1 /* 2 * Initialize machine setup information and I/O. 3 * 4 * After running setup() unit tests may query how many cpus they have 5 * (nr_cpus), how much memory they have (PHYS_END - PHYS_OFFSET), may 6 * use dynamic memory allocation (malloc, etc.), printf, and exit. 7 * Finally, argc and argv are also ready to be passed to main(). 8 * 9 * Copyright (C) 2014, Red Hat Inc, Andrew Jones <drjones@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU LGPL, version 2. 12 */ 13 #include <libcflat.h> 14 #include <libfdt/libfdt.h> 15 #include <devicetree.h> 16 #include <alloc.h> 17 #include <alloc_phys.h> 18 #include <alloc_page.h> 19 #include <argv.h> 20 #include <asm/thread_info.h> 21 #include <asm/setup.h> 22 #include <asm/page.h> 23 #include <asm/processor.h> 24 #include <asm/smp.h> 25 #include <asm/timer.h> 26 27 #include "io.h" 28 29 #define NR_INITIAL_MEM_REGIONS 16 30 31 extern unsigned long stacktop; 32 33 struct timer_state __timer_state; 34 35 char *initrd; 36 u32 initrd_size; 37 38 u64 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (u64)~0 }; 39 int nr_cpus; 40 41 static struct mem_region __initial_mem_regions[NR_INITIAL_MEM_REGIONS + 1]; 42 struct mem_region *mem_regions = __initial_mem_regions; 43 phys_addr_t __phys_offset, __phys_end; 44 45 u32 dcache_line_size; 46 47 int mpidr_to_cpu(uint64_t mpidr) 48 { 49 int i; 50 51 for (i = 0; i < nr_cpus; ++i) 52 if (cpus[i] == (mpidr & MPIDR_HWID_BITMASK)) 53 return i; 54 return -1; 55 } 56 57 static void cpu_set(int fdtnode __unused, u64 regval, void *info __unused) 58 { 59 int cpu = nr_cpus++; 60 61 assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); 62 63 cpus[cpu] = regval; 64 set_cpu_present(cpu, true); 65 } 66 67 static void cpu_init(void) 68 { 69 int ret; 70 71 nr_cpus = 0; 72 ret = dt_for_each_cpu_node(cpu_set, NULL); 73 assert(ret == 0); 74 set_cpu_online(0, true); 75 /* 76 * DminLine is log2 of the number of words in the smallest cache line; a 77 * word is 4 bytes. 78 */ 79 dcache_line_size = 1 << (CTR_DMINLINE(get_ctr()) + 2); 80 } 81 82 unsigned int mem_region_get_flags(phys_addr_t paddr) 83 { 84 struct mem_region *r; 85 86 for (r = mem_regions; r->end; ++r) { 87 if (paddr >= r->start && paddr < r->end) 88 return r->flags; 89 } 90 91 return MR_F_UNKNOWN; 92 } 93 94 static void mem_init(phys_addr_t freemem_start) 95 { 96 struct dt_pbus_reg regs[NR_INITIAL_MEM_REGIONS]; 97 struct mem_region primary, mem = { 98 .start = (phys_addr_t)-1, 99 }; 100 phys_addr_t base, top; 101 int nr_regs, nr_io = 0, i; 102 103 /* 104 * mach-virt I/O regions: 105 * - The first 1G (arm/arm64) 106 * - 512M at 256G (arm64, arm uses highmem=off) 107 * - 512G at 512G (arm64, arm uses highmem=off) 108 */ 109 mem_regions[nr_io++] = (struct mem_region){ 0, (1ul << 30), MR_F_IO }; 110 #ifdef __aarch64__ 111 mem_regions[nr_io++] = (struct mem_region){ (1ul << 38), (1ul << 38) | (1ul << 29), MR_F_IO }; 112 mem_regions[nr_io++] = (struct mem_region){ (1ul << 39), (1ul << 40), MR_F_IO }; 113 #endif 114 115 nr_regs = dt_get_memory_params(regs, NR_INITIAL_MEM_REGIONS - nr_io); 116 assert(nr_regs > 0); 117 118 primary = (struct mem_region){ 0 }; 119 120 for (i = 0; i < nr_regs; ++i) { 121 struct mem_region *r = &mem_regions[nr_io + i]; 122 123 r->start = regs[i].addr; 124 r->end = regs[i].addr + regs[i].size; 125 126 /* 127 * pick the region we're in for our primary region 128 */ 129 if (freemem_start >= r->start && freemem_start < r->end) { 130 r->flags |= MR_F_PRIMARY; 131 primary = *r; 132 } 133 134 /* 135 * set the lowest and highest addresses found, 136 * ignoring potential gaps 137 */ 138 if (r->start < mem.start) 139 mem.start = r->start; 140 if (r->end > mem.end) 141 mem.end = r->end; 142 } 143 assert(primary.end != 0); 144 assert(!