xref: /kvm-unit-tests/lib/s390x/smp.c (revision 257c962f3d1b2d0534af59de4ad18764d734903a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * s390x smp
4  * Based on Linux's arch/s390/kernel/smp.c and
5  * arch/s390/include/asm/sigp.h
6  *
7  * Copyright (c) 2019 IBM Corp
8  *
9  * Authors:
10  *  Janosch Frank <frankja@linux.ibm.com>
11  */
12 #include <libcflat.h>
13 #include <bitops.h>
14 #include <asm/arch_def.h>
15 #include <asm/sigp.h>
16 #include <asm/page.h>
17 #include <asm/barrier.h>
18 #include <asm/spinlock.h>
19 #include <asm/asm-offsets.h>
20 
21 #include <alloc.h>
22 #include <alloc_page.h>
23 
24 #include "smp.h"
25 #include "sclp.h"
26 
27 static struct cpu *cpus;
28 static struct spinlock lock;
29 
30 extern void smp_cpu_setup_state(void);
31 
32 static void check_idx(uint16_t idx)
33 {
34 	assert(idx < smp_query_num_cpus());
35 }
36 
37 int smp_query_num_cpus(void)
38 {
39 	return sclp_get_cpu_num();
40 }
41 
42 int smp_sigp(uint16_t idx, uint8_t order, unsigned long parm, uint32_t *status)
43 {
44 	check_idx(idx);
45 	return sigp(cpus[idx].addr, order, parm, status);
46 }
47 
48 int smp_sigp_retry(uint16_t idx, uint8_t order, unsigned long parm, uint32_t *status)
49 {
50 	check_idx(idx);
51 	return sigp_retry(cpus[idx].addr, order, parm, status);
52 }
53 
54 struct cpu *smp_cpu_from_addr(uint16_t addr)
55 {
56 	int i, num = smp_query_num_cpus();
57 
58 	for (i = 0; i < num; i++) {
59 		if (cpus[i].addr == addr)
60 			return &cpus[i];
61 	}
62 	return NULL;
63 }
64 
65 struct cpu *smp_cpu_from_idx(uint16_t idx)
66 {
67 	check_idx(idx);
68 	return &cpus[idx];
69 }
70 
71 uint16_t smp_cpu_addr(uint16_t idx)
72 {
73 	check_idx(idx);
74 	return cpus[idx].addr;
75 }
76 
77 bool smp_cpu_stopped(uint16_t idx)
78 {
79 	uint32_t status;
80 
81 	if (smp_sigp(idx, SIGP_SENSE, 0, &status) != SIGP_CC_STATUS_STORED)
82 		return false;
83 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
84 }
85 
86 bool smp_sense_running_status(uint16_t idx)
87 {
88 	if (smp_sigp(idx, SIGP_SENSE_RUNNING, 0, NULL) != SIGP_CC_STATUS_STORED)
89 		return true;
90 	/* Status stored condition code is equivalent to cpu not running. */
91 	return false;
92 }
93 
94 static int smp_cpu_stop_nolock(uint16_t idx, bool store)
95 {
96 	uint8_t order = store ? SIGP_STOP_AND_STORE_STATUS : SIGP_STOP;
97 
98 	/* refuse to work on the boot CPU */
99 	if (idx == 0)
100 		return -1;
101 
102 	if (smp_sigp_retry(idx, order, 0, NULL))
103 		return -1;
104 
105 	while (!smp_cpu_stopped(idx))
106 		mb();
107 	/* idx has been already checked by the smp_* functions called above */
108 	cpus[idx].active = false;
109 	return 0;
110 }
111 
112 int smp_cpu_stop(uint16_t idx)
113 {
114 	int rc;
115 
116 	spin_lock(&lock);
117 	rc = smp_cpu_stop_nolock(idx, false);
118 	spin_unlock(&lock);
119 	return rc;
120 }
121 
122 int smp_cpu_stop_store_status(uint16_t idx)
123 {
124 	int rc;
125 
126 	spin_lock(&lock);
127 	rc = smp_cpu_stop_nolock(idx, true);
128 	spin_unlock(&lock);
129 	return rc;
130 }
131 
132 static int smp_cpu_restart_nolock(uint16_t idx, struct psw *psw)
133 {
134 	int rc;
135 
136 	check_idx(idx);
137 	if (psw) {
138 		cpus[idx].lowcore->restart_new_psw.mask = psw->mask;
139 		cpus[idx].lowcore->restart_new_psw.addr = psw->addr;
140 	}
141 	/*
142 	 * Stop the cpu, so we don't have a race between a running cpu
143 	 * and the restart in the test that checks if the cpu is
144 	 * running after the restart.
145 	 */
146 	smp_cpu_stop_nolock(idx, false);
147 	rc = smp_sigp(idx, SIGP_RESTART, 0, NULL);
148 	if (rc)
149 		return rc;
150 	/*
151 	 * The order has been accepted, but the actual restart may not
152 	 * have been performed yet, so wait until the cpu is running.
