1 /* 2 * Initialize machine setup information and I/O. 3 * 4 * After running setup() unit tests may query how many cpus they have 5 * (nr_cpus), how much memory they have (PHYS_END - PHYS_OFFSET), may 6 * use dynamic memory allocation (malloc, etc.), printf, and exit. 7 * Finally, argc and argv are also ready to be passed to main(). 8 * 9 * Copyright (C) 2014, Red Hat Inc, Andrew Jones <drjones@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU LGPL, version 2. 12 */ 13 #include <libcflat.h> 14 #include <libfdt/libfdt.h> 15 #include <devicetree.h> 16 #include <alloc.h> 17 #include <alloc_phys.h> 18 #include <alloc_page.h> 19 #include <argv.h> 20 #include <asm/thread_info.h> 21 #include <asm/setup.h> 22 #include <asm/page.h> 23 #include <asm/processor.h> 24 #include <asm/smp.h> 25 #include <asm/timer.h> 26 27 #include "io.h" 28 29 #define NR_INITIAL_MEM_REGIONS 16 30 31 extern unsigned long stacktop; 32 33 struct timer_state __timer_state; 34 35 char *initrd; 36 u32 initrd_size; 37 38 u64 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (u64)~0 }; 39 int nr_cpus; 40 41 static struct mem_region __initial_mem_regions[NR_INITIAL_MEM_REGIONS + 1]; 42 struct mem_region *mem_regions = __initial_mem_regions; 43 phys_addr_t __phys_offset, __phys_end; 44 45 int mpidr_to_cpu(uint64_t mpidr) 46 { 47 int i; 48 49 for (i = 0; i < nr_cpus; ++i) 50 if (cpus[i] == (mpidr & MPIDR_HWID_BITMASK)) 51 return i; 52 return -1; 53 } 54 55 static void cpu_set(int fdtnode __unused, u64 regval, void *info __unused) 56 { 57 int cpu = nr_cpus++; 58 59 assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); 60 61 cpus[cpu] = regval; 62 set_cpu_present(cpu, true); 63 } 64 65 static void cpu_init(void) 66 { 67 int ret; 68 69 nr_cpus = 0; 70 ret = dt_for_each_cpu_node(cpu_set, NULL); 71 assert(ret == 0); 72 set_cpu_online(0, true); 73 } 74 75 unsigned int mem_region_get_flags(phys_addr_t paddr) 76 { 77 struct mem_region *r; 78 79 for (r = mem_regions; r->end; ++r) { 80 if (paddr >= r->start && paddr < r->end) 81 return r->flags; 82 } 83 84 return MR_F_UNKNOWN; 85 } 86 87 static void mem_init(phys_addr_t freemem_start) 88 { 89 struct dt_pbus_reg regs[NR_INITIAL_MEM_REGIONS]; 90 struct mem_region primary, mem = { 91 .start = (phys_addr_t)-1, 92 }; 93 phys_addr_t base, top; 94 int nr_regs, nr_io = 0, i; 95 96 /* 97 * mach-virt I/O regions: 98 * - The first 1G (arm/arm64) 99 * - 512M at 256G (arm64, arm uses highmem=off) 100 * - 512G at 512G (arm64, arm uses highmem=off) 101 */ 102 mem_regions[nr_io++] = (struct mem_region){ 0, (1ul << 30), MR_F_IO }; 103 #ifdef __aarch64__ 104 mem_regions[nr_io++] = (struct mem_region){ (1ul << 38), (1ul << 38) | (1ul << 29), MR_F_IO }; 105 mem_regions[nr_io++] = (struct mem_region){ (1ul << 39), (1ul << 40), MR_F_IO }; 106 #endif 107 108 nr_regs = dt_get_memory_params(regs, NR_INITIAL_MEM_REGIONS - nr_io); 109 assert(nr_regs > 0); 110 111 primary = (struct mem_region){ 0 }; 112 113 for (i = 0; i < nr_regs; ++i) { 114 struct mem_region *r = &mem_regions[nr_io + i]; 115 116 r->start = regs[i].addr; 117 r->end = regs[i].addr + regs[i].size; 118 119 /* 120 * pick the region we're in for our primary region 121 */ 122 if (freemem_start >= r->start && freemem_start < r->end) { 123 r->flags |= MR_F_PRIMARY; 124 primary = *r; 125 } 126 127 /* 128 * set the lowest and highest addresses found, 129 * ignoring potential gaps 130 */ 131 if (r->start < mem.start) 132 mem.start = r->start; 133 if (r->end > mem.end) 134 mem.end = r->end; 135 } 136 assert(primary.end != 0); 137 assert(!(mem.start & ~PHYS_MASK) && !