1 #ifndef _X86_PROCESSOR_H_ 2 #define _X86_PROCESSOR_H_ 3 4 #include "libcflat.h" 5 #include "desc.h" 6 #include "msr.h" 7 #include <bitops.h> 8 #include <stdint.h> 9 10 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull 11 12 #ifdef __x86_64__ 13 # define R "r" 14 # define W "q" 15 # define S "8" 16 #else 17 # define R "e" 18 # define W "l" 19 # define S "4" 20 #endif 21 22 #define DB_VECTOR 1 23 #define BP_VECTOR 3 24 #define UD_VECTOR 6 25 #define DF_VECTOR 8 26 #define TS_VECTOR 10 27 #define NP_VECTOR 11 28 #define SS_VECTOR 12 29 #define GP_VECTOR 13 30 #define PF_VECTOR 14 31 #define AC_VECTOR 17 32 #define CP_VECTOR 21 33 34 #define X86_CR0_PE_BIT (0) 35 #define X86_CR0_PE BIT(X86_CR0_PE_BIT) 36 #define X86_CR0_MP_BIT (1) 37 #define X86_CR0_MP BIT(X86_CR0_MP_BIT) 38 #define X86_CR0_EM_BIT (2) 39 #define X86_CR0_EM BIT(X86_CR0_EM_BIT) 40 #define X86_CR0_TS_BIT (3) 41 #define X86_CR0_TS BIT(X86_CR0_TS_BIT) 42 #define X86_CR0_ET_BIT (4) 43 #define X86_CR0_ET BIT(X86_CR0_ET_BIT) 44 #define X86_CR0_NE_BIT (5) 45 #define X86_CR0_NE BIT(X86_CR0_NE_BIT) 46 #define X86_CR0_WP_BIT (16) 47 #define X86_CR0_WP BIT(X86_CR0_WP_BIT) 48 #define X86_CR0_AM_BIT (18) 49 #define X86_CR0_AM BIT(X86_CR0_AM_BIT) 50 #define X86_CR0_NW_BIT (29) 51 #define X86_CR0_NW BIT(X86_CR0_NW_BIT) 52 #define X86_CR0_CD_BIT (30) 53 #define X86_CR0_CD BIT(X86_CR0_CD_BIT) 54 #define X86_CR0_PG_BIT (31) 55 #define X86_CR0_PG BIT(X86_CR0_PG_BIT) 56 57 #define X86_CR3_PCID_MASK GENMASK(11, 0) 58 59 #define X86_CR4_VME_BIT (0) 60 #define X86_CR4_VME BIT(X86_CR4_VME_BIT) 61 #define X86_CR4_PVI_BIT (1) 62 #define X86_CR4_PVI BIT(X86_CR4_PVI_BIT) 63 #define X86_CR4_TSD_BIT (2) 64 #define X86_CR4_TSD BIT(X86_CR4_TSD_BIT) 65 #define X86_CR4_DE_BIT (3) 66 #define X86_CR4_DE BIT(X86_CR4_DE_BIT) 67 #define X86_CR4_PSE_BIT (4) 68 #define X86_CR4_PSE BIT(X86_CR4_PSE_BIT) 69 #define X86_CR4_PAE_BIT (5) 70 #define X86_CR4_PAE BIT(X86_CR4_PAE_BIT) 71 #define X86_CR4_MCE_BIT (6) 72 #define X86_CR4_MCE BIT(X86_CR4_MCE_BIT) 73 #define X86_CR4_PGE_BIT (7) 74 #define X86_CR4_PGE BIT(X86_CR4_PGE_BIT) 75 #define X86_CR4_PCE_BIT (8) 76 #define X86_CR4_PCE BIT(X86_CR4_PCE_BIT) 77 #define X86_CR4_OSFXSR_BIT (9) 78 #define X86_CR4_OSFXSR BIT(X86_CR4_OSFXSR_BIT) 79 #define X86_CR4_OSXMMEXCPT_BIT (10) 80 #define X86_CR4_OSXMMEXCPT BIT(X86_CR4_OSXMMEXCPT_BIT) 81 #define X86_CR4_UMIP_BIT (11) 82 #define X86_CR4_UMIP BIT(X86_CR4_UMIP_BIT) 83 #define X86_CR4_LA57_BIT (12) 84 #define X86_CR4_LA57 BIT(X86_CR4_LA57_BIT) 85 #define X86_CR4_VMXE_BIT (13) 86 #define X86_CR4_VMXE BIT(X86_CR4_VMXE_BIT) 87 #define X86_CR4_SMXE_BIT (14) 88 #define X86_CR4_SMXE BIT(X86_CR4_SMXE_BIT) 89 /* UNUSED (15) */ 90 #define X86_CR4_FSGSBASE_BIT (16) 91 #define X86_CR4_FSGSBASE BIT(X86_CR4_FSGSBASE_BIT) 92 #define X86_CR4_PCIDE_BIT (17) 93 #define X86_CR4_PCIDE BIT(X86_CR4_PCIDE_BIT) 94 #define X86_CR4_OSXSAVE_BIT (18) 95 #define X86_CR4_OSXSAVE BIT(X86_CR4_OSXSAVE_BIT) 96 #define X86_CR4_KL_BIT (19) 97 #define X86_CR4_KL BIT(X86_CR4_KL_BIT) 98 #define X86_CR4_SMEP_BIT (20) 99 #define X86_CR4_SMEP BIT(X86_CR4_SMEP_BIT) 100 #define X86_CR4_SMAP_BIT (21) 101 #define X86_CR4_SMAP BIT(X86_CR4_SMAP_BIT) 102 #define X86_CR4_PKE_BIT (22) 103 #define X86_CR4_PKE BIT(X86_CR4_PKE_BIT) 104 #define X86_CR4_CET_BIT (23) 105 #define X86_CR4_CET BIT(X86_CR4_CET_BIT) 106 #define X86_CR4_PKS_BIT (24) 107 #define X86_CR4_PKS BIT(X86_CR4_PKS_BIT) 108 109 #define X86_EFLAGS_CF_BIT (0) 110 #define X86_EFLAGS_CF BIT(X86_EFLAGS_CF_BIT) 111 #define X86_EFLAGS_FIXED_BIT (1) 112 #define X86_EFLAGS_FIXED BIT(X86_EFLAGS_FIXED_BIT) 113 #define X86_EFLAGS_PF_BIT (2) 114 #define X86_EFLAGS_PF BIT(X86_EFLAGS_PF_BIT) 115 /* RESERVED 0 (3) */ 116 #define X86_EFLAGS_AF_BIT (4) 117 #define X86_EFLAGS_AF BIT(X86_EFLAGS_AF_BIT) 118 /* RESERVED 0 (5) */ 119 #define X86_EFLAGS_ZF_BIT (6) 120 #define X86_EFLAGS_ZF BIT(X86_EFLAGS_ZF_BIT) 121 #define X86_EFLAGS_SF_BIT (7) 122 #define X86_EFLAGS_SF BIT(X86_EFLAGS_SF_BIT) 123 #define X86_EFLAGS_TF_BIT (8) 124 #define X86_EFLAGS_TF BIT(X86_EFLAGS_TF_BIT) 125 #define X86_EFLAGS_IF_BIT (9) 126 #define X86_EFLAGS_IF BIT(X86_EFLAGS_IF_BIT) 127 #define X86_EFLAGS_DF_BIT (10) 128 #define X86_EFLAGS_DF BIT(X86_EFLAGS_DF_BIT) 129 #define X86_EFLAGS_OF_BIT (11) 130 #define X86_EFLAGS_OF BIT(X86_EFLAGS_OF_BIT) 131 #define X86_EFLAGS_IOPL GENMASK(13, 12) 132 #define X86_EFLAGS_NT_BIT (14) 133 #define X86_EFLAGS_NT BIT(X86_EFLAGS_NT_BIT) 134 /* RESERVED 0 (15) */ 135 #define X86_EFLAGS_RF_BIT (16) 136 #define X86_EFLAGS_RF BIT(X86_EFLAGS_RF_BIT) 137 #define X86_EFLAGS_VM_BIT (17) 138 #define X86_EFLAGS_VM BIT(X86_EFLAGS_VM_BIT) 139 #define X86_EFLAGS_AC_BIT (18) 140 #define X86_EFLAGS_AC BIT(X86_EFLAGS_AC_BIT) 141 #define X86_EFLAGS_VIF_BIT (19) 142 #define X86_EFLAGS_VIF BIT(X86_EFLAGS_VIF_BIT) 143 #define X86_EFLAGS_VIP_BIT (20) 144 #define X86_EFLAGS_VIP BIT(X86_EFLAGS_VIP_BIT) 145 #define X86_EFLAGS_ID_BIT (21) 146 #define X86_EFLAGS_ID BIT(X86_EFLAGS_ID_BIT) 147 148 #define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \ 149 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF) 150 151 152 /* 153 * CPU features 154 */ 155 156 enum cpuid_output_regs { 157 EAX, 158 EBX, 159 ECX, 160 EDX 161 }; 162 163 struct cpuid { u32 a, b, c, d; }; 164 165 static inline struct cpuid raw_cpuid(u32 function, u32 index) 166 { 167 struct cpuid r; 168 asm volatile ("cpuid" 169 : "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d) 170 : "0"(function), "2"(index)); 171 return r; 172 } 173 174 static inline struct cpuid cpuid_indexed(u32 function, u32 index) 175 { 176 u32 level = raw_cpuid(function & 0xf0000000, 0).a; 177 if (level < function) 178 return (struct cpuid) { 0, 0, 0, 0 }; 179 return raw_cpuid(function, index); 180 } 181 182 static inline struct cpuid cpuid(u32 function) 183 { 184 return cpuid_indexed(function, 0); 185 } 186 187 static inline u8 cpuid_maxphyaddr(void) 188 { 189 if (raw_cpuid(0x80000000, 0).a < 0x80000008) 190 