1 #ifndef _X86_PROCESSOR_H_ 2 #define _X86_PROCESSOR_H_ 3 4 #include "libcflat.h" 5 #include "desc.h" 6 #include "msr.h" 7 #include <bitops.h> 8 #include <stdint.h> 9 10 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull 11 12 #ifdef __x86_64__ 13 # define R "r" 14 # define W "q" 15 # define S "8" 16 #else 17 # define R "e" 18 # define W "l" 19 # define S "4" 20 #endif 21 22 #define DB_VECTOR 1 23 #define BP_VECTOR 3 24 #define UD_VECTOR 6 25 #define DF_VECTOR 8 26 #define TS_VECTOR 10 27 #define NP_VECTOR 11 28 #define SS_VECTOR 12 29 #define GP_VECTOR 13 30 #define PF_VECTOR 14 31 #define AC_VECTOR 17 32 #define CP_VECTOR 21 33 34 #define X86_CR0_PE_BIT (0) 35 #define X86_CR0_PE BIT(X86_CR0_PE_BIT) 36 #define X86_CR0_MP_BIT (1) 37 #define X86_CR0_MP BIT(X86_CR0_MP_BIT) 38 #define X86_CR0_EM_BIT (2) 39 #define X86_CR0_EM BIT(X86_CR0_EM_BIT) 40 #define X86_CR0_TS_BIT (3) 41 #define X86_CR0_TS BIT(X86_CR0_TS_BIT) 42 #define X86_CR0_ET_BIT (4) 43 #define X86_CR0_ET BIT(X86_CR0_ET_BIT) 44 #define X86_CR0_NE_BIT (5) 45 #define X86_CR0_NE BIT(X86_CR0_NE_BIT) 46 #define X86_CR0_WP_BIT (16) 47 #define X86_CR0_WP BIT(X86_CR0_WP_BIT) 48 #define X86_CR0_AM_BIT (18) 49 #define X86_CR0_AM BIT(X86_CR0_AM_BIT) 50 #define X86_CR0_NW_BIT (29) 51 #define X86_CR0_NW BIT(X86_CR0_NW_BIT) 52 #define X86_CR0_CD_BIT (30) 53 #define X86_CR0_CD BIT(X86_CR0_CD_BIT) 54 #define X86_CR0_PG_BIT (31) 55 #define X86_CR0_PG BIT(X86_CR0_PG_BIT) 56 57 #define X86_CR3_PCID_MASK GENMASK(11, 0) 58 59 #define X86_CR4_VME_BIT (0) 60 #define X86_CR4_VME BIT(X86_CR4_VME_BIT) 61 #define X86_CR4_PVI_BIT (1) 62 #define X86_CR4_PVI BIT(X86_CR4_PVI_BIT) 63 #define X86_CR4_TSD_BIT (2) 64 #define X86_CR4_TSD BIT(X86_CR4_TSD_BIT) 65 #define X86_CR4_DE_BIT (3) 66 #define X86_CR4_DE BIT(X86_CR4_DE_BIT) 67 #define X86_CR4_PSE_BIT (4) 68 #define X86_CR4_PSE BIT(X86_CR4_PSE_BIT) 69 #define X86_CR4_PAE_BIT (5) 70 #define X86_CR4_PAE BIT(X86_CR4_PAE_BIT) 71 #define X86_CR4_MCE_BIT (6) 72 #define X86_CR4_MCE BIT(X86_CR4_MCE_BIT) 73 #define X86_CR4_PGE_BIT (7) 74 #define X86_CR4_PGE BIT(X86_CR4_PGE_BIT) 75 #define X86_CR4_PCE_BIT (8) 76 #define X86_CR4_PCE BIT(X86_CR4_PCE_BIT) 77 #define X86_CR4_OSFXSR_BIT (9) 78 #define X86_CR4_OSFXSR BIT(X86_CR4_OSFXSR_BIT) 79 #define X86_CR4_OSXMMEXCPT_BIT (10) 80 #define X86_CR4_OSXMMEXCPT BIT(X86_CR4_OSXMMEXCPT_BIT) 81 #define X86_CR4_UMIP_BIT (11) 82 #define X86_CR4_UMIP BIT(X86_CR4_UMIP_BIT) 83 #define X86_CR4_LA57_BIT (12) 84 #define X86_CR4_LA57 BIT(X86_CR4_LA57_BIT) 85 #define X86_CR4_VMXE_BIT (13) 86 #define X86_CR4_VMXE BIT(X86_CR4_VMXE_BIT) 87 #define X86_CR4_SMXE_BIT (14) 88 #define X86_CR4_SMXE BIT(X86_CR4_SMXE_BIT) 89 /* UNUSED (15) */ 90 #define X86_CR4_FSGSBASE_BIT (16) 91 #define X86_CR4_FSGSBASE BIT(X86_CR4_FSGSBASE_BIT) 92 #define X86_CR4_PCIDE_BIT (17) 93 #define X86_CR4_PCIDE BIT(X86_CR4_PCIDE_BIT) 94 #define X86_CR4_OSXSAVE_BIT (18) 95 #define X86_CR4_OSXSAVE BIT(X86_CR4_OSXSAVE_BIT) 96 #define X86_CR4_KL_BIT (19) 97 #define X86_CR4_KL BIT(X86_CR4_KL_BIT) 98 #define X86_CR4_SMEP_BIT (20) 99 #define X86_CR4_SMEP BIT(X86_CR4_SMEP_BIT) 100 #define X86_CR4_SMAP_BIT (21) 101 #define