((mem.end - 1) & ~PHYS_MASK)); 138 139 __phys_offset = primary.start; /* PHYS_OFFSET */ 140 __phys_end = primary.end; /* PHYS_END */ 141 142 phys_alloc_init(freemem_start, primary.end - freemem_start); 143 phys_alloc_set_minimum_alignment(SMP_CACHE_BYTES); 144 145 phys_alloc_get_unused(&base, &top); 146 base = PAGE_ALIGN(base); 147 top = top & PAGE_MASK; 148 assert(sizeof(long) == 8 || !(base >> 32)); 149 if (sizeof(long) != 8 && (top >> 32) != 0) 150 top = ((uint64_t)1 << 32); 151 page_alloc_init_area(0, base >> PAGE_SHIFT, top >> PAGE_SHIFT); 152 page_alloc_ops_enable(); 153 } 154 155 static void timer_save_state(void) 156 { 157 const struct fdt_property *prop; 158 const void *fdt = dt_fdt(); 159 int node, len; 160 u32 *data; 161 162 node = fdt_node_offset_by_compatible(fdt, -1, "arm,armv8-timer"); 163 assert(node >= 0 || node == -FDT_ERR_NOTFOUND); 164 165 if (node == -FDT_ERR_NOTFOUND) { 166 __timer_state.ptimer.irq = -1; 167 __timer_state.vtimer.irq = -1; 168 return; 169 } 170 171 /* 172 * From Linux devicetree timer binding documentation 173 * 174 * interrupts <type irq flags>: 175 * secure timer irq 176 * non-secure timer irq (ptimer) 177 * virtual timer irq (vtimer) 178 * hypervisor timer irq 179 */ 180 prop = fdt_get_property(fdt, node, "interrupts", &len); 181 assert(prop && len == (4 * 3 * sizeof(u32))); 182 183 data = (u32 *)prop->data; 184 assert(fdt32_to_cpu(data[3]) == 1 /* PPI */); 185 __timer_state.ptimer.irq = fdt32_to_cpu(data[4]); 186 __timer_state.ptimer.irq_flags = fdt32_to_cpu(data[5]); 187 assert(fdt32_to_cpu(data[6]) == 1 /* PPI */); 188 __timer_state.vtimer.irq = fdt32_to_cpu(data[7]); 189 __timer_state.vtimer.irq_flags = fdt32_to_cpu(data[8]); 190 } 191 192 void setup(const void *fdt) 193 { 194 void *freemem = &stacktop; 195 const char *bootargs, *tmp; 196 u32 fdt_size; 197 int ret; 198 199 /* 200 * Before calling mem_init we need to move the fdt and initrd 201 * to safe locations. We move them to construct the memory 202 * map illustrated below: 203 * 204 * +----------------------+ <-- top of physical memory 205 * | | 206 * ~ ~ 207 * | | 208 * +----------------------+ <-- top of initrd 209 * | | 210 * +----------------------+ <-- top of FDT 211 * | | 212 * +----------------------+ <-- top of cpu0's stack 213 * | | 214 * +----------------------+ <-- top of text/data/bss sections, 215 * | | see arm/flat.lds 216 * | | 217 * +----------------------+ <-- load address 218 * | | 219 * +----------------------+ 220 */ 221 fdt_size = fdt_totalsize(fdt); 222 ret = fdt_move(fdt, freemem, fdt_size); 223 assert(ret == 0); 224 ret = dt_init(freemem); 225 assert(ret == 0); 226 freemem += fdt_size; 227 228 ret = dt_get_initrd(&tmp, &initrd_size); 229 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 230 if (ret == 0) { 231 initrd = freemem; 232 memmove(initrd, tmp, initrd_size); 233 freemem += initrd_size; 234 } 235 236 /* call init functions */ 237 mem_init(PAGE_ALIGN((unsigned long)freemem)); 238 cpu_init(); 239 240 /* cpu_init must be called before thread_info_init */ 241 thread_info_init(current_thread_info(), 0); 242 243 /* mem_init must be called before io_init */ 244 io_init(); 245 246 /* finish setup */ 247 timer_save_state(); 248 249 ret = dt_get_bootargs(&bootargs); 250 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 251 setup_args_progname(bootargs); 252 253 if (initrd) { 254 /* environ is currently the only file in the initrd */ 255 char *env = malloc(initrd_size); 256 memcpy(env, initrd, initrd_size); 257 setup_env(env, initrd_size); 258 } 259 } 260