1 /* 2 * Initialize machine setup information and I/O. 3 * 4 * After running setup() unit tests may query how many cpus they have 5 * (nr_cpus), how much memory they have (PHYSICAL_END - PHYSICAL_START), 6 * may use dynamic memory allocation (malloc, etc.), printf, and exit. 7 * Finally, argc and argv are also ready to be passed to main(). 8 * 9 * Copyright (C) 2016, Red Hat Inc, Andrew Jones <drjones@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU LGPL, version 2. 12 */ 13 #include <libcflat.h> 14 #include <libfdt/libfdt.h> 15 #include <devicetree.h> 16 #include <alloc.h> 17 #include <asm/setup.h> 18 #include <asm/page.h> 19 #include <asm/hcall.h> 20 21 extern unsigned long stacktop; 22 extern void io_init(void); 23 extern void setup_args_progname(const char *args); 24 25 char *initrd; 26 u32 initrd_size; 27 28 u32 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (~0U) }; 29 int nr_cpus; 30 uint64_t tb_hz; 31 32 struct mem_region mem_regions[NR_MEM_REGIONS]; 33 phys_addr_t __physical_start, __physical_end; 34 unsigned __icache_bytes, __dcache_bytes; 35 36 struct cpu_set_params { 37 unsigned icache_bytes; 38 unsigned dcache_bytes; 39 uint64_t tb_hz; 40 }; 41 42 #define EXCEPTION_STACK_SIZE (32*1024) /* 32kB */ 43 44 static char exception_stack[NR_CPUS][EXCEPTION_STACK_SIZE]; 45 46 static void cpu_set(int fdtnode, u64 regval, void *info) 47 { 48 static bool read_common_info = false; 49 struct cpu_set_params *params = info; 50 int cpu = nr_cpus++; 51 52 if (cpu >= NR_CPUS) { 53 printf("Number cpus exceeds maximum supported (%d).\n", 54 NR_CPUS); 55 assert(0); 56 } 57 cpus[cpu] = regval; 58 59 /* set exception stack address for this CPU (in SPGR0) */ 60 61 asm volatile ("mtsprg0 %[addr]" :: 62 [addr] "r" (exception_stack[cpu + 1])); 63 64 if (!read_common_info) { 65 const struct fdt_property *prop; 66 u32 *data; 67 68 prop = fdt_get_property(dt_fdt(), fdtnode, 69 "i-cache-line-size", NULL); 70 assert(prop != NULL); 71 data = (u32 *)prop->data; 72 params->icache_bytes = fdt32_to_cpu(*data); 73 74 prop = fdt_get_property(dt_fdt(), fdtnode, 75 "d-cache-line-size", NULL); 76 assert(prop != NULL); 77 data = (u32 *)prop->data; 78 params->dcache_bytes = fdt32_to_cpu(*data); 79 80 prop = fdt_get_property(dt_fdt(), fdtnode, 81 "timebase-frequency", NULL); 82 assert(prop != NULL); 83 data = (u32 *)prop->data; 84 params->tb_hz = fdt32_to_cpu(*data); 85 86 read_common_info = true; 87 } 88 } 89 90 static void cpu_init(void) 91 { 92 struct cpu_set_params params; 93 int ret; 94 95 nr_cpus = 0; 96 ret = dt_for_each_cpu_node(cpu_set, ¶ms); 97 assert(ret == 0); 98 __icache_bytes = params.icache_bytes; 99 __dcache_bytes = params.dcache_bytes; 100 tb_hz = params.tb_hz; 101 102 /* Interrupt Endianness */ 103 104 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 105 hcall(H_SET_MODE, 1, 4, 0, 0); 106 #else 107 hcall(H_SET_MODE, 0, 4, 0, 0); 108 #endif 109 } 110 111 static void mem_init(phys_addr_t freemem_start) 112 { 113 struct dt_pbus_reg regs[NR_MEM_REGIONS]; 114 struct mem_region primary, mem = { 115 .start = (phys_addr_t)-1, 116 }; 117 int nr_regs, i; 118 119 nr_regs = dt_get_memory_params(regs, NR_MEM_REGIONS); 120 assert(nr_regs > 0); 121 122 primary.end = 0; 123 124 for (i = 0; i < nr_regs; ++i) { 125 mem_regions[i].start = regs[i].addr; 126 mem_regions[i].end = regs[i].addr + regs[i].size; 127 128 /* 129 * pick the region we're in for our primary region 130 */ 131 if (freemem_start >= mem_regions[i].start 132 && freemem_start < mem_regions[i].end) { 133 mem_regions[i].flags |= MR_F_PRIMARY; 134 primary = mem_regions[i]; 135 } 136 137 /* 138 * set the lowest and highest addresses found, 139 * ignoring potential gaps 140 */ 141 if (mem_regions[i].start < mem.start) 142 mem.start = mem_regions[i].start; 143 if (mem_regions[i].end > mem.end) 144 mem.end = mem_regions[i].end; 145 } 146 assert(primary.end != 0); 147 // assert(!(mem.start & ~PHYS_MASK) && !((mem.end - 1) & ~PHYS_MASK)); 148 149 __physical_start = mem.start; /* PHYSICAL_START */ 150 __physical_end = mem.end; /* PHYSICAL_END */ 151 152 phys_alloc_init(freemem_start, primary.end - freemem_start); 153 phys_alloc_set_minimum_alignment(__icache_bytes > __dcache_bytes 154 ? __icache_bytes : __dcache_bytes); 155 } 156 157 void setup(const void *fdt) 158 { 159 void *freemem = &stacktop; 160 const char *bootargs, *tmp; 161 u32 fdt_size; 162 int ret; 163 164 /* 165 * Before calling mem_init we need to move the fdt and initrd 166 * to safe locations. We move them to construct the memory 167 * map illustrated below: 168 * 169 * +----------------------+ <-- top of physical memory 170 * | | 171 * ~ ~ 172 * | | 173 * +----------------------+ <-- top of initrd 174 * | | 175 * +----------------------+ <-- top of FDT 176 * | | 177 * +----------------------+ <-- top of cpu0's stack 178 * | | 179 * +----------------------+ <-- top of text/data/bss sections, 180 * | | see arm/flat.lds 181 * | | 182 * +----------------------+ <-- load address 183 * | | 184 * +----------------------+ 185 */ 186 fdt_size = fdt_totalsize(fdt); 187 ret = fdt_move(fdt, freemem, fdt_size); 188 assert(ret == 0); 189 ret = dt_init(freemem); 190 assert(ret == 0); 191 freemem += fdt_size; 192 193 ret = dt_get_initrd(&tmp, &initrd_size); 194 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 195 if (ret == 0) { 196 initrd = freemem; 197 memmove(initrd, tmp, initrd_size); 198 freemem += initrd_size; 199 } 200 201 /* call init functions */ 202 cpu_init(); 203 204 /* cpu_init must be called before mem_init */ 205 mem_init(PAGE_ALIGN((unsigned long)freemem)); 206 207 /* mem_init must be called before io_init */ 208 io_init(); 209 210 /* finish setup */ 211 ret = dt_get_bootargs(&bootargs); 212 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 213 setup_args_progname(bootargs); 214 } 215