X86_CR4_SMAP BIT(X86_CR4_SMAP_BIT) 102 #define X86_CR4_PKE_BIT (22) 103 #define X86_CR4_PKE BIT(X86_CR4_PKE_BIT) 104 #define X86_CR4_CET_BIT (23) 105 #define X86_CR4_CET BIT(X86_CR4_CET_BIT) 106 #define X86_CR4_PKS_BIT (24) 107 #define X86_CR4_PKS BIT(X86_CR4_PKS_BIT) 108 109 #define X86_EFLAGS_CF_BIT (0) 110 #define X86_EFLAGS_CF BIT(X86_EFLAGS_CF_BIT) 111 #define X86_EFLAGS_FIXED_BIT (1) 112 #define X86_EFLAGS_FIXED BIT(X86_EFLAGS_FIXED_BIT) 113 #define X86_EFLAGS_PF_BIT (2) 114 #define X86_EFLAGS_PF BIT(X86_EFLAGS_PF_BIT) 115 /* RESERVED 0 (3) */ 116 #define X86_EFLAGS_AF_BIT (4) 117 #define X86_EFLAGS_AF BIT(X86_EFLAGS_AF_BIT) 118 /* RESERVED 0 (5) */ 119 #define X86_EFLAGS_ZF_BIT (6) 120 #define X86_EFLAGS_ZF BIT(X86_EFLAGS_ZF_BIT) 121 #define X86_EFLAGS_SF_BIT (7) 122 #define X86_EFLAGS_SF BIT(X86_EFLAGS_SF_BIT) 123 #define X86_EFLAGS_TF_BIT (8) 124 #define X86_EFLAGS_TF BIT(X86_EFLAGS_TF_BIT) 125 #define X86_EFLAGS_IF_BIT (9) 126 #define X86_EFLAGS_IF BIT(X86_EFLAGS_IF_BIT) 127 #define X86_EFLAGS_DF_BIT (10) 128 #define X86_EFLAGS_DF BIT(X86_EFLAGS_DF_BIT) 129 #define X86_EFLAGS_OF_BIT (11) 130 #define X86_EFLAGS_OF BIT(X86_EFLAGS_OF_BIT) 131 #define X86_EFLAGS_IOPL GENMASK(13, 12) 132 #define X86_EFLAGS_NT_BIT (14) 133 #define X86_EFLAGS_NT BIT(X86_EFLAGS_NT_BIT) 134 /* RESERVED 0 (15) */ 135 #define X86_EFLAGS_RF_BIT (16) 136 #define X86_EFLAGS_RF BIT(X86_EFLAGS_RF_BIT) 137 #define X86_EFLAGS_VM_BIT (17) 138 #define X86_EFLAGS_VM BIT(X86_EFLAGS_VM_BIT) 139 #define X86_EFLAGS_AC_BIT (18) 140 #define X86_EFLAGS_AC BIT(X86_EFLAGS_AC_BIT) 141 #define X86_EFLAGS_VIF_BIT (19) 142 #define X86_EFLAGS_VIF BIT(X86_EFLAGS_VIF_BIT) 143 #define X86_EFLAGS_VIP_BIT (20) 144 #define X86_EFLAGS_VIP BIT(X86_EFLAGS_VIP_BIT) 145 #define X86_EFLAGS_ID_BIT (21) 146 #define X86_EFLAGS_ID BIT(X86_EFLAGS_ID_BIT) 147 148 #define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \ 149 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF) 150 151 152 /* 153 * CPU features 154 */ 155 156 enum cpuid_output_regs { 157 EAX, 158 EBX, 159 ECX, 160 EDX 161 }; 162 163 struct cpuid { u32 a, b, c, d; }; 164 165 static inline struct cpuid raw_cpuid(u32 function, u32 index) 166 { 167 struct cpuid r; 168 asm volatile ("cpuid" 169 : "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d) 170 : "0"(function), "2"(index)); 171 return r; 172 } 173 174 static inline struct cpuid cpuid_indexed(u32 function, u32 index) 175 { 176 u32 level = raw_cpuid(function & 0xf0000000, 0).a; 177 if (level < function) 178 return (struct cpuid) { 0, 0, 0, 0 }; 179 return raw_cpuid(function, index); 180 } 181 182 static inline struct cpuid cpuid(u32 function) 183 { 184 return cpuid_indexed(function, 0); 185 } 186 187 static inline u8 cpuid_maxphyaddr(void) 188 { 189 if (raw_cpuid(0x80000000, 0).a < 0x80000008) 190 return 36; 191 return raw_cpuid(0x80000008, 0).a & 0xff; 192 } 193 194 static inline bool is_intel(void) 195 { 196 struct cpuid c = cpuid(0); 197 u32 name[4] = {c.b, c.d, c.c }; 198 199 return strcmp((char *)name, "GenuineIntel") == 0; 200 } 201 202 #define CPUID(a, b, c, d) ((((unsigned long long) a) << 32) | (b << 16) | \ 203 (c << 