return 36; 191 return raw_cpuid(0x80000008, 0).a & 0xff; 192 } 193 194 static inline bool is_intel(void) 195 { 196 struct cpuid c = cpuid(0); 197 u32 name[4] = {c.b, c.d, c.c }; 198 199 return strcmp((char *)name, "GenuineIntel") == 0; 200 } 201 202 #define CPUID(a, b, c, d) ((((unsigned long long) a) << 32) | (b << 16) | \ 203 (c << 8) | d) 204 205 /* 206 * Each X86_FEATURE_XXX definition is 64-bit and contains the following 207 * CPUID meta-data: 208 * 209 * [63:32] : input value for EAX 210 * [31:16] : input value for ECX 211 * [15:8] : output register 212 * [7:0] : bit position in output register 213 */ 214 215 /* 216 * Basic Leafs, a.k.a. Intel defined 217 */ 218 #define X86_FEATURE_MWAIT (CPUID(0x1, 0, ECX, 3)) 219 #define X86_FEATURE_VMX (CPUID(0x1, 0, ECX, 5)) 220 #define X86_FEATURE_PDCM (CPUID(0x1, 0, ECX, 15)) 221 #define X86_FEATURE_PCID (CPUID(0x1, 0, ECX, 17)) 222 #define X86_FEATURE_X2APIC (CPUID(0x1, 0, ECX, 21)) 223 #define X86_FEATURE_MOVBE (CPUID(0x1, 0, ECX, 22)) 224 #define X86_FEATURE_TSC_DEADLINE_TIMER (CPUID(0x1, 0, ECX, 24)) 225 #define X86_FEATURE_XSAVE (CPUID(0x1, 0, ECX, 26)) 226 #define X86_FEATURE_OSXSAVE (CPUID(0x1, 0, ECX, 27)) 227 #define X86_FEATURE_RDRAND (CPUID(0x1, 0, ECX, 30)) 228 #define X86_FEATURE_MCE (CPUID(0x1, 0, EDX, 7)) 229 #define X86_FEATURE_APIC (CPUID(0x1, 0, EDX, 9)) 230 #define X86_FEATURE_CLFLUSH (CPUID(0x1, 0, EDX, 19)) 231 #define X86_FEATURE_XMM (CPUID(0x1, 0, EDX, 25)) 232 #define X86_FEATURE_XMM2 (CPUID(0x1, 0, EDX, 26)) 233 #define X86_FEATURE_TSC_ADJUST (CPUID(0x7, 0, EBX, 1)) 234 #define X86_FEATURE_HLE (CPUID(0x7, 0, EBX, 4)) 235 #define X86_FEATURE_SMEP (CPUID(0x7, 0, EBX, 7)) 236 #define X86_FEATURE_INVPCID (CPUID(0x7, 0, EBX, 10)) 237 #define X86_FEATURE_RTM (CPUID(0x7, 0, EBX, 11)) 238 #define X86_FEATURE_SMAP (CPUID(0x7, 0, EBX, 20)) 239 #define X86_FEATURE_PCOMMIT (CPUID(0x7, 0, EBX, 22)) 240 #define X86_FEATURE_CLFLUSHOPT (CPUID(0x7, 0, EBX, 23)) 241 #define X86_FEATURE_CLWB (CPUID(0x7, 0, EBX, 24)) 242 #define X86_FEATURE_UMIP (CPUID(0x7, 0, ECX, 2)) 243 #define X86_FEATURE_PKU (CPUID(0x7, 0, ECX, 3)) 244 #define X86_FEATURE_LA57 (CPUID(0x7, 0, ECX, 16)) 245 #define X86_FEATURE_RDPID (CPUID(0x7, 0, ECX, 22)) 246 #define X86_FEATURE_SHSTK (CPUID(0x7, 0, ECX, 7)) 247 #define X86_FEATURE_IBT (CPUID(0x7, 0, EDX, 20)) 248 #define X86_FEATURE_SPEC_CTRL (CPUID(0x7, 0, EDX, 26)) 249 #define X86_FEATURE_FLUSH_L1D (CPUID(0x7, 0, EDX, 28)) 250 #define X86_FEATURE_ARCH_CAPABILITIES (CPUID(0x7, 0, EDX, 29)) 251 #define X86_FEATURE_PKS (CPUID(0x7, 0, ECX, 31)) 252 253 /* 254 * Extended Leafs, a.k.a. AMD defined 255 */ 256 #define X86_FEATURE_SVM (CPUID(0x80000001, 0, ECX, 2)) 257 #define X86_FEATURE_PERFCTR_CORE (CPUID(0x80000001, 0, ECX, 23)) 258 #define X86_FEATURE_NX (CPUID(0x80000001, 0, EDX, 20)) 259 #define X86_FEATURE_GBPAGES (CPUID(0x80000001, 0, EDX, 26)) 260 #define X86_FEATURE_RDTSCP (CPUID(0x80000001, 0, EDX, 27)) 261 #define X86_FEATURE_LM (CPUID(0x80000001, 