xref: /kvm-unit-tests/lib/x86/processor.h (revision dfc1fec2fbde04ad607e1aed560cf7059350c70f)
1 #ifndef _X86_PROCESSOR_H_
2 #define _X86_PROCESSOR_H_
3 
4 #include "libcflat.h"
5 #include "desc.h"
6 #include "msr.h"
7 #include <bitops.h>
8 #include <stdint.h>
9 
10 #define NONCANONICAL	0xaaaaaaaaaaaaaaaaull
11 
12 #ifdef __x86_64__
13 #  define R "r"
14 #  define W "q"
15 #  define S "8"
16 #else
17 #  define R "e"
18 #  define W "l"
19 #  define S "4"
20 #endif
21 
22 #define DE_VECTOR 0
23 #define DB_VECTOR 1
24 #define NMI_VECTOR 2
25 #define BP_VECTOR 3
26 #define OF_VECTOR 4
27 #define BR_VECTOR 5
28 #define UD_VECTOR 6
29 #define NM_VECTOR 7
30 #define DF_VECTOR 8
31 #define TS_VECTOR 10
32 #define NP_VECTOR 11
33 #define SS_VECTOR 12
34 #define GP_VECTOR 13
35 #define PF_VECTOR 14
36 #define MF_VECTOR 16
37 #define AC_VECTOR 17
38 #define MC_VECTOR 18
39 #define XM_VECTOR 19
40 #define XF_VECTOR XM_VECTOR /* AMD */
41 #define VE_VECTOR 20 /* Intel only */
42 #define CP_VECTOR 21
43 #define HV_VECTOR 28 /* AMD only */
44 #define VC_VECTOR 29 /* AMD only */
45 #define SX_VECTOR 30 /* AMD only */
46 
47 #define X86_CR0_PE_BIT		(0)
48 #define X86_CR0_PE		BIT(X86_CR0_PE_BIT)
49 #define X86_CR0_MP_BIT		(1)
50 #define X86_CR0_MP		BIT(X86_CR0_MP_BIT)
51 #define X86_CR0_EM_BIT		(2)
52 #define X86_CR0_EM		BIT(X86_CR0_EM_BIT)
53 #define X86_CR0_TS_BIT		(3)
54 #define X86_CR0_TS		BIT(X86_CR0_TS_BIT)
55 #define X86_CR0_ET_BIT		(4)
56 #define X86_CR0_ET		BIT(X86_CR0_ET_BIT)
57 #define X86_CR0_NE_BIT		(5)
58 #define X86_CR0_NE		BIT(X86_CR0_NE_BIT)
59 #define X86_CR0_WP_BIT		(16)
60 #define X86_CR0_WP		BIT(X86_CR0_WP_BIT)
61 #define X86_CR0_AM_BIT		(18)
62 #define X86_CR0_AM		BIT(X86_CR0_AM_BIT)
63 #define X86_CR0_NW_BIT		(29)
64 #define X86_CR0_NW		BIT(X86_CR0_NW_BIT)
65 #define X86_CR0_CD_BIT		(30)
66 #define X86_CR0_CD		BIT(X86_CR0_CD_BIT)
67 #define X86_CR0_PG_BIT		(31)
68 #define X86_CR0_PG		BIT(X86_CR0_PG_BIT)
69 
70 #define X86_CR3_PCID_MASK	GENMASK(11, 0)
71 
72 #define X86_CR4_VME_BIT		(0)
73 #define X86_CR4_VME		BIT(X86_CR4_VME_BIT)
74 #define X86_CR4_PVI_BIT		(1)
75 #define X86_CR4_PVI		BIT(X86_CR4_PVI_BIT)
76 #define X86_CR4_TSD_BIT		(2)
77 #define X86_CR4_TSD		BIT(X86_CR4_TSD_BIT)
78 #define X86_CR4_DE_BIT		(3)
79 #define X86_CR4_DE		BIT(X86_CR4_DE_BIT)
80 #define X86_CR4_PSE_BIT		(4)
81 #define X86_CR4_PSE		BIT(X86_CR4_PSE_BIT)
82 #define X86_CR4_PAE_BIT		(5)
83 #define X86_CR4_PAE		BIT(X86_CR4_PAE_BIT)
84 #define X86_CR4_MCE_BIT		(6)
85 #define X86_CR4_MCE		BIT(X86_CR4_MCE_BIT)
86 #define X86_CR4_PGE_BIT		(7)
87 #define X86_CR4_PGE		BIT(X86_CR4_PGE_BIT)
88 #define X86_CR4_PCE_BIT		(8)
89 #define X86_CR4_PCE		BIT(X86_CR4_PCE_BIT)