(mem.start & ~PHYS_MASK) && !((mem.end - 1) & ~PHYS_MASK)); 145 146 __phys_offset = primary.start; /* PHYS_OFFSET */ 147 __phys_end = primary.end; /* PHYS_END */ 148 149 phys_alloc_init(freemem_start, primary.end - freemem_start); 150 phys_alloc_set_minimum_alignment(SMP_CACHE_BYTES); 151 152 phys_alloc_get_unused(&base, &top); 153 base = PAGE_ALIGN(base); 154 top = top & PAGE_MASK; 155 assert(sizeof(long) == 8 || !(base >> 32)); 156 if (sizeof(long) != 8 && (top >> 32) != 0) 157 top = ((uint64_t)1 << 32); 158 free_pages((void *)(unsigned long)base, top - base); 159 page_alloc_ops_enable(); 160 } 161 162 static void timer_save_state(void) 163 { 164 const struct fdt_property *prop; 165 const void *fdt = dt_fdt(); 166 int node, len; 167 u32 *data; 168 169 node = fdt_node_offset_by_compatible(fdt, -1, "arm,armv8-timer"); 170 assert(node >= 0 || node == -FDT_ERR_NOTFOUND); 171 172 if (node == -FDT_ERR_NOTFOUND) { 173 __timer_state.ptimer.irq = -1; 174 __timer_state.vtimer.irq = -1; 175 return; 176 } 177 178 /* 179 * From Linux devicetree timer binding documentation 180 * 181 * interrupts <type irq flags>: 182 * secure timer irq 183 * non-secure timer irq (ptimer) 184 * virtual timer irq (vtimer) 185 * hypervisor timer irq 186 */ 187 prop = fdt_get_property(fdt, node, "interrupts", &len); 188 assert(prop && len == (4 * 3 * sizeof(u32))); 189 190 data = (u32 *)prop->data; 191 assert(fdt32_to_cpu(data[3]) == 1 /* PPI */); 192 __timer_state.ptimer.irq = fdt32_to_cpu(data[4]); 193 __timer_state.ptimer.irq_flags = fdt32_to_cpu(data[5]); 194 assert(fdt32_to_cpu(data[6]) == 1 /* PPI */); 195 __timer_state.vtimer.irq = fdt32_to_cpu(data[7]); 196 __timer_state.vtimer.irq_flags = fdt32_to_cpu(data[8]); 197 } 198 199 void setup(const void *fdt) 200 { 201 void *freemem = &stacktop; 202 const char *bootargs, *tmp; 203 u32 fdt_size; 204 int ret; 205 206 /* 207 * Before calling mem_init we need to move the fdt and initrd 208 * to safe locations. We move them to construct the memory 209 * map illustrated below: 210 * 211 * +----------------------+ <-- top of physical memory 212 * | | 213 * ~ ~ 214 * | | 215 * +----------------------+ <-- top of initrd 216 * | | 217 * +----------------------+ <-- top of FDT 218 * | | 219 * +----------------------+ <-- top of cpu0's stack 220 * | | 221 * +----------------------+ <-- top of text/data/bss sections, 222 * | | see arm/flat.lds 223 * | | 224 * +----------------------+ <-- load address 225 * | | 226 * +----------------------+ 227 */ 228 fdt_size = fdt_totalsize(fdt); 229 ret = fdt_move(fdt, freemem, fdt_size); 230 assert(ret == 0); 231 ret = dt_init(freemem); 232 assert(ret == 0); 233 freemem += fdt_size; 234 235 ret = dt_get_initrd(&tmp, &initrd_size); 236 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 237 if (ret == 0) { 238 initrd = freemem; 239 memmove(initrd, tmp, initrd_size); 240 freemem += initrd_size; 241 } 242 243 /* call init functions */ 244 mem_init(PAGE_ALIGN((unsigned long)freemem)); 245 cpu_init(); 246 247 /* cpu_init must be called before thread_info_init */ 248 thread_info_init(current_thread_info(), 0); 249 250 /* mem_init must be called before io_init */ 251 io_init(); 252 253 /* finish setup */ 254 timer_save_state(); 255 256 ret = dt_get_bootargs(&bootargs); 257 assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); 258 setup_args_progname(bootargs); 259 260 if (initrd) { 261 /* environ is currently the only file in the initrd */ 262 char *env = malloc(initrd_size); 263 memcpy(env, initrd, initrd_size); 264 setup_env(env, initrd_size); 265 } 266 } 267