1 /* 2 * MMU enable and page table manipulation functions 3 * 4 * Copyright (C) 2014, Red Hat Inc, Andrew Jones <drjones@redhat.com> 5 * 6 * This work is licensed under the terms of the GNU LGPL, version 2. 7 */ 8 #include <asm/setup.h> 9 #include <asm/thread_info.h> 10 #include <asm/cpumask.h> 11 #include <asm/mmu.h> 12 #include <asm/setup.h> 13 #include <asm/page.h> 14 15 #include "alloc_page.h" 16 #include "vmalloc.h" 17 #include <asm/pgtable-hwdef.h> 18 #include <asm/pgtable.h> 19 20 extern unsigned long etext; 21 22 pgd_t *mmu_idmap; 23 24 /* CPU 0 starts with disabled MMU */ 25 static cpumask_t mmu_disabled_cpumask = { {1} }; 26 unsigned int mmu_disabled_cpu_count = 1; 27 28 bool __mmu_enabled(void) 29 { 30 int cpu = current_thread_info()->cpu; 31 32 /* 33 * mmu_enabled is called from places that are guarding the 34 * use of exclusive ops (which require the mmu to be enabled). 35 * That means we CANNOT call anything from here that may use a 36 * spinlock, atomic bitop, etc., otherwise we'll recurse. 37 * [cpumask_]test_bit is safe though. 38 */ 39 return !cpumask_test_cpu(cpu, &mmu_disabled_cpumask); 40 } 41 42 void mmu_mark_enabled(int cpu) 43 { 44 if (cpumask_test_and_clear_cpu(cpu, &mmu_disabled_cpumask)) 45 --mmu_disabled_cpu_count; 46 } 47 48 void mmu_mark_disabled(int cpu) 49 { 50 if (!cpumask_test_and_set_cpu(cpu, &mmu_disabled_cpumask)) 51 ++mmu_disabled_cpu_count; 52 } 53 54 extern void asm_mmu_enable(phys_addr_t pgtable); 55 void mmu_enable(pgd_t *pgtable) 56 { 57 struct thread_info *info = current_thread_info(); 58 59 asm_mmu_enable(__pa(pgtable)); 60 flush_tlb_all(); 61 62 info->pgtable = pgtable; 63 mmu_mark_enabled(info->cpu); 64 } 65 66 extern void asm_mmu_disable(void); 67 void mmu_disable(void) 68 { 69 int cpu = current_thread_info()->cpu; 70 71 mmu_mark_disabled(cpu); 72 73 asm_mmu_disable(); 74 } 75 76 static void flush_entry(pgd_t *pgtable, uintptr_t vaddr) 77 { 78 pgd_t *pgd = pgd_offset(pgtable, vaddr); 79 pmd_t *pmd = pmd_offset(pgd, vaddr); 80 81 flush_dcache_addr((ulong)pgd); 82 flush_dcache_addr((ulong)pmd); 83 flush_dcache_addr((ulong)pte_offset(pmd, vaddr)); 84 flush_tlb_page(vaddr); 85 } 86 87 static pteval_t *get_pte(pgd_t *pgtable, uintptr_t vaddr) 88 { 89 pgd_t *pgd = pgd_offset(pgtable, vaddr); 90 pmd_t *pmd = pmd_alloc(pgd, vaddr); 91 pte_t *pte = pte_alloc(pmd, vaddr); 92 93 return &pte_val(*pte); 94 } 95 96 static pteval_t *install_pte(pgd_t *pgtable, uintptr_t vaddr, pteval_t pte) 97 { 98 pteval_t *p_pte = get_pte(pgtable, vaddr); 99 100 *p_pte = pte; 101 flush_entry(pgtable, vaddr); 102 return p_pte; 103 } 104 105 static pteval_t *install_page_prot(pgd_t *pgtable, phys_addr_t phys, 106 uintptr_t vaddr, pgprot_t prot) 107 { 108 pteval_t pte = phys; 109 pte |= PTE_TYPE_PAGE | PTE_AF | PTE_SHARED; 110 pte |= pgprot_val(prot); 111 return install_pte(pgtable, vaddr, pte); 112 } 113 114 pteval_t *install_page(pgd_t *pgtable, phys_addr_t phys, void *virt) 115 { 116 return install_page_prot(pgtable, phys, (uintptr_t)virt, 117 __pgprot(PTE_WBWA | PTE_USER)); 118 } 119 120 phys_addr_t virt_to_pte_phys(pgd_t *pgtable, void *mem) 121 { 122 return (*get_pte(pgtable, (uintptr_t)mem) & PHYS_MASK & -PAGE_SIZE) 123 + ((ulong)mem & (PAGE_SIZE - 1)); 124 } 125 126 void mmu_set_range_ptes(pgd_t *pgtable, uintptr_t virt_offset, 127 phys_addr_t phys_start, phys_addr_t phys_end, 128 pgprot_t prot) 129 { 130 phys_addr_t paddr = phys_start & PAGE_MASK; 131 uintptr_t vaddr = virt_offset & PAGE_MASK; 132 uintptr_t virt_end = phys_end - paddr + vaddr; 133 134 for (; vaddr < virt_end; vaddr += PAGE_SIZE, paddr += PAGE_SIZE) 135 install_page_prot(pgtable, paddr, vaddr, prot); 136 } 137 138 void mmu_set_range_sect(pgd_t *pgtable, uintptr_t virt_offset, 139 phys_addr_t phys_start, phys_addr_t phys_end, 140 pgprot_t prot) 141 { 142 phys_addr_t paddr = phys_start & PGDIR_MASK; 143 uintptr_t vaddr = virt_offset & PGDIR_MASK; 144 uintptr_t virt_end = phys_end - paddr + vaddr; 145 146 for (; vaddr < virt_end; vaddr += PGDIR_SIZE, paddr += PGDIR_SIZE) { 147 pgd_t *pgd = pgd_offset(pgtable, vaddr); 148 pgd_val(*pgd) = paddr; 149 pgd_val(*pgd) |= PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S; 150 pgd_val(*pgd) |= pgprot_val(prot); 151 flush_dcache_addr((ulong)pgd); 152 flush_tlb_page(vaddr); 153 } 154 } 155 156 void *setup_mmu(phys_addr_t phys_end) 157 { 158 uintptr_t code_end = (uintptr_t)&etext; 159 160 /* 0G-1G = I/O, 1G-3G = identity, 3G-4G = vmalloc */ 161 if (phys_end > (3ul << 30)) 162 phys_end = 3ul << 30; 163 164 #ifdef __aarch64__ 165 init_alloc_vpage((void*)(4ul << 30)); 166 #endif 167 168 mmu_idmap = alloc_page(); 169 memset(mmu_idmap, 0, PAGE_SIZE); 170 171 mmu_set_range_sect(mmu_idmap, PHYS_IO_OFFSET, 172 PHYS_IO_OFFSET, PHYS_IO_END, 173 __pgprot(PMD_SECT_UNCACHED | PMD_SECT_USER)); 174 175 /* armv8 requires code shared between EL1 and EL0 to be read-only */ 176 mmu_set_range_ptes(mmu_idmap, PHYS_OFFSET, 177 PHYS_OFFSET, code_end, 178 __pgprot(PTE_WBWA | PTE_RDONLY | PTE_USER)); 179 180 mmu_set_range_ptes(mmu_idmap, code_end, 181 code_end, phys_end, 182 __pgprot(PTE_WBWA | PTE_USER)); 183 184 mmu_enable(mmu_idmap); 185 return mmu_idmap; 186 } 187 188 phys_addr_t __virt_to_phys(unsigned long addr) 189 { 190 if (mmu_enabled()) { 191 pgd_t *pgtable = current_thread_info()->pgtable; 192 return virt_to_pte_phys(pgtable, (void *)addr); 193 } 194 return addr; 195 } 196 197 unsigned long __phys_to_virt(phys_addr_t addr) 198 { 199 /* 200 * We don't guarantee that phys_to_virt(virt_to_phys(vaddr)) == vaddr, but 201 * the default page tables do identity map all physical addresses, which 202 * means phys_to_virt(virt_to_phys((void *)paddr)) == paddr. 203 */ 204 assert(!mmu_enabled() || __virt_to_phys(addr) == addr); 205 return addr; 206 } 207