0, EDX, 29)) 262 #define X86_FEATURE_RDPRU (CPUID(0x80000008, 0, EBX, 4)) 263 #define X86_FEATURE_AMD_IBPB (CPUID(0x80000008, 0, EBX, 12)) 264 #define X86_FEATURE_NPT (CPUID(0x8000000A, 0, EDX, 0)) 265 #define X86_FEATURE_LBRV (CPUID(0x8000000A, 0, EDX, 1)) 266 #define X86_FEATURE_NRIPS (CPUID(0x8000000A, 0, EDX, 3)) 267 #define X86_FEATURE_TSCRATEMSR (CPUID(0x8000000A, 0, EDX, 4)) 268 #define X86_FEATURE_PAUSEFILTER (CPUID(0x8000000A, 0, EDX, 10)) 269 #define X86_FEATURE_PFTHRESHOLD (CPUID(0x8000000A, 0, EDX, 12)) 270 #define X86_FEATURE_VGIF (CPUID(0x8000000A, 0, EDX, 16)) 271 #define X86_FEATURE_VNMI (CPUID(0x8000000A, 0, EDX, 25)) 272 #define X86_FEATURE_AMD_PMU_V2 (CPUID(0x80000022, 0, EAX, 0)) 273 274 static inline bool this_cpu_has(u64 feature) 275 { 276 u32 input_eax = feature >> 32; 277 u32 input_ecx = (feature >> 16) & 0xffff; 278 u32 output_reg = (feature >> 8) & 0xff; 279 u8 bit = feature & 0xff; 280 struct cpuid c; 281 u32 *tmp; 282 283 c = cpuid_indexed(input_eax, input_ecx); 284 tmp = (u32 *)&c; 285 286 return ((*(tmp + (output_reg % 32))) & (1 << bit)); 287 } 288 289 struct far_pointer32 { 290 u32 offset; 291 u16 selector; 292 } __attribute__((packed)); 293 294 struct descriptor_table_ptr { 295 u16 limit; 296 ulong base; 297 } __attribute__((packed)); 298 299 static inline void clac(void) 300 { 301 asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory"); 302 } 303 304 static inline void stac(void) 305 { 306 asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory"); 307 } 308 309 static inline u16 read_cs(void) 310 { 311 unsigned val; 312 313 asm volatile ("mov %%cs, %0" : "=mr"(val)); 314 return val; 315 } 316 317 static inline u16 read_ds(void) 318 { 319 unsigned val; 320 321 asm volatile ("mov %%ds, %0" : "=mr"(val)); 322 return val; 323 } 324 325 static inline u16 read_es(void) 326 { 327 unsigned val; 328 329 asm volatile ("mov %%es, %0" : "=mr"(val)); 330 return val; 331 } 332 333 static inline u16 read_ss(void) 334 { 335 unsigned val; 336 337 asm volatile ("mov %%ss, %0" : "=mr"(val)); 338 return val; 339 } 340 341 static inline u16 read_fs(void) 342 { 343 unsigned val; 344 345 asm volatile ("mov %%fs, %0" : "=mr"(val)); 346 return val; 347 } 348 349 static inline u16 read_gs(void) 350 { 351 unsigned val; 352 353 asm volatile ("mov %%gs, %0" : "=mr"(val)); 354 return val; 355 } 356 357 static inline unsigned long read_rflags(void) 358 { 359 unsigned long f; 360 asm volatile ("pushf; pop %0\n\t" : "=rm"(f)); 361 return f; 362 } 363 364 static inline void write_ds(unsigned val) 365 { 366 asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory"); 367 } 368 369 static inline void write_es(unsigned val) 370 { 371 asm volatile ("mov %0, %%es" : : "rm"(val) : "memory"); 372 } 373 374 static inline void write_ss(unsigned val) 375 { 376 asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory"); 377 } 378 379 static inline void write_fs(unsigned val) 380 { 381 asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory"); 