8) | d) 204 205 /* 206 * Each X86_FEATURE_XXX definition is 64-bit and contains the following 207 * CPUID meta-data: 208 * 209 * [63:32] : input value for EAX 210 * [31:16] : input value for ECX 211 * [15:8] : output register 212 * [7:0] : bit position in output register 213 */ 214 215 /* 216 * Basic Leafs, a.k.a. Intel defined 217 */ 218 #define X86_FEATURE_MWAIT (CPUID(0x1, 0, ECX, 3)) 219 #define X86_FEATURE_VMX (CPUID(0x1, 0, ECX, 5)) 220 #define X86_FEATURE_PDCM (CPUID(0x1, 0, ECX, 15)) 221 #define X86_FEATURE_PCID (CPUID(0x1, 0, ECX, 17)) 222 #define X86_FEATURE_X2APIC (CPUID(0x1, 0, ECX, 21)) 223 #define X86_FEATURE_MOVBE (CPUID(0x1, 0, ECX, 22)) 224 #define X86_FEATURE_TSC_DEADLINE_TIMER (CPUID(0x1, 0, ECX, 24)) 225 #define X86_FEATURE_XSAVE (CPUID(0x1, 0, ECX, 26)) 226 #define X86_FEATURE_OSXSAVE (CPUID(0x1, 0, ECX, 27)) 227 #define X86_FEATURE_RDRAND (CPUID(0x1, 0, ECX, 30)) 228 #define X86_FEATURE_MCE (CPUID(0x1, 0, EDX, 7)) 229 #define X86_FEATURE_APIC (CPUID(0x1, 0, EDX, 9)) 230 #define X86_FEATURE_CLFLUSH (CPUID(0x1, 0, EDX, 19)) 231 #define X86_FEATURE_XMM (CPUID(0x1, 0, EDX, 25)) 232 #define X86_FEATURE_XMM2 (CPUID(0x1, 0, EDX, 26)) 233 #define X86_FEATURE_TSC_ADJUST (CPUID(0x7, 0, EBX, 1)) 234 #define X86_FEATURE_HLE (CPUID(0x7, 0, EBX, 4)) 235 #define X86_FEATURE_SMEP (CPUID(0x7, 0, EBX, 7)) 236 #define X86_FEATURE_INVPCID (CPUID(0x7, 0, EBX, 10)) 237 #define X86_FEATURE_RTM (CPUID(0x7, 0, EBX, 11)) 238 #define X86_FEATURE_SMAP (CPUID(0x7, 0, EBX, 20)) 239 #define X86_FEATURE_PCOMMIT (CPUID(0x7, 0, EBX, 22)) 240 #define X86_FEATURE_CLFLUSHOPT (CPUID(0x7, 0, EBX, 23)) 241 #define X86_FEATURE_CLWB (CPUID(0x7, 0, EBX, 24)) 242 #define X86_FEATURE_UMIP (CPUID(0x7, 0, ECX, 2)) 243 #define X86_FEATURE_PKU (CPUID(0x7, 0, ECX, 3)) 244 #define X86_FEATURE_LA57 (CPUID(0x7, 0, ECX, 16)) 245 #define X86_FEATURE_RDPID (CPUID(0x7, 0, ECX, 22)) 246 #define X86_FEATURE_SHSTK (CPUID(0x7, 0, ECX, 7)) 247 #define X86_FEATURE_IBT (CPUID(0x7, 0, EDX, 20)) 248 #define X86_FEATURE_SPEC_CTRL (CPUID(0x7, 0, EDX, 26)) 249 #define X86_FEATURE_ARCH_CAPABILITIES (CPUID(0x7, 0, EDX, 29)) 250 #define X86_FEATURE_PKS (CPUID(0x7, 0, ECX, 31)) 251 252 /* 253 * Extended Leafs, a.k.a. AMD defined 254 */ 255 #define X86_FEATURE_SVM (CPUID(0x80000001, 0, ECX, 2)) 256 #define X86_FEATURE_NX (CPUID(0x80000001, 0, EDX, 20)) 257 #define X86_FEATURE_GBPAGES (CPUID(0x80000001, 0, EDX, 26)) 258 #define X86_FEATURE_RDTSCP (CPUID(0x80000001, 0, EDX, 27)) 259 #define X86_FEATURE_LM (CPUID(0x80000001, 0, EDX, 29)) 260 #define X86_FEATURE_RDPRU (CPUID(0x80000008, 0, EBX, 4)) 261 #define X86_FEATURE_AMD_IBPB (CPUID(0x80000008, 0, EBX, 12)) 262 #define X86_FEATURE_NPT (CPUID(0x8000000A, 0, EDX, 0)) 263 #define X86_FEATURE_LBRV (CPUID(0x8000000A, 0, EDX, 1)) 264 #define X86_FEATURE_NRIPS (CPUID(0x8000000A, 0, EDX, 3)) 265 #define X86_FEATURE_TSCRATEMSR (CPUID(0x8000000A, 0, EDX, 4)) 266 #define X86_FEATURE_PAUSEFILTER (CPUID(0x8000000A, 0, EDX, 10)) 267 #define X86_FEATURE_PFTHRESHOLD (CPUID(0x8000000A, 0, EDX, 12)) 268 #define X86_FEATURE_VGIF (CPUID(0x8000000A, 0, EDX, 16)) 269 270 271 static inline bool this_cpu_has(u64 