90 #define X86_CR4_OSFXSR_BIT	(9)
91 #define X86_CR4_OSFXSR		BIT(X86_CR4_OSFXSR_BIT)
92 #define X86_CR4_OSXMMEXCPT_BIT	(10)
93 #define X86_CR4_OSXMMEXCPT	BIT(X86_CR4_OSXMMEXCPT_BIT)
94 #define X86_CR4_UMIP_BIT	(11)
95 #define X86_CR4_UMIP		BIT(X86_CR4_UMIP_BIT)
96 #define X86_CR4_LA57_BIT	(12)
97 #define X86_CR4_LA57		BIT(X86_CR4_LA57_BIT)
98 #define X86_CR4_VMXE_BIT	(13)
99 #define X86_CR4_VMXE		BIT(X86_CR4_VMXE_BIT)
100 #define X86_CR4_SMXE_BIT	(14)
101 #define X86_CR4_SMXE		BIT(X86_CR4_SMXE_BIT)
102 /* UNUSED			(15) */
103 #define X86_CR4_FSGSBASE_BIT	(16)
104 #define X86_CR4_FSGSBASE	BIT(X86_CR4_FSGSBASE_BIT)
105 #define X86_CR4_PCIDE_BIT	(17)
106 #define X86_CR4_PCIDE		BIT(X86_CR4_PCIDE_BIT)
107 #define X86_CR4_OSXSAVE_BIT	(18)
108 #define X86_CR4_OSXSAVE		BIT(X86_CR4_OSXSAVE_BIT)
109 #define X86_CR4_KL_BIT		(19)
110 #define X86_CR4_KL		BIT(X86_CR4_KL_BIT)
111 #define X86_CR4_SMEP_BIT	(20)
112 #define X86_CR4_SMEP		BIT(X86_CR4_SMEP_BIT)
113 #define X86_CR4_SMAP_BIT	(21)
114 #define X86_CR4_SMAP		BIT(X86_CR4_SMAP_BIT)
115 #define X86_CR4_PKE_BIT		(22)
116 #define X86_CR4_PKE		BIT(X86_CR4_PKE_BIT)
117 #define X86_CR4_CET_BIT		(23)
118 #define X86_CR4_CET		BIT(X86_CR4_CET_BIT)
119 #define X86_CR4_PKS_BIT		(24)
120 #define X86_CR4_PKS		BIT(X86_CR4_PKS_BIT)
121 
122 #define X86_EFLAGS_CF_BIT	(0)
123 #define X86_EFLAGS_CF		BIT(X86_EFLAGS_CF_BIT)
124 #define X86_EFLAGS_FIXED_BIT	(1)
125 #define X86_EFLAGS_FIXED	BIT(X86_EFLAGS_FIXED_BIT)
126 #define X86_EFLAGS_PF_BIT	(2)
127 #define X86_EFLAGS_PF		BIT(X86_EFLAGS_PF_BIT)
128 /* RESERVED 0			(3) */
129 #define X86_EFLAGS_AF_BIT	(4)
130 #define X86_EFLAGS_AF		BIT(X86_EFLAGS_AF_BIT)
131 /* RESERVED 0			(5) */
132 #define X86_EFLAGS_ZF_BIT	(6)
133 #define X86_EFLAGS_ZF		BIT(X86_EFLAGS_ZF_BIT)
134 #define X86_EFLAGS_SF_BIT	(7)
135 #define X86_EFLAGS_SF		BIT(X86_EFLAGS_SF_BIT)
136 #define X86_EFLAGS_TF_BIT	(8)
137 #define X86_EFLAGS_TF		BIT(X86_EFLAGS_TF_BIT)
138 #define X86_EFLAGS_IF_BIT	(9)
139 #define X86_EFLAGS_IF		BIT(X86_EFLAGS_IF_BIT)
140 #define X86_EFLAGS_DF_BIT	(10)
141 #define X86_EFLAGS_DF		BIT(X86_EFLAGS_DF_BIT)
142 #define X86_EFLAGS_OF_BIT	(11)
143 #define X86_EFLAGS_OF		BIT(X86_EFLAGS_OF_BIT)
144 #define X86_EFLAGS_IOPL		GENMASK(13, 12)
145 #define X86_EFLAGS_NT_BIT	(14)
146 #define X86_EFLAGS_NT		BIT(X86_EFLAGS_NT_BIT)
147 /* RESERVED 0			(15) */
148 #define X86_EFLAGS_RF_BIT	(16)
149 #define X86_EFLAGS_RF		BIT(X86_EFLAGS_RF_BIT)
150 #define X86_EFLAGS_VM_BIT	(17)
151 #define X86_EFLAGS_VM		BIT(X86_EFLAGS_VM_BIT)
152 #define X86_EFLAGS_AC_BIT	(18)
153 #define X86_EFLAGS_AC		BIT(X86_EFLAGS_AC_BIT)
154 #define X86_EFLAGS_VIF_BIT	(19)
155 #define X86_EFLAGS_VIF		BIT(X86_EFLAGS_VIF_BIT)
