
238 	for (i = 0; i < (1 << PGDIR_WIDTH); i++) {
239 		new_pt[i] = prototype | pa;
240 		pa += 1ul << PGDIR_BITS(level - 1);
241 	}
242 
243 	pte &= ~PT_PAGE_SIZE_MASK;
244 	pte &= ~PT_ADDR_MASK;
245 	pte |= virt_to_phys(new_pt);
246 
247 	/* Modify the relevant paging-structure entry */
248 	*ptep = pte;
249 
250 	/*
251 	 * Flush the TLB to eradicate stale mappings.
252 	 *
253 	 * Note: Removing specific TLB mappings is tricky because
254 	 * split_large_page() can be called to split the active code page
255 	 * backing the next set of instructions to be fetched and executed.
256 	 * Furthermore, Intel SDM volume 3 recommends to clear the present bit
257 	 * for the page being split, before invalidating any mappings.
258 	 *
259 	 * But clearing the mapping from the page table and removing it from the
260 	 * TLB (where it's not actually guaranteed to reside anyway) makes it
261 	 * impossible to continue fetching instructions!
262 	 */
263 	flush_tlb();
264 }
265 
266 /*
267  * force_4k_page: Ensures that addr translate to a 4k page.
268  *
269  * This function uses split_large_page(), as needed, to ensure that target
270  * address, addr, translates to a 4k page.
271  *
272  *   @addr: target address that should be mapped to a 4k page
273  */
274 void force_4k_page(void *addr)
275 {
276 	unsigned long *ptep;
277 	unsigned long pte;
278 	unsigned long *cr3 = current_page_table();
279 
280 	ptep = get_pte_level(cr3, addr, 3);
281 	assert(ptep);
282 	pte = *ptep;
283 	assert(pte & PT_PRESENT_MASK);
284 	if (pte & PT_PAGE_SIZE_MASK)
285 		split_large_page(ptep, 3);
286 
287 	ptep = get_pte_level(cr3, addr, 2);
288 	assert(ptep);
289 	pte = *ptep;
290 	assert(pte & PT_PRESENT_MASK);
291 	if (pte & PT_PAGE_SIZE_MASK)
292 		split_large_page(ptep, 2);
293 }
294 
295 /*
296  * Call the callback on each page from virt to virt + len.
297  */
298 void walk_pte(void *virt, size_t len, pte_callback_t callback)
299 {
300     pgd_t *cr3 = current_page_table();
301     uintptr_t start = (uintptr_t)virt;
302     uintptr_t end = (uintptr_t)virt + len;
303     struct pte_search search;
304     size_t page_size;
305     uintptr_t curr;
306 
307     for (curr = start; curr < end; curr = ALIGN_DOWN(curr + page_size, page_size)) {
308         search = find_pte_level(cr3, (void *)curr, 1);
309         assert(found_leaf_pte(search));
310         page_size = 1ul << PGDIR_BITS(search.level);
311 
312         callback(search, (void *)curr);
313     }
314 }
315