feature) 272 { 273 u32 input_eax = feature >> 32; 274 u32 input_ecx = (feature >> 16) & 0xffff; 275 u32 output_reg = (feature >> 8) & 0xff; 276 u8 bit = feature & 0xff; 277 struct cpuid c; 278 u32 *tmp; 279 280 c = cpuid_indexed(input_eax, input_ecx); 281 tmp = (u32 *)&c; 282 283 return ((*(tmp + (output_reg % 32))) & (1 << bit)); 284 } 285 286 struct far_pointer32 { 287 u32 offset; 288 u16 selector; 289 } __attribute__((packed)); 290 291 struct descriptor_table_ptr { 292 u16 limit; 293 ulong base; 294 } __attribute__((packed)); 295 296 static inline void clac(void) 297 { 298 asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory"); 299 } 300 301 static inline void stac(void) 302 { 303 asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory"); 304 } 305 306 static inline u16 read_cs(void) 307 { 308 unsigned val; 309 310 asm volatile ("mov %%cs, %0" : "=mr"(val)); 311 return val; 312 } 313 314 static inline u16 read_ds(void) 315 { 316 unsigned val; 317 318 asm volatile ("mov %%ds, %0" : "=mr"(val)); 319 return val; 320 } 321 322 static inline u16 read_es(void) 323 { 324 unsigned val; 325 326 asm volatile ("mov %%es, %0" : "=mr"(val)); 327 return val; 328 } 329 330 static inline u16 read_ss(void) 331 { 332 unsigned val; 333 334 asm volatile ("mov %%ss, %0" : "=mr"(val)); 335 return val; 336 } 337 338 static inline u16 read_fs(void) 339 { 340 unsigned val; 341 342 asm volatile ("mov %%fs, %0" : "=mr"(val)); 343 return val; 344 } 345 346 static inline u16 read_gs(void) 347 { 348 unsigned val; 349 350 asm volatile ("mov %%gs, %0" : "=mr"(val)); 351 return val; 352 } 353 354 static inline unsigned long read_rflags(void) 355 { 356 unsigned long f; 357 asm volatile ("pushf; pop %0\n\t" : "=rm"(f)); 358 return f; 359 } 360 361 static inline void write_ds(unsigned val) 362 { 363 asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory"); 364 } 365 366 static inline void write_es(unsigned val) 367 { 368 asm volatile ("mov %0, %%es" : : "rm"(val) : "memory"); 369 } 370 371 static inline void write_ss(unsigned val) 372 { 373 asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory"); 374 } 375 376 static inline void write_fs(unsigned val) 377 { 378 asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory"); 379 } 380 381 static inline void write_gs(unsigned val) 382 { 383 asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory"); 384 } 385 386 static inline void write_rflags(unsigned long f) 387 { 388 asm volatile ("push %0; popf\n\t" : : "rm"(f)); 389 } 390 391 static inline void set_iopl(int iopl) 392 { 393 unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL; 394 flags |= iopl * (X86_EFLAGS_IOPL / 3); 395 write_rflags(flags); 396 } 397 398 /* 399 * Don't use the safe variants for rdmsr() or wrmsr(). The exception fixup 400 * infrastructure uses per-CPU data and thus consumes GS.base. Various tests 401 * temporarily modify MSR_GS_BASE and will explode when trying to determine 402 * whether or not RDMSR/WRMSR faulted. 