xref: /kvm-unit-tests/arm/pmu.c (revision 5b70cbdb7bc2ea65096b51565c75815cc95945b8)
1 /*
2  * Test the ARM Performance Monitors Unit (PMU).
3  *
4  * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
5  * Copyright (C) 2016, Red Hat Inc, Wei Huang <wei@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU Lesser General Public License version 2.1 and
9  * only version 2.1 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
14  * for more details.
15  */
16 #include "libcflat.h"
17 #include "errata.h"
18 #include "asm/barrier.h"
19 #include "asm/sysreg.h"
20 #include "asm/processor.h"
21 #include <bitops.h>
22 #include <asm/gic.h>
23 
24 #define PMU_PMCR_E         (1 << 0)
25 #define PMU_PMCR_P         (1 << 1)
26 #define PMU_PMCR_C         (1 << 2)
27 #define PMU_PMCR_D         (1 << 3)
28 #define PMU_PMCR_X         (1 << 4)
29 #define PMU_PMCR_DP        (1 << 5)
30 #define PMU_PMCR_LC        (1 << 6)
31 #define PMU_PMCR_N_SHIFT   11
32 #define PMU_PMCR_N_MASK    0x1f
33 #define PMU_PMCR_ID_SHIFT  16
34 #define PMU_PMCR_ID_MASK   0xff
35 #define PMU_PMCR_IMP_SHIFT 24
36 #define PMU_PMCR_IMP_MASK  0xff
37 
38 #define PMU_CYCLE_IDX      31
39 
40 #define NR_SAMPLES 10
41 
42 /* Some PMU events */
43 #define SW_INCR			0x0
44 #define INST_RETIRED		0x8
45 #define CPU_CYCLES		0x11
46 #define MEM_ACCESS		0x13
47 #define INST_PREC		0x1B
48 #define STALL_FRONTEND		0x23
49 #define STALL_BACKEND		0x24
50 #define CHAIN			0x1E
51 
52 #define COMMON_EVENTS_LOW	0x0
53 #define COMMON_EVENTS_HIGH	0x3F
54 #define EXT_COMMON_EVENTS_LOW	0x4000
55 #define EXT_COMMON_EVENTS_HIGH	0x403F
56 
57 #define ALL_SET			0xFFFFFFFF
58 #define ALL_CLEAR		0x0
59 #define PRE_OVERFLOW		0xFFFFFFF0
60 #define PRE_OVERFLOW2		0xFFFFFFDC
61 
62 #define PMU_PPI			23
63 
64 struct pmu {
65 	unsigned int version;
66 	unsigned int nb_implemented_counters;
67 	uint32_t pmcr_ro;
68 };
69 
70 struct pmu_stats {
71 	unsigned long bitmap;
72 	uint32_t interrupts[32];
73 	bool unexpected;
74 };
75 
76 static struct pmu pmu;
77 
78 #if defined(__arm__)
79 #define ID_DFR0_PERFMON_SHIFT 24
80 #define ID_DFR0_PERFMON_MASK  0xf
81 
82 #define ID_DFR0_PMU_NOTIMPL	0b0000
83 #define ID_DFR0_PMU_V1		0b0001
84 #define ID_DFR0_PMU_V2		0b0010
85 #define ID_DFR0_PMU_V3		0b0011
86 #define ID_DFR0_PMU_V3_8_1	0b0100
87 #define ID_DFR0_PMU_V3_8_4	0b0101
88 #define ID_DFR0_PMU_V3_8_5	0b0110
89 #define ID_DFR0_PMU_IMPDEF	0b1111
90 
91 #define PMCR         __ACCESS_CP15(c9, 0, c12, 0)
92 #define ID_DFR0      __ACCESS_CP15(c0, 0, c1, 2)
93 #define PMSELR       __ACCESS_CP15(c9, 0, c12, 5)
94 #define PMXEVTYPER   __ACCESS_CP15(c9, 0, c13, 1)
95 #define PMCNTENSET   __ACCESS_CP15(c9, 0, c12, 1)
96 #define PMCCNTR32    __ACCESS_CP15(c9, 0, c13, 0)
97 #define PMCCNTR64    __ACCESS_CP15_64(0, c9)
98 
99 static inline uint32_t get_id_dfr0(void) { return read_sysreg(ID_DFR0); }
100 static inline uint32_t get_pmcr(void) { return read_sysreg(PMCR); }
101 static inline void set_pmcr(uint32_t v) { write_sysreg(v, PMCR); }
102 static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, PMCNTENSET); }
103 
104 static inline uint8_t get_pmu_version(void)
105 {
106 	return (get_id_dfr0() >> ID_DFR0_PERFMON_SHIFT) & ID_DFR0_PERFMON_MASK;
107 }
108 
109 static inline uint64_t get_pmccntr(void)
110 {
111 	return read_sysreg(PMCCNTR32);
112 }
113 
114 static inline void set_pmccntr(uint64_t value)
115 {
116 	write_sysreg(value & 0xffffffff, PMCCNTR32);
117 }
118 
119 /* PMCCFILTR is an obsolete name for PMXEVTYPER31 in ARMv7 */
120 static inline void set_pmccfiltr(uint32_t value)
121 {
122 	write_sysreg(PMU_CYCLE_IDX, PMSELR);
123 	write_sysreg(value, PMXEVTYPER);
124 	isb();
125 }
126 
127 /*
128  * Extra instructions inserted by the compiler would be difficult to compensate
129  * for, so hand assemble everything between, and including, the PMCR accesses
130  * to start and stop counting. isb instructions were inserted to make sure
131  * pmccntr read after this function returns the exact instructions executed in
132  * the controlled block. Total instrs = isb + mcr + 2*loop = 2 + 2*loop.