156 #define X86_EFLAGS_VIP_BIT	(20)
157 #define X86_EFLAGS_VIP		BIT(X86_EFLAGS_VIP_BIT)
158 #define X86_EFLAGS_ID_BIT	(21)
159 #define X86_EFLAGS_ID		BIT(X86_EFLAGS_ID_BIT)
160 
161 #define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \
162 			X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)
163 
164 
165 /*
166  * CPU features
167  */
168 
169 enum cpuid_output_regs {
170 	EAX,
171 	EBX,
172 	ECX,
173 	EDX
174 };
175 
176 struct cpuid { u32 a, b, c, d; };
177 
178 static inline struct cpuid raw_cpuid(u32 function, u32 index)
179 {
180 	struct cpuid r;
181 	asm volatile ("cpuid"
182 		      : "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d)
183 		      : "0"(function), "2"(index));
184 	return r;
185 }
186 
187 static inline struct cpuid cpuid_indexed(u32 function, u32 index)
188 {
189 	u32 level = raw_cpuid(function & 0xf0000000, 0).a;
190 	if (level < function)
191 	return (struct cpuid) { 0, 0, 0, 0 };
192 	return raw_cpuid(function, index);
193 }
194 
195 static inline struct cpuid cpuid(u32 function)
196 {
197 	return cpuid_indexed(function, 0);
198 }
199 
200 static inline u8 cpuid_maxphyaddr(void)
201 {
202 	if (raw_cpuid(0x80000000, 0).a < 0x80000008)
203 	return 36;
204 	return raw_cpuid(0x80000008, 0).a & 0xff;
205 }
206 
207 static inline bool is_intel(void)
208 {
209 	struct cpuid c = cpuid(0);
210 	u32 name[4] = {c.b, c.d, c.c };
211 
212 	return strcmp((char *)name, "GenuineIntel") == 0;
213 }
214 
215 #define	CPUID(a, b, c, d) ((((unsigned long long) a) << 32) | (b << 16) | \
216 			  (c << 8) | d)
217 
218 /*
219  * Each X86_FEATURE_XXX definition is 64-bit and contains the following
220  * CPUID meta-data:
221  *
222  * 	[63:32] :  input value for EAX
223  * 	[31:16] :  input value for ECX
224  * 	[15:8]  :  output register
225  * 	[7:0]   :  bit position in output register
226  */
227 
228 /*
229  * Basic Leafs, a.k.a. Intel defined
230  */
231 #define	X86_FEATURE_MWAIT		(CPUID(0x1, 0, ECX, 3))
232 #define	X86_FEATURE_VMX			(CPUID(0x1, 0, ECX, 5))
233 #define	X86_FEATURE_PDCM		(CPUID(0x1, 0, ECX, 15))
234 #define	X86_FEATURE_PCID		(CPUID(0x1, 0, ECX, 17))
235 #define X86_FEATURE_X2APIC		(CPUID(0x1, 0, ECX, 21))
236 #define	X86_FEATURE_MOVBE		(CPUID(0x1, 0, ECX, 22))
237 #define	X86_FEATURE_TSC_DEADLINE_TIMER	(CPUID(0x1, 0, ECX, 24))
238 #define	X86_FEATURE_XSAVE		(CPUID(0x1, 0, ECX, 26))
239 #define	X86_FEATURE_OSXSAVE		(CPUID(0x1, 0, ECX, 27))
240 #define	X86_FEATURE_RDRAND		(CPUID(0x1, 0, ECX, 30))
241 #define	X86_FEATURE_MCE			(CPUID(0x1, 0, EDX, 7))
242 #define	X86_FEATURE_APIC		(CPUID(0x1, 0, EDX, 9))
243 #define	X86_FEATURE_CLFLUSH		(CPUID(0x1, 0, EDX, 19))
244 #define	X86_FEATURE_XMM			(CPUID(0x1, 0, EDX, 25))