403 */ 404 static inline u64 rdmsr(u32 index) 405 { 406 u32 a, d; 407 asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory"); 408 return a | ((u64)d << 32); 409 } 410 411 static inline void wrmsr(u32 index, u64 val) 412 { 413 u32 a = val, d = val >> 32; 414 asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory"); 415 } 416 417 static inline int rdmsr_safe(u32 index, uint64_t *val) 418 { 419 uint32_t a, d; 420 421 asm volatile (ASM_TRY("1f") 422 "rdmsr\n\t" 423 "1:" 424 : "=a"(a), "=d"(d) 425 : "c"(index) : "memory"); 426 427 *val = (uint64_t)a | ((uint64_t)d << 32); 428 return exception_vector(); 429 } 430 431 static inline int wrmsr_safe(u32 index, u64 val) 432 { 433 u32 a = val, d = val >> 32; 434 435 asm volatile (ASM_TRY("1f") 436 "wrmsr\n\t" 437 "1:" 438 : : "a"(a), "d"(d), "c"(index) : "memory"); 439 return exception_vector(); 440 } 441 442 static inline int rdpmc_safe(u32 index, uint64_t *val) 443 { 444 uint32_t a, d; 445 446 asm volatile (ASM_TRY("1f") 447 "rdpmc\n\t" 448 "1:" 449 : "=a"(a), "=d"(d) : "c"(index) : "memory"); 450 *val = (uint64_t)a | ((uint64_t)d << 32); 451 return exception_vector(); 452 } 453 454 static inline uint64_t rdpmc(uint32_t index) 455 { 456 uint64_t val; 457 int vector = rdpmc_safe(index, &val); 458 459 assert_msg(!vector, "Unexpected %s on RDPMC(%d)", 460 exception_mnemonic(vector), index); 461 return val; 462 } 463 464 static inline int write_cr0_safe(ulong val) 465 { 466 asm volatile(ASM_TRY("1f") 467 "mov %0,%%cr0\n\t" 468 "1:": : "r" (val)); 469 return exception_vector(); 470 } 471 472 static inline void write_cr0(ulong val) 473 { 474 int vector = write_cr0_safe(val); 475 476 assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx", 477 vector, val); 478 } 479 480 static inline ulong read_cr0(void) 481 { 482 ulong val; 483 asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory"); 484 return val; 485 } 486 487 static inline void write_cr2(ulong val) 488 { 489 asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory"); 490 } 491 492 static inline ulong read_cr2(void) 493 { 494 ulong val; 495 asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory"); 496 return val; 497 } 498 499 static inline int write_cr3_safe(ulong val) 500 { 501 asm volatile(ASM_TRY("1f") 502 "mov %0,%%cr3\n\t" 503 "1:": : "r" (val)); 504 return exception_vector(); 505 } 506 507 static inline void write_cr3(ulong val) 508 { 509 int vector = write_cr3_safe(val); 510 511 assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx", 512 vector, val); 513 } 514 515 static inline ulong read_cr3(void) 516 { 517 ulong val; 518 asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory"); 519 return val; 520 } 521 522 static inline void update_cr3(void *cr3) 523 { 524 write_cr3((ulong)cr3); 525 } 526 527 static inline int write_cr4_safe(ulong val) 528 { 529 asm volatile(ASM_TRY("1f") 530 "mov %0,%%cr4\n\t" 531 "1:": : "r" (val)); 532 return exception_vector(); 533 } 534 535 static inline void write_cr4(ulong val) 536 { 537 int vector = write_cr4_safe(val); 538 539 assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx", 540 vector, val); 541 } 542 543 static inline ulong read_cr4(void) 544 { 545 ulong val; 546 asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory"); 547 return val; 548 } 549 550 static inline void write_cr8(ulong