153 	 */
154 	while (smp_cpu_stopped(idx))
155 		mb();
156 	cpus[idx].active = true;
157 	return 0;
158 }
159 
160 int smp_cpu_restart(uint16_t idx)
161 {
162 	int rc;
163 
164 	spin_lock(&lock);
165 	rc = smp_cpu_restart_nolock(idx, NULL);
166 	spin_unlock(&lock);
167 	return rc;
168 }
169 
170 int smp_cpu_start(uint16_t idx, struct psw psw)
171 {
172 	int rc;
173 
174 	spin_lock(&lock);
175 	rc = smp_cpu_restart_nolock(idx, &psw);
176 	spin_unlock(&lock);
177 	return rc;
178 }
179 
180 int smp_cpu_destroy(uint16_t idx)
181 {
182 	int rc;
183 
184 	spin_lock(&lock);
185 	rc = smp_cpu_stop_nolock(idx, false);
186 	if (!rc) {
187 		free_pages(cpus[idx].lowcore);
188 		free_pages(cpus[idx].stack);
189 		cpus[idx].lowcore = (void *)-1UL;
190 		cpus[idx].stack = (void *)-1UL;
191 	}
192 	spin_unlock(&lock);
193 	return rc;
194 }
195 
196 static int smp_cpu_setup_nolock(uint16_t idx, struct psw psw)
197 {
198 	struct lowcore *lc;
199 
200 	if (cpus[idx].active)
201 		return -1;
202 
203 	smp_sigp_retry(idx, SIGP_INITIAL_CPU_RESET, 0, NULL);
204 
205 	lc = alloc_pages_flags(1, AREA_DMA31);
206 	cpus[idx].lowcore = lc;
207 	smp_sigp_retry(idx, SIGP_SET_PREFIX, (unsigned long )lc, NULL);
208 
209 	/* Copy all exception psws. */
210 	memcpy(lc, cpus[0].lowcore, 512);
211 
212 	/* Setup stack */
213 	cpus[idx].stack = (uint64_t *)alloc_pages(2);
214 
215 	/* Start without DAT and any other mask bits. */
216 	lc->sw_int_psw.mask = psw.mask;
217 	lc->sw_int_psw.addr = psw.addr;
218 	lc->sw_int_grs[14] = psw.addr;
219 	lc->sw_int_grs[15] = (uint64_t)cpus[idx].stack + (PAGE_SIZE * 4);
220 	lc->restart_new_psw.mask = PSW_MASK_64;
221 	lc->restart_new_psw.addr = (uint64_t)smp_cpu_setup_state;
222 	lc->sw_int_crs[0] = BIT_ULL(CTL0_AFP);
223 
224 	/* Start processing */
225 	smp_cpu_restart_nolock(idx, NULL);
226 	/* Wait until the cpu has finished setup and started the provided psw */
227 	while (lc->restart_new_psw.addr != psw.addr)
228 		mb();
229 
230 	return 0;
231 }
232 
233 int smp_cpu_setup(uint16_t idx, struct psw psw)
234 {
235 	int rc = -1;
236 
237 	spin_lock(&lock);
238 	if (cpus) {
239 		check_idx(idx);
240 		rc = smp_cpu_setup_nolock(idx, psw);
241 	}
242 	spin_unlock(&lock);
243 	return rc;
244 }
245 
246 /*
247  * Disregarding state, stop all cpus that once were online except for
248  * calling cpu.
249  */
250 void smp_teardown(void)
251 {
252 	int i = 0;
253 	uint16_t this_cpu = stap();
254 	int num = smp_query_num_cpus();
255 
256 	spin_lock(&lock);
257 	for (; i < num; i++) {
258 		if (cpus[i].active &&
259 		    cpus[i].addr != this_cpu) {
260 			sigp_retry(cpus[i].addr, SIGP_STOP, 0, NULL);
261 		}
262 	}
263 	spin_unlock(&lock);
264 }
265 
266 /*Expected to be called from boot cpu */
267 extern uint64_t *stackptr;
268 void smp_setup(void)
269 {
270 	int i = 0;
271 	int num = smp_query_num_cpus();
272 	unsigned short cpu0_addr = stap();
273 	struct CPUEntry *entry = sclp_get_cpu_entries();
274 
275 	spin_lock(&lock);
276 	if (num > 1)
277 		printf("SMP: Initializing, found %d cpus\n", num);
278 
279 	cpus = calloc(num, sizeof(*cpus));
280 	for (i = 0; i < num; i++) {
281 		cpus[i].addr = entry[i].address;
282 		cpus[i].active = false;
283 		/*
284 		 * Fill in the boot CPU. If the boot CPU is not at index 0,
285 		 * swap it with the one at index 0. This guarantees that the
286 		 * boot CPU will always have index 0. If the boot CPU was
287 		 * already at index 0, a few extra useless assignments are
288 		 * performed, but everything will work ok.
289 		 * Notice that there is no guarantee that the list of CPUs
290 		 * returned by the Read SCP Info command is in any
291 		 * particular order, or that its order will stay consistent
292 		 * across multiple invocations.
293 		 */
294 		if (entry[i].address == cpu0_addr) {
295 			cpus[i].addr = cpus[0].addr;
296 			cpus[0].addr = cpu0_addr;
297 			cpus[0].stack = stackptr;
298 			cpus[0].lowcore = (void *)0;
299 			cpus[0].active = true;
300 		}
301 	}
302 	spin_unlock(&lock);
303 }
304