245 #define	X86_FEATURE_XMM2		(CPUID(0x1, 0, EDX, 26))
246 #define	X86_FEATURE_TSC_ADJUST		(CPUID(0x7, 0, EBX, 1))
247 #define	X86_FEATURE_HLE			(CPUID(0x7, 0, EBX, 4))
248 #define	X86_FEATURE_SMEP		(CPUID(0x7, 0, EBX, 7))
249 #define	X86_FEATURE_INVPCID		(CPUID(0x7, 0, EBX, 10))
250 #define	X86_FEATURE_RTM			(CPUID(0x7, 0, EBX, 11))
251 #define	X86_FEATURE_SMAP		(CPUID(0x7, 0, EBX, 20))
252 #define	X86_FEATURE_PCOMMIT		(CPUID(0x7, 0, EBX, 22))
253 #define	X86_FEATURE_CLFLUSHOPT		(CPUID(0x7, 0, EBX, 23))
254 #define	X86_FEATURE_CLWB		(CPUID(0x7, 0, EBX, 24))
255 #define	X86_FEATURE_UMIP		(CPUID(0x7, 0, ECX, 2))
256 #define	X86_FEATURE_PKU			(CPUID(0x7, 0, ECX, 3))
257 #define	X86_FEATURE_LA57		(CPUID(0x7, 0, ECX, 16))
258 #define	X86_FEATURE_RDPID		(CPUID(0x7, 0, ECX, 22))
259 #define	X86_FEATURE_SHSTK		(CPUID(0x7, 0, ECX, 7))
260 #define	X86_FEATURE_IBT			(CPUID(0x7, 0, EDX, 20))
261 #define	X86_FEATURE_SPEC_CTRL		(CPUID(0x7, 0, EDX, 26))
262 #define	X86_FEATURE_FLUSH_L1D		(CPUID(0x7, 0, EDX, 28))
263 #define	X86_FEATURE_ARCH_CAPABILITIES	(CPUID(0x7, 0, EDX, 29))
264 #define	X86_FEATURE_PKS			(CPUID(0x7, 0, ECX, 31))
265 
266 /*
267  * Extended Leafs, a.k.a. AMD defined
268  */
269 #define	X86_FEATURE_SVM			(CPUID(0x80000001, 0, ECX, 2))
270 #define	X86_FEATURE_PERFCTR_CORE	(CPUID(0x80000001, 0, ECX, 23))
271 #define	X86_FEATURE_NX			(CPUID(0x80000001, 0, EDX, 20))
272 #define	X86_FEATURE_GBPAGES		(CPUID(0x80000001, 0, EDX, 26))
273 #define	X86_FEATURE_RDTSCP		(CPUID(0x80000001, 0, EDX, 27))
274 #define	X86_FEATURE_LM			(CPUID(0x80000001, 0, EDX, 29))
275 #define	X86_FEATURE_RDPRU		(CPUID(0x80000008, 0, EBX, 4))
276 #define	X86_FEATURE_AMD_IBPB		(CPUID(0x80000008, 0, EBX, 12))
277 #define	X86_FEATURE_NPT			(CPUID(0x8000000A, 0, EDX, 0))
278 #define	X86_FEATURE_LBRV		(CPUID(0x8000000A, 0, EDX, 1))
279 #define	X86_FEATURE_NRIPS		(CPUID(0x8000000A, 0, EDX, 3))
280 #define X86_FEATURE_TSCRATEMSR		(CPUID(0x8000000A, 0, EDX, 4))
281 #define X86_FEATURE_PAUSEFILTER		(CPUID(0x8000000A, 0, EDX, 10))
282 #define X86_FEATURE_PFTHRESHOLD		(CPUID(0x8000000A, 0, EDX, 12))
283 #define	X86_FEATURE_VGIF		(CPUID(0x8000000A, 0, EDX, 16))
284 #define X86_FEATURE_VNMI		(CPUID(0x8000000A, 0, EDX, 25))
285 #define	X86_FEATURE_AMD_PMU_V2		(CPUID(0x80000022, 0, EAX, 0))
286 
287 static inline bool this_cpu_has(u64 feature)
288 {
289 	u32 input_eax = feature >> 32;
290 	u32 input_ecx = (feature >> 16) & 0xffff;
291 	u32 output_reg = (feature >> 8) & 0xff;
292 	u8 bit = feature & 0xff;
293 	struct cpuid c;
294 	u32 *tmp;
295 
296 	c = cpuid_indexed(input_eax, input_ecx);
297 	tmp = (u32 *)&c;
298 
299 	return ((*(tmp + (output_reg % 32))) & (1 << bit));
300 }
301 