val) 551 { 552 asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory"); 553 } 554 555 static inline ulong read_cr8(void) 556 { 557 ulong val; 558 asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory"); 559 return val; 560 } 561 562 static inline void lgdt(const struct descriptor_table_ptr *ptr) 563 { 564 asm volatile ("lgdt %0" : : "m"(*ptr)); 565 } 566 567 static inline void sgdt(struct descriptor_table_ptr *ptr) 568 { 569 asm volatile ("sgdt %0" : "=m"(*ptr)); 570 } 571 572 static inline void lidt(const struct descriptor_table_ptr *ptr) 573 { 574 asm volatile ("lidt %0" : : "m"(*ptr)); 575 } 576 577 static inline void sidt(struct descriptor_table_ptr *ptr) 578 { 579 asm volatile ("sidt %0" : "=m"(*ptr)); 580 } 581 582 static inline void lldt(u16 val) 583 { 584 asm volatile ("lldt %0" : : "rm"(val)); 585 } 586 587 static inline u16 sldt(void) 588 { 589 u16 val; 590 asm volatile ("sldt %0" : "=rm"(val)); 591 return val; 592 } 593 594 static inline void ltr(u16 val) 595 { 596 asm volatile ("ltr %0" : : "rm"(val)); 597 } 598 599 static inline u16 str(void) 600 { 601 u16 val; 602 asm volatile ("str %0" : "=rm"(val)); 603 return val; 604 } 605 606 static inline void write_dr0(void *val) 607 { 608 asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory"); 609 } 610 611 static inline void write_dr1(void *val) 612 { 613 asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory"); 614 } 615 616 static inline void write_dr2(void *val) 617 { 618 asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory"); 619 } 620 621 static inline void write_dr3(void *val) 622 { 623 asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory"); 624 } 625 626 static inline void write_dr6(ulong val) 627 { 628 asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory"); 629 } 630 631 static inline ulong read_dr6(void) 632 { 633 ulong val; 634 asm volatile ("mov %%dr6, %0" : "=r"(val)); 635 return val; 636 } 637 638 static inline void write_dr7(ulong val) 639 { 640 asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory"); 641 } 642 643 static inline ulong read_dr7(void) 644 { 645 ulong val; 646 asm volatile ("mov %%dr7, %0" : "=r"(val)); 647 return val; 648 } 649 650 static inline void pause(void) 651 { 652 asm volatile ("pause"); 653 } 654 655 static inline void cli(void) 656 { 657 asm volatile ("cli"); 658 } 659 660 static inline void sti(void) 661 { 662 asm volatile ("sti"); 663 } 664 665 static inline unsigned long long rdrand(void) 666 { 667 long long r; 668 669 asm volatile("rdrand %0\n\t" 670 "jc 1f\n\t" 671 "mov $0, %0\n\t" 672 "1:\n\t" : "=r" (r)); 673 return r; 674 } 675 676 static inline unsigned long long rdtsc(void) 677 { 678 long long r; 679 680 #ifdef __x86_64__ 681 unsigned a, d; 682 683 asm volatile ("rdtsc" : "=a"(a), "=d"(d)); 684 r = a | ((long long)d << 32); 685 #else 686 asm volatile ("rdtsc" : "=A"(r)); 687 #endif 688 return r; 689 } 690 691 /* 692 * Per the advice in the SDM, volume 2, the sequence "mfence; lfence" 693 * executed immediately before rdtsc ensures that rdtsc will be 694 * executed only after all previous instructions have executed and all 695 * previous loads and stores are globally visible. In addition, the 696 * lfence immediately after rdtsc ensures that rdtsc will be executed 697 * prior to the execution of any subsequent instruction. 