133  */
134 static inline void precise_instrs_loop(int loop, uint32_t pmcr)
135 {
136 	asm volatile(
137 	"	mcr	p15, 0, %[pmcr], c9, c12, 0\n"
138 	"	isb\n"
139 	"1:	subs	%[loop], %[loop], #1\n"
140 	"	bgt	1b\n"
141 	"	mcr	p15, 0, %[z], c9, c12, 0\n"
142 	"	isb\n"
143 	: [loop] "+r" (loop)
144 	: [pmcr] "r" (pmcr), [z] "r" (0)
145 	: "cc");
146 }
147 
148 /* event counter tests only implemented for aarch64 */
149 static void test_event_introspection(void) {}
150 static void test_event_counter_config(void) {}
151 static void test_basic_event_count(void) {}
152 static void test_mem_access(void) {}
153 static void test_sw_incr(void) {}
154 static void test_chained_counters(void) {}
155 static void test_chained_sw_incr(void) {}
156 static void test_chain_promotion(void) {}
157 static void test_overflow_interrupt(void) {}
158 
159 #elif defined(__aarch64__)
160 #define ID_AA64DFR0_PERFMON_SHIFT 8
161 #define ID_AA64DFR0_PERFMON_MASK  0xf
162 
163 #define ID_DFR0_PMU_NOTIMPL	0b0000
164 #define ID_DFR0_PMU_V3		0b0001
165 #define ID_DFR0_PMU_V3_8_1	0b0100
166 #define ID_DFR0_PMU_V3_8_4	0b0101
167 #define ID_DFR0_PMU_V3_8_5	0b0110
168 #define ID_DFR0_PMU_IMPDEF	0b1111
169 
170 static inline uint32_t get_id_aa64dfr0(void) { return read_sysreg(id_aa64dfr0_el1); }
171 static inline uint32_t get_pmcr(void) { return read_sysreg(pmcr_el0); }
172 static inline void set_pmcr(uint32_t v) { write_sysreg(v, pmcr_el0); }
173 static inline uint64_t get_pmccntr(void) { return read_sysreg(pmccntr_el0); }
174 static inline void set_pmccntr(uint64_t v) { write_sysreg(v, pmccntr_el0); }
175 static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, pmcntenset_el0); }
176 static inline void set_pmccfiltr(uint32_t v) { write_sysreg(v, pmccfiltr_el0); }
177 
178 static inline uint8_t get_pmu_version(void)
179 {
180 	uint8_t ver = (get_id_aa64dfr0() >> ID_AA64DFR0_PERFMON_SHIFT) & ID_AA64DFR0_PERFMON_MASK;
181 	return ver;
182 }
183 
184 /*
185  * Extra instructions inserted by the compiler would be difficult to compensate
186  * for, so hand assemble everything between, and including, the PMCR accesses
187  * to start and stop counting. isb instructions are inserted to make sure
188  * pmccntr read after this function returns the exact instructions executed
189  * in the controlled block. Total instrs = isb + msr + 2*loop = 2 + 2*loop.