302 struct far_pointer32 {
303 	u32 offset;
304 	u16 selector;
305 } __attribute__((packed));
306 
307 struct descriptor_table_ptr {
308 	u16 limit;
309 	ulong base;
310 } __attribute__((packed));
311 
312 static inline void clac(void)
313 {
314 	asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory");
315 }
316 
317 static inline void stac(void)
318 {
319 	asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory");
320 }
321 
322 static inline u16 read_cs(void)
323 {
324 	unsigned val;
325 
326 	asm volatile ("mov %%cs, %0" : "=mr"(val));
327 	return val;
328 }
329 
330 static inline u16 read_ds(void)
331 {
332 	unsigned val;
333 
334 	asm volatile ("mov %%ds, %0" : "=mr"(val));
335 	return val;
336 }
337 
338 static inline u16 read_es(void)
339 {
340 	unsigned val;
341 
342 	asm volatile ("mov %%es, %0" : "=mr"(val));
343 	return val;
344 }
345 
346 static inline u16 read_ss(void)
347 {
348 	unsigned val;
349 
350 	asm volatile ("mov %%ss, %0" : "=mr"(val));
351 	return val;
352 }
353 
354 static inline u16 read_fs(void)
355 {
356 	unsigned val;
357 
358 	asm volatile ("mov %%fs, %0" : "=mr"(val));
359 	return val;
360 }
361 
362 static inline u16 read_gs(void)
363 {
364 	unsigned val;
365 
366 	asm volatile ("mov %%gs, %0" : "=mr"(val));
367 	return val;
368 }
369 
370 static inline unsigned long read_rflags(void)
371 {
372 	unsigned long f;
373 	asm volatile ("pushf; pop %0\n\t" : "=rm"(f));
374 	return f;
375 }
376 
377 static inline void write_ds(unsigned val)
378 {
379 	asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory");
380 }
381 
382 static inline void write_es(unsigned val)
383 {
384 	asm volatile ("mov %0, %%es" : : "rm"(val) : "memory");
385 }
386 
387 static inline void write_ss(unsigned val)
388 {
389 	asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory");
390 }
391 
392 static inline void write_fs(unsigned val)
393 {
394 	asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory");
395 }
396 
397 static inline void write_gs(unsigned val)
398 {
399 	asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory");
400 }
401 
402 static inline void write_rflags(unsigned long f)
403 {
404 	asm volatile ("push %0; popf\n\t" : : "rm"(f));
405 }
406 
407 static inline void set_iopl(int iopl)
408 {
409 	unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL;
410 	flags |= iopl * (X86_EFLAGS_IOPL / 3);
411 	write_rflags(flags);
412 }
413 
414 /*
415  * Don't use the safe variants for rdmsr() or wrmsr().  The exception fixup
416  * infrastructure uses per-CPU data and thus consumes GS.base.  Various tests
417  * temporarily modify MSR_GS_BASE and will explode when trying to determine
418  * whether or not RDMSR/WRMSR faulted.