698 */ 699 static inline unsigned long long fenced_rdtsc(void) 700 { 701 unsigned long long tsc; 702 703 #ifdef __x86_64__ 704 unsigned int eax, edx; 705 706 asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 707 tsc = eax | ((unsigned long long)edx << 32); 708 #else 709 asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc)); 710 #endif 711 return tsc; 712 } 713 714 static inline unsigned long long rdtscp(u32 *aux) 715 { 716 long long r; 717 718 #ifdef __x86_64__ 719 unsigned a, d; 720 721 asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux)); 722 r = a | ((long long)d << 32); 723 #else 724 asm volatile ("rdtscp" : "=A"(r), "=c"(*aux)); 725 #endif 726 return r; 727 } 728 729 static inline void wrtsc(u64 tsc) 730 { 731 wrmsr(MSR_IA32_TSC, tsc); 732 } 733 734 static inline void irq_disable(void) 735 { 736 asm volatile("cli"); 737 } 738 739 /* Note that irq_enable() does not ensure an interrupt shadow due 740 * to the vagaries of compiler optimizations. If you need the 741 * shadow, use a single asm with "sti" and the instruction after it. 742 */ 743 static inline void irq_enable(void) 744 { 745 asm volatile("sti"); 746 } 747 748 static inline void invlpg(volatile void *va) 749 { 750 asm volatile("invlpg (%0)" ::"r" (va) : "memory"); 751 } 752 753 static inline void safe_halt(void) 754 { 755 asm volatile("sti; hlt"); 756 } 757 758 static inline u32 read_pkru(void) 759 { 760 unsigned int eax, edx; 761 unsigned int ecx = 0; 762 unsigned int pkru; 763 764 asm volatile(".byte 0x0f,0x01,0xee\n\t" 765 : "=a" (eax), "=d" (edx) 766 : "c" (ecx)); 767 pkru = eax; 768 return pkru; 769 } 770 771 static inline void write_pkru(u32 pkru) 772 { 773 unsigned int eax = pkru; 774 unsigned int ecx = 0; 775 unsigned int edx = 0; 776 777 asm volatile(".byte 0x0f,0x01,0xef\n\t" 778 : : "a" (eax), "c" (ecx), "d" (edx)); 779 } 780 781 static inline bool is_canonical(u64 addr) 782 { 783 int va_width = (raw_cpuid(0x80000008, 0).a & 0xff00) >> 8; 784 int shift_amt = 64 - va_width; 785 786 return (s64)(addr << shift_amt) >> shift_amt == addr; 787 } 788 789 static inline void clear_bit(int bit, u8 *addr) 790 { 791 __asm__ __volatile__("btr %1, %0" 792 : "+m" (*addr) : "Ir" (bit) : "cc", "memory"); 793 } 794 795 static inline void set_bit(int bit, u8 *addr) 796 { 797 __asm__ __volatile__("bts %1, %0" 798 : "+m" (*addr) : "Ir" (bit) : "cc", "memory"); 799 } 800 801 static inline void flush_tlb(void) 802 { 803 ulong cr4; 804 805 cr4 = read_cr4(); 806 write_cr4(cr4 ^ X86_CR4_PGE); 807 write_cr4(cr4); 808 } 809 810 static inline void generate_non_canonical_gp(void) 811 { 812 *(volatile u64 *)NONCANONICAL = 0; 813 } 814 815 static inline void generate_ud(void) 816 { 817 asm volatile ("ud2"); 818 } 819 820 static inline void generate_de(void) 821 { 822 asm volatile ( 823 "xor %%eax, %%eax\n\t" 824 "xor %%ebx, %%ebx\n\t" 825 "xor %%edx, %%edx\n\t" 826 "idiv %%ebx\n\t" 827 ::: "eax", "ebx", "edx"); 828 } 829 830 static inline void generate_bp(void) 831 { 832 asm volatile ("int3"); 833 } 834 835 static inline void generate_single_step_db(void) 836 { 837 write_rflags(read_rflags() | X86_EFLAGS_TF); 838 asm volatile("nop"); 839 } 840 841 static inline uint64_t generate_usermode_ac(void) 842 { 843 /* 844 * Trigger an #AC by writing 8 bytes to a 4-byte aligned address. 