382 } 383 384 static inline void write_gs(unsigned val) 385 { 386 asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory"); 387 } 388 389 static inline void write_rflags(unsigned long f) 390 { 391 asm volatile ("push %0; popf\n\t" : : "rm"(f)); 392 } 393 394 static inline void set_iopl(int iopl) 395 { 396 unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL; 397 flags |= iopl * (X86_EFLAGS_IOPL / 3); 398 write_rflags(flags); 399 } 400 401 /* 402 * Don't use the safe variants for rdmsr() or wrmsr(). The exception fixup 403 * infrastructure uses per-CPU data and thus consumes GS.base. Various tests 404 * temporarily modify MSR_GS_BASE and will explode when trying to determine 405 * whether or not RDMSR/WRMSR faulted. 406 */ 407 static inline u64 rdmsr(u32 index) 408 { 409 u32 a, d; 410 asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory"); 411 return a | ((u64)d << 32); 412 } 413 414 static inline void wrmsr(u32 index, u64 val) 415 { 416 u32 a = val, d = val >> 32; 417 asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory"); 418 } 419 420 #define rdreg64_safe(insn, index, val) \ 421 ({ \ 422 uint32_t a, d; \ 423 int vector; \ 424 \ 425 vector = asm_safe_out2(insn, "=a"(a), "=d"(d), "c"(index)); \ 426 \ 427 if (vector) \ 428 *(val) = 0; \ 429 else \ 430 *(val) = (uint64_t)a | ((uint64_t)d << 32); \ 431 vector; \ 432 }) 433 434 static inline int rdmsr_safe(u32 index, uint64_t *val) 435 { 436 return rdreg64_safe("rdmsr", index, val); 437 } 438 439 static inline int wrmsr_safe(u32 index, u64 val) 440 { 441 u32 a = val, d = val >> 32; 442 443 return asm_safe("wrmsr", "a"(a), "d"(d), "c"(index)); 444 } 445 446 static inline int rdpmc_safe(u32 index, uint64_t *val) 447 { 448 return rdreg64_safe("rdpmc", index, val); 449 } 450 451 static inline uint64_t rdpmc(uint32_t index) 452 { 453 uint64_t val; 454 int vector = rdpmc_safe(index, &val); 455 456 assert_msg(!vector, "Unexpected %s on RDPMC(%" PRId32 ")", 457 exception_mnemonic(vector), index); 458 return val; 459 } 460 461 static inline int write_cr0_safe(ulong val) 462 { 463 return asm_safe("mov %0,%%cr0", "r" (val)); 464 } 465 466 static inline void write_cr0(ulong val) 467 { 468 int vector = write_cr0_safe(val); 469 470 assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx", 471 vector, val); 472 } 473 474 static inline ulong read_cr0(void) 475 { 476 ulong val; 477 asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory"); 478 return val; 479 } 480 481 static inline void write_cr2(ulong val) 482 { 483 asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory"); 484 } 485 486 static inline ulong read_cr2(void) 487 { 488 ulong val; 489 asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory"); 490 return val; 491 } 492 493 static inline int write_cr3_safe(ulong val) 494 { 495 return asm_safe("mov %0,%%cr3", "r" (val)); 496 } 497 498 static inline void write_cr3(ulong val) 499 { 500 int vector = write_cr3_safe(val); 501 502 assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx", 503 vector, val); 504 } 505 506 static inline ulong read_cr3(void) 507 { 508 ulong val; 509 asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory"); 510 return val; 511 } 512 513 static inline void update_cr3(void *cr3) 514 { 515 write_cr3((ulong)cr3); 516 } 517 518 static inline int write_cr4_safe(ulong val) 519 { 520 return asm_safe("mov %0,%%cr4", "r" (val)); 521 } 522 523 static inline void write_cr4(ulong val) 524 { 525 int vector = write_cr4_safe(val); 526 527 assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx", 528 vector, val); 529 } 530 531 static inline ulong read_cr4(void) 532 { 533 ulong val; 534 asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory"); 535 return val; 536 } 537 538 static inline void write_cr8(ulong val) 539 { 540 asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory"); 541 } 542 543 static inline ulong read_cr8(void) 544 { 545 ulong val; 546 asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory"); 547 return val; 548 } 549 550 static inline void lgdt(const struct descriptor_table_ptr *ptr) 551 { 552 asm volatile ("lgdt %0" : : "m"(*ptr)); 553 } 554 555 static inline void sgdt(struct descriptor_table_ptr *ptr) 556 { 557 asm volatile ("sgdt %0" : "=m"(*ptr)); 558 } 559 560 static inline void lidt(const struct descriptor_table_ptr *ptr) 561 { 562 asm volatile ("lidt %0" : : "m"(*ptr)); 563 } 564 565 static inline void sidt(struct descriptor_table_ptr *ptr) 566 { 567 asm volatile ("sidt %0" : "=m"(*ptr)); 568 } 569 570 static inline void lldt(u16 val) 571 { 572 asm volatile ("lldt %0" : : "rm"(val)); 573 } 574 575 static inline u16 sldt(void) 576 { 577 u16 val; 578 asm volatile ("sldt %0" : "=rm"(val)); 579 return val; 580 } 581 582 static inline void ltr(u16 val) 583 { 584 asm volatile ("ltr %0" : : "rm"(val)); 585 } 586 587 static inline u16 str(void) 588 { 589 u16 val; 590 asm volatile ("str %0" : "=rm"(val)); 591 return val; 592 } 593 594 static inline void write_dr0(void *val) 595 { 596 asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory"); 597 } 598 599 static inline void write_dr1(void *val) 600 { 601 asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory"); 602 } 603 604 static inline void write_dr2(void *val) 605 { 606 asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory"); 607 } 608 609 static inline void write_dr3(void *val) 610 { 611 asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory"); 612 } 613 614 static inline void write_dr6(ulong val) 615 { 616 asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory"); 617 } 618 619 static inline ulong read_dr6(void) 620 { 621 ulong val; 622 asm volatile ("mov %%dr6, %0" : "=r"(val)); 623 return val; 624 } 625 626 static inline void write_dr7(ulong val) 627 { 628 asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory"); 629 } 630 631 static inline ulong read_dr7(void) 632 { 633 ulong val; 634 asm volatile ("mov %%dr7, %0" : "=r"(val)); 