419  */
420 static inline u64 rdmsr(u32 index)
421 {
422 	u32 a, d;
423 	asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory");
424 	return a | ((u64)d << 32);
425 }
426 
427 static inline void wrmsr(u32 index, u64 val)
428 {
429 	u32 a = val, d = val >> 32;
430 	asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory");
431 }
432 
433 #define rdreg64_safe(insn, index, val)					\
434 ({									\
435 	uint32_t a, d;							\
436 	int vector;							\
437 									\
438 	vector = asm_safe_out2(insn, "=a"(a), "=d"(d), "c"(index));	\
439 									\
440 	if (vector)							\
441 		*(val) = 0;						\
442 	else								\
443 		*(val) = (uint64_t)a | ((uint64_t)d << 32);		\
444 	vector;								\
445 })
446 
447 #define wrreg64_safe(insn, index, val)					\
448 ({									\
449 	uint32_t eax = (val), edx = (val) >> 32;			\
450 									\
451 	asm_safe(insn, "a" (eax), "d" (edx), "c" (index));		\
452 })
453 
454 
455 static inline int rdmsr_safe(u32 index, uint64_t *val)
456 {
457 	return rdreg64_safe("rdmsr", index, val);
458 }
459 
460 static inline int wrmsr_safe(u32 index, u64 val)
461 {
462 	return wrreg64_safe("wrmsr", index, val);
463 }
464 
465 static inline int rdpmc_safe(u32 index, uint64_t *val)
466 {
467 	return rdreg64_safe("rdpmc", index, val);
468 }
469 
470 static inline uint64_t rdpmc(uint32_t index)
471 {
472 	uint64_t val;
473 	int vector = rdpmc_safe(index, &val);
474 
475 	assert_msg(!vector, "Unexpected %s on RDPMC(%" PRId32 ")",
476 		   exception_mnemonic(vector), index);
477 	return val;
478 }
479 
480 static inline int xgetbv_safe(u32 index, u64 *result)
481 {
482 	return rdreg64_safe(".byte 0x0f,0x01,0xd0", index, result);
483 }
484 
485 static inline int xsetbv_safe(u32 index, u64 value)
486 {
487 	return wrreg64_safe(".byte 0x0f,0x01,0xd1", index, value);
488 }
489 
490 static inline int write_cr0_safe(ulong val)
491 {
492 	return asm_safe("mov %0,%%cr0", "r" (val));
493 }
494 
495 static inline void write_cr0(ulong val)
496 {
497 	int vector = write_cr0_safe(val);
498 
499 	assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx",
500 		   vector, val);
501 }
502 
503 static inline ulong read_cr0(void)
504 {
505 	ulong val;
506 	asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory");
507 	return val;
508 }
509 
510 static inline void write_cr2(ulong val)
511 {
512 	asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory");
513 }
514 
515 static inline ulong read_cr2(void)
516 {
517 	ulong val;
518 	asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory");
519 	return val;
520 }
521 
522 static inline int write_cr3_safe(ulong val)
523 {
524 	return asm_safe("mov %0,%%cr3", "r" (val));
525 }
526 
527 static inline void write_cr3(ulong val)
528 {
529 	int vector = write_cr3_safe(val);
530 
531 	assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx",
532 		   vector, val);
533 }
534 
535 static inline ulong read_cr3(void)
536 {
537 	ulong val;
538 	asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory");
539 	return val;
540 }
541 
542 static inline void update_cr3(void *cr3)
543 {
544 	write_cr3((ulong)cr3);
545 }
546 
547 static inline int write_cr4_safe(ulong val)
548 {
549 	return asm_safe("mov %0,%%cr4", "r" (val));
550 }
551 
552 static inline void write_cr4(ulong val)
553 {
554 	int vector = write_cr4_safe(val);
555 
556 	assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx",
557 		   vector, val);
558 }
559 
560 static inline ulong read_cr4(void)
561 {
562 	ulong val;
563 	asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory");
564 	return val;
565 }
566 
567 static inline void write_cr8(ulong val)
568 {
569 	asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory");
570 }
571 
572 static inline ulong read_cr8(void)
573 {
574 	ulong val;
575 	asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory");
576 	return val;
577 }
578 
579 static inline void lgdt(const struct descriptor_table_ptr *ptr)
580 {
581 	asm volatile ("lgdt %0" : : "m"(*ptr));
582 }
583 
584 static inline void sgdt(struct descriptor_table_ptr *ptr)
585 {
586 	asm volatile ("sgdt %0" : "=m"(*ptr));
587 }
588 
589 static inline void lidt(const struct descriptor_table_ptr *ptr)
590 {
591 	asm volatile ("lidt %0" : : "m"(*ptr));
592 }
593 
594 static inline void sidt(struct descriptor_table_ptr *ptr)
595 {
596 	asm volatile ("sidt %0" : "=m"(*ptr));
597 }
598 
599 static inline void lldt(u16 val)
600 {
601 	asm volatile ("lldt %0" : : "rm"(val));
602 }
603 
604 static inline u16 sldt(void)
605 {
606 	u16 val;
607 	asm volatile ("sldt %0" : "=rm"(val));
608 	return val;
609 }
610 
611 static inline void ltr(u16 val)
612 {
613 	asm volatile ("ltr %0" : : "rm"(val));
614 }
615 
616 static inline u16 str(void)
617 {
618 	u16 val;
619 	asm volatile ("str %0" : "=rm"(val));
620 	return val;
621 }
622 
623 static inline void write_dr0(void *val)
624 {
625 	asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory");
626 }
627 
628 static inline void write_dr1(void *val)
629 {
630 	asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory");
631 }
632 
633 static inline void write_dr2(void *val)
634 {
635 	asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory");
636 }
637 
638 static inline void write_dr3(void *val)
639 {
640 	asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory");
641 }
642 
643 static inline void write_dr6(ulong val)
644 {
645 	asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory");
646 }
647 
648 static inline ulong read_dr6(void)
649 {
650 	ulong val;
651 	asm volatile ("mov %%dr6, %0" : "=r"(val));
652 	return val;
653 }
654 
655 static inline void write_dr7(ulong val)
656 {
657 	asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory");
658 }
659 
660 static inline ulong read_dr7(void)
661 {
662 	ulong val;
663 	asm volatile ("mov %%dr7, %0" : "=r"(val));
664 	return val;
665 }
666 
667 static inline void pause(void)
668 {
669 	asm volatile ("pause");
670 }
671 
672 static inline void cli(void)
673 {
674 	asm volatile ("cli");
675 }
676 
677 /*
678  * See also safe_halt().