845 * Disclaimer: It is assumed that the stack pointer is aligned 846 * on a 16-byte boundary as x86_64 stacks should be. 847 */ 848 asm volatile("movq $0, -0x4(%rsp)"); 849 850 return 0; 851 } 852 853 /* 854 * Switch from 64-bit to 32-bit mode and generate #OF via INTO. Note, if RIP 855 * or RSP holds a 64-bit value, this helper will NOT generate #OF. 856 */ 857 static inline void generate_of(void) 858 { 859 struct far_pointer32 fp = { 860 .offset = (uintptr_t)&&into, 861 .selector = KERNEL_CS32, 862 }; 863 uintptr_t rsp; 864 865 asm volatile ("mov %%rsp, %0" : "=r"(rsp)); 866 867 if (fp.offset != (uintptr_t)&&into) { 868 printf("Code address too high.\n"); 869 return; 870 } 871 if ((u32)rsp != rsp) { 872 printf("Stack address too high.\n"); 873 return; 874 } 875 876 asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); 877 return; 878 into: 879 asm volatile (".code32;" 880 "movl $0x7fffffff, %eax;" 881 "addl %eax, %eax;" 882 "into;" 883 "lret;" 884 ".code64"); 885 __builtin_unreachable(); 886 } 887 888 static inline void fnop(void) 889 { 890 asm volatile("fnop"); 891 } 892 893 /* If CR0.TS is set in L2, #NM is generated. */ 894 static inline void generate_cr0_ts_nm(void) 895 { 896 write_cr0((read_cr0() & ~X86_CR0_EM) | X86_CR0_TS); 897 fnop(); 898 } 899 900 /* If CR0.TS is cleared and CR0.EM is set, #NM is generated. */ 901 static inline void generate_cr0_em_nm(void) 902 { 903 write_cr0((read_cr0() & ~X86_CR0_TS) | X86_CR0_EM); 904 fnop(); 905 } 906 907 static inline u8 pmu_version(void) 908 { 909 return cpuid(10).a & 0xff; 910 } 911 912 static inline bool this_cpu_has_pmu(void) 913 { 914 return !!pmu_version(); 915 } 916 917 static inline bool this_cpu_has_perf_global_ctrl(void) 918 { 919 return pmu_version() > 1; 920 } 921 922 static inline u8 pmu_nr_gp_counters(void) 923 { 924 return (cpuid(10).a >> 8) & 0xff; 925 } 926 927 static inline u8 pmu_gp_counter_width(void) 928 { 929 return (cpuid(10).a >> 16) & 0xff; 930 } 931 932 static inline u8 pmu_gp_counter_mask_length(void) 933 { 934 return (cpuid(10).a >> 24) & 0xff; 935 } 936 937 static inline u8 pmu_nr_fixed_counters(void) 938 { 939 struct cpuid id = cpuid(10); 940 941 if ((id.a & 0xff) > 1) 942 return id.d & 0x1f; 943 else 944 return 0; 945 } 946 947 static inline u8 pmu_fixed_counter_width(void) 948 { 949 struct cpuid id = cpuid(10); 950 951 if ((id.a & 0xff) > 1) 952 return (id.d >> 5) & 0xff; 953 else 954 return 0; 955 } 956 957 static inline bool pmu_gp_counter_is_available(int i) 958 { 959 /* CPUID.0xA.EBX bit is '1 if they counter is NOT available. */ 960 return !(cpuid(10).b & BIT(i)); 961 } 962 963 static inline u64 this_cpu_perf_capabilities(void) 964 { 965 if (!this_cpu_has(X86_FEATURE_PDCM)) 966 return 0; 967 968 return rdmsr(MSR_IA32_PERF_CAPABILITIES); 969 } 970 971 #endif 972