635 return val; 636 } 637 638 static inline void pause(void) 639 { 640 asm volatile ("pause"); 641 } 642 643 static inline void cli(void) 644 { 645 asm volatile ("cli"); 646 } 647 648 static inline void sti(void) 649 { 650 asm volatile ("sti"); 651 } 652 653 static inline unsigned long long rdrand(void) 654 { 655 long long r; 656 657 asm volatile("rdrand %0\n\t" 658 "jc 1f\n\t" 659 "mov $0, %0\n\t" 660 "1:\n\t" : "=r" (r)); 661 return r; 662 } 663 664 static inline unsigned long long rdtsc(void) 665 { 666 long long r; 667 668 #ifdef __x86_64__ 669 unsigned a, d; 670 671 asm volatile ("rdtsc" : "=a"(a), "=d"(d)); 672 r = a | ((long long)d << 32); 673 #else 674 asm volatile ("rdtsc" : "=A"(r)); 675 #endif 676 return r; 677 } 678 679 /* 680 * Per the advice in the SDM, volume 2, the sequence "mfence; lfence" 681 * executed immediately before rdtsc ensures that rdtsc will be 682 * executed only after all previous instructions have executed and all 683 * previous loads and stores are globally visible. In addition, the 684 * lfence immediately after rdtsc ensures that rdtsc will be executed 685 * prior to the execution of any subsequent instruction. 686 */ 687 static inline unsigned long long fenced_rdtsc(void) 688 { 689 unsigned long long tsc; 690 691 #ifdef __x86_64__ 692 unsigned int eax, edx; 693 694 asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 695 tsc = eax | ((unsigned long long)edx << 32); 696 #else 697 asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc)); 698 #endif 699 return tsc; 700 } 701 702 static inline unsigned long long rdtscp(u32 *aux) 703 { 704 long long r; 705 706 #ifdef __x86_64__ 707 unsigned a, d; 708 709 asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux)); 710 r = a | ((long long)d << 32); 711 #else 712 asm volatile ("rdtscp" : "=A"(r), "=c"(*aux)); 713 #endif 714 return r; 715 } 716 717 static inline void wrtsc(u64 tsc) 718 { 719 wrmsr(MSR_IA32_TSC, tsc); 720 } 721 722 static inline void irq_disable(void) 723 { 724 asm volatile("cli"); 725 } 726 727 /* Note that irq_enable() does not ensure an interrupt shadow due 728 * to the vagaries of compiler optimizations. If you need the 729 * shadow, use a single asm with "sti" and the instruction after it. 730 */ 731 static inline void irq_enable(void) 732 { 733 asm volatile("sti"); 734 } 735 736 static inline void invlpg(volatile void *va) 737 { 738 asm volatile("invlpg (%0)" ::"r" (va) : "memory"); 739 } 740 741 static inline void safe_halt(void) 742 { 743 asm volatile("sti; hlt"); 744 } 745 746 static inline u32 read_pkru(void) 747 { 748 unsigned int eax, edx; 749 unsigned int ecx = 0; 750 unsigned int pkru; 751 752 asm volatile(".byte 0x0f,0x01,0xee\n\t" 753 : "=a" (eax), "=d" (edx) 754 : "c" (ecx)); 755 pkru = eax; 756 return pkru; 757 } 758 759 static inline void write_pkru(u32 pkru) 760 { 761 unsigned int eax = pkru; 762 unsigned int ecx = 0; 763 unsigned int edx = 0; 764 765 asm volatile(".byte 0x0f,0x01,0xef\n\t" 766 : : "a" (eax), "c" (ecx), "d" (edx)); 767 } 768 769 static inline bool is_canonical(u64 addr) 770 { 771 int va_width = (raw_cpuid(0x80000008, 0).a & 0xff00) >> 8; 772 int shift_amt = 64 - va_width; 773 774 return (s64)(addr << shift_amt) >> shift_amt == addr; 775 } 776 777 static inline void clear_bit(int bit, u8 *addr) 778 { 779 __asm__ __volatile__("btr %1, %0" 780 : "+m" (*addr) : "Ir" (bit) : "cc", "memory"); 781 } 782 783 static inline void set_bit(int bit, u8 *addr) 784 { 785 __asm__ __volatile__("bts %1, %0" 786 : "+m" (*addr) : "Ir" (bit) : "cc", "memory"); 787 } 788 789 static inline void flush_tlb(void) 790 { 791 ulong cr4; 792 793 cr4 = read_cr4(); 794 write_cr4(cr4 ^ X86_CR4_PGE); 795 write_cr4(cr4); 796 } 797 798 static inline void generate_non_canonical_gp(void) 799 { 800 *(volatile u64 *)NONCANONICAL = 0; 801 } 802 803 static inline void generate_ud(void) 804 { 805 asm volatile ("ud2"); 806 } 807 808 static inline void generate_de(void) 809 { 810 asm volatile ( 811 "xor %%eax, %%eax\n\t" 812 "xor %%ebx, %%ebx\n\t" 813 "xor %%edx, %%edx\n\t" 814 "idiv %%ebx\n\t" 815 ::: "eax", "ebx", "edx"); 816 } 817 818 static inline void generate_bp(void) 819 { 820 asm volatile ("int3"); 821 } 822 823 static inline void generate_single_step_db(void) 824 { 825 write_rflags(read_rflags() | X86_EFLAGS_TF); 826 asm volatile("nop"); 827 } 828 829 static inline uint64_t generate_usermode_ac(void) 830 { 831 /* 832 * Trigger an #AC by writing 8 bytes to a 4-byte aligned address. 833 * Disclaimer: It is assumed that the stack pointer is aligned 834 * on a 16-byte boundary as x86_64 stacks should be. 835 */ 836 asm volatile("movq $0, -0x4(%rsp)"); 837 838 return 0; 839 } 840 841 /* 842 * Switch from 64-bit to 32-bit mode and generate #OF via INTO. Note, if RIP 843 * or RSP holds a 64-bit value, this helper will NOT generate #OF. 844 */ 845 static inline void generate_of(void) 846 { 847 struct far_pointer32 fp = { 848 .offset = (uintptr_t)&&into, 849 .selector = KERNEL_CS32, 850 }; 851 uintptr_t rsp; 852 853 asm volatile ("mov %%rsp, %0" : "=r"(rsp)); 854 855 if (fp.offset != (uintptr_t)&&into) { 856 printf("Code address too high.\n"); 857 return; 858 } 859 if ((u32)rsp != rsp) { 860 printf("Stack address too high.\n"); 861 return; 862 } 863 864 asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); 865 return; 866 into: 867 asm volatile (".code32;" 868 "movl $0x7fffffff, %eax;" 869 "addl %eax, %eax;" 870 "into;" 871 "lret;" 872 ".code64"); 873 __builtin_unreachable(); 874 } 875 876 static inline void fnop(void) 877 { 878 asm volatile("fnop"); 879 } 880 881 /* If CR0.TS is set in L2, #NM is generated. */ 882 static inline void generate_cr0_ts_nm(void) 883 { 884 write_cr0((read_cr0() & ~X86_CR0_EM) | X86_CR0_TS); 885 fnop(); 886 } 887 888 /* If CR0.TS is cleared and CR0.EM is set, #NM is generated. */ 889 static inline void generate_cr0_em_nm(void) 890 { 891 write_cr0((read_cr0() & ~X86_CR0_TS) | X86_CR0_EM); 892 fnop(); 893 } 894 895 #endif 896