679  */
680 static inline void sti(void)
681 {
682 	asm volatile ("sti");
683 }
684 
685 /*
686  * Enable interrupts and ensure that interrupts are evaluated upon return from
687  * this function, i.e. execute a nop to consume the STi interrupt shadow.
688  */
689 static inline void sti_nop(void)
690 {
691 	asm volatile ("sti; nop");
692 }
693 
694 /*
695  * Enable interrupts for one instruction (nop), to allow the CPU to process all
696  * interrupts that are already pending.
697  */
698 static inline void sti_nop_cli(void)
699 {
700 	asm volatile ("sti; nop; cli");
701 }
702 
703 static inline unsigned long long rdrand(void)
704 {
705 	long long r;
706 
707 	asm volatile("rdrand %0\n\t"
708 		     "jc 1f\n\t"
709 		     "mov $0, %0\n\t"
710 		     "1:\n\t" : "=r" (r));
711 	return r;
712 }
713 
714 static inline unsigned long long rdtsc(void)
715 {
716 	long long r;
717 
718 #ifdef __x86_64__
719 	unsigned a, d;
720 
721 	asm volatile ("rdtsc" : "=a"(a), "=d"(d));
722 	r = a | ((long long)d << 32);
723 #else
724 	asm volatile ("rdtsc" : "=A"(r));
725 #endif
726 	return r;
727 }
728 
729 /*
730  * Per the advice in the SDM, volume 2, the sequence "mfence; lfence"
731  * executed immediately before rdtsc ensures that rdtsc will be
732  * executed only after all previous instructions have executed and all
733  * previous loads and stores are globally visible. In addition, the
734  * lfence immediately after rdtsc ensures that rdtsc will be executed
735  * prior to the execution of any subsequent instruction.
736  */
737 static inline unsigned long long fenced_rdtsc(void)
738 {
739 	unsigned long long tsc;
740 
741 #ifdef __x86_64__
742 	unsigned int eax, edx;
743 
744 	asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
745 	tsc = eax | ((unsigned long long)edx << 32);
746 #else
747 	asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc));
748 #endif
749 	return tsc;
750 }
751 
752 static inline unsigned long long rdtscp(u32 *aux)
753 {
754 	long long r;
755 
756 #ifdef __x86_64__
757 	unsigned a, d;
758 
759 	asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux));
760 	r = a | ((long long)d << 32);
761 #else
762 	asm volatile ("rdtscp" : "=A"(r), "=c"(*aux));
763 #endif
764 	return r;
765 }
766 
767 static inline void wrtsc(u64 tsc)
768 {
769 	wrmsr(MSR_IA32_TSC, tsc);
770 }
771 
772 
773 static inline void invlpg(volatile void *va)
774 {
775 	asm volatile("invlpg (%0)" ::"r" (va) : "memory");
776 }
777 
778 
779 static inline int invpcid_safe(unsigned long type, void *desc)
780 {
781 	/* invpcid (%rax), %rbx */
782 	return asm_safe(".byte 0x66,0x0f,0x38,0x82,0x18", "a" (desc), "b" (type));
783 }
784 
785 /*
786  * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
787  * intended to be a wake event arrives *after* HLT is executed.  Modern CPUs,
788  * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
789  * instruction after STI, *if* RFLAGS.IF=0 before STI.  Note, Intel CPUs may
790  * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
791  */
792 static inline void safe_halt(void)
793 {
794 	asm volatile("sti; hlt");
795 }
796 
797 static inline u32 read_pkru(void)
798 {
799 	unsigned int eax, edx;
800 	unsigned int ecx = 0;
801 	unsigned int pkru;
802 
803 	asm volatile(".byte 0x0f,0x01,0xee\n\t"
804 		     : "=a" (eax), "=d" (edx)
805 		     : "c" (ecx));
806 	pkru = eax;
807 	return pkru;
808 }
809 
810 static inline void write_pkru(u32 pkru)
811 {
812 	unsigned int eax = pkru;
813 	unsigned int ecx = 0;
814 	unsigned int edx = 0;
815 
816 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
817 		     : : "a" (eax), "c" (ecx), "d" (edx));
818 }
819 
820 static inline bool is_canonical(u64 addr)
821 {
822 	int va_width = (raw_cpuid(0x80000008, 0).a & 0xff00) >> 8;
823 	int shift_amt = 64 - va_width;
824 
825 	return (s64)(addr << shift_amt) >> shift_amt == addr;
826 }
827 
828 static inline void clear_bit(int bit, u8 *addr)
829 {
830 	__asm__ __volatile__("btr %1, %0"
831 			     : "+m" (*addr) : "Ir" (bit) : "cc", "memory");
832 }
833 
834 static inline void set_bit(int bit, u8 *addr)
835 {
836 	__asm__ __volatile__("bts %1, %0"
837 			     : "+m" (*addr) : "Ir" (bit) : "cc", "memory");
838 }
839 
840 static inline void flush_tlb(void)
841 {
842 	ulong cr4;
843 
844 	cr4 = read_cr4();
845 	write_cr4(cr4 ^ X86_CR4_PGE);
846 	write_cr4(cr4);
847 }
848 
849 static inline void generate_non_canonical_gp(void)
850 {
851 	*(volatile u64 *)NONCANONICAL = 0;
852 }
853 
854 static inline void generate_ud(void)
855 {
856 	asm volatile ("ud2");
857 }
858 
859 static inline void generate_de(void)
860 {
861 	asm volatile (
862 		"xor %%eax, %%eax\n\t"
863 		"xor %%ebx, %%ebx\n\t"
864 		"xor %%edx, %%edx\n\t"
865 		"idiv %%ebx\n\t"
866 		::: "eax", "ebx", "edx");
867 }
868 
869 static inline void generate_bp(void)
870 {
871 	asm volatile ("int3");
872 }
873 
874 static inline void generate_single_step_db(void)
875 {
876 	write_rflags(read_rflags() | X86_EFLAGS_TF);
877 	asm volatile("nop");
878 }
879 
880 static inline uint64_t generate_usermode_ac(void)
881 {
882 	/*
883 	 * Trigger an #AC by writing 8 bytes to a 4-byte aligned address.
884 	 * Disclaimer: It is assumed that the stack pointer is aligned
885 	 * on a 16-byte boundary as x86_64 stacks should be.
886 	 */
887 	asm volatile("movq $0, -0x4(%rsp)");
888 
889 	return 0;
890 }
891 
892 /*
893  * Switch from 64-bit to 32-bit mode and generate #OF via INTO.  Note, if RIP
894  * or RSP holds a 64-bit value, this helper will NOT generate #OF.
895  */
896 static inline void generate_of(void)
897 {
898 	struct far_pointer32 fp = {
899 		.offset = (uintptr_t)&&into,
900 		.selector = KERNEL_CS32,
901 	};
902 	uintptr_t rsp;
903 
904 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
905 
906 	if (fp.offset != (uintptr_t)&&into) {
907 		printf("Code address too high.\n");
908 		return;
909 	}
910 	if ((u32)rsp != rsp) {
911 		printf("Stack address too high.\n");
912 		return;
913 	}
914 
915 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
916 	return;
917 into:
918 	asm volatile (".code32;"
919 		      "movl $0x7fffffff, %eax;"
920 		      "addl %eax, %eax;"
921 		      "into;"
922 		      "lret;"
923 		      ".code64");
924 	__builtin_unreachable();
925 }
926 
927 static inline void fnop(void)
928 {
929 	asm volatile("fnop");
930 }
931 
932 /* If CR0.TS is set in L2, #NM is generated. */
933 static inline void generate_cr0_ts_nm(void)
934 {
935 	write_cr0((read_cr0() & ~X86_CR0_EM) | X86_CR0_TS);
936 	fnop();
937 }
938 
939 /* If CR0.TS is cleared and CR0.EM is set, #NM is generated. */
940 static inline void generate_cr0_em_nm(void)
941 {
942 	write_cr0((read_cr0() & ~X86_CR0_TS) | X86_CR0_EM);
943 	fnop();
944 }
945 
946 #endif
947