190  */
191 static inline void precise_instrs_loop(int loop, uint32_t pmcr)
192 {
193 	asm volatile(
194 	"	msr	pmcr_el0, %[pmcr]\n"
195 	"	isb\n"
196 	"1:	subs	%[loop], %[loop], #1\n"
197 	"	b.gt	1b\n"
198 	"	msr	pmcr_el0, xzr\n"
199 	"	isb\n"
200 	: [loop] "+r" (loop)
201 	: [pmcr] "r" (pmcr)
202 	: "cc");
203 }
204 
205 #define PMCEID1_EL0 sys_reg(3, 3, 9, 12, 7)
206 #define PMCNTENSET_EL0 sys_reg(3, 3, 9, 12, 1)
207 #define PMCNTENCLR_EL0 sys_reg(3, 3, 9, 12, 2)
208 
209 #define PMEVTYPER_EXCLUDE_EL1 BIT(31)
210 #define PMEVTYPER_EXCLUDE_EL0 BIT(30)
211 
212 static bool is_event_supported(uint32_t n, bool warn)
213 {
214 	uint64_t pmceid0 = read_sysreg(pmceid0_el0);
215 	uint64_t pmceid1 = read_sysreg_s(PMCEID1_EL0);
216 	bool supported;
217 	uint64_t reg;
218 
219 	/*
220 	 * The low 32-bits of PMCEID0/1 respectively describe
221 	 * event support for events 0-31/32-63. Their High
222 	 * 32-bits describe support for extended events
223 	 * starting at 0x4000, using the same split.
224 	 */
225 	assert((n >= COMMON_EVENTS_LOW  && n <= COMMON_EVENTS_HIGH) ||
226 	       (n >= EXT_COMMON_EVENTS_LOW && n <= EXT_COMMON_EVENTS_HIGH));
227 
228 	if (n <= COMMON_EVENTS_HIGH)
229 		reg = lower_32_bits(pmceid0) | ((u64)lower_32_bits(pmceid1) << 32);
230 	else
231 		reg = upper_32_bits(pmceid0) | ((u64)upper_32_bits(pmceid1) << 32);
232 
233 	supported =  reg & (1UL << (n & 0x3F));
234 
235 	if (!supported && warn)
236 		report_info("event 0x%x is not supported", n);
237 	return supported;
238 }
239 
240 static void test_event_introspection(void)
241 {
242 	bool required_events;
243 
244 	if (!pmu.nb_implemented_counters) {
245 		report_skip("No event counter, skip ...");
246 		return;
247 	}
248 
249 	/* PMUv3 requires an implementation includes some common events */
250 	required_events = is_event_supported(SW_INCR, true) &&
251 			  is_event_supported(CPU_CYCLES, true) &&
252 			  (is_event_supported(INST_RETIRED, true) ||
253 			   is_event_supported(INST_PREC, true));
254 
255 	if (pmu.version >= ID_DFR0_PMU_V3_8_1) {
256 		required_events = required_events &&
257 				  is_event_supported(STALL_FRONTEND, true) &&
258 				  is_event_supported(STALL_BACKEND, true);
259 	}
260 
261 	report(required_events, "Check required events are implemented");
262 }
263 
264 /*
265  * Extra instructions inserted by the compiler would be difficult to compensate
266  * for, so hand assemble everything between, and including, the PMCR accesses
267  * to start and stop counting. isb instructions are inserted to make sure
268  * pmccntr read after this function returns the exact instructions executed
269  * in the controlled block. Loads @loop times the data at @address into x9.
270  */
271 static void mem_access_loop(void *addr, int loop, uint32_t pmcr)
272 {
273 asm volatile(
274 	"       msr     pmcr_el0, %[pmcr]\n"
275 	"       isb\n"
276 	"       mov     x10, %[loop]\n"
277 	"1:     sub     x10, x10, #1\n"
278 	"       ldr	x9, [%[addr]]\n"
279 	"       cmp     x10, #0x0\n"
280 	"       b.gt    1b\n"
281 	"       msr     pmcr_el0, xzr\n"
282 	"       isb\n"
283 	:
284 	: [addr] "r" (addr), [pmcr] "r" (pmcr), [loop] "r" (loop)
285 	: "x9", "x10", "cc");
286 }
287 
288 static struct pmu_stats pmu_stats;
289 
290 static void irq_handler(struct pt_regs *regs)
291 {
292 	uint32_t irqstat, irqnr;
293 
294 	irqstat = gic_read_iar();
295 	irqnr = gic_iar_irqnr(irqstat);
296 
297 	if (irqnr == PMU_PPI) {
298 		unsigned long overflows = read_sysreg(pmovsclr_el0);
299 		int i;
300 
301 		for (i = 0; i < 32; i++) {
302 			if (test_and_clear_bit(i, &overflows)) {
303 				pmu_stats.interrupts[i]++;
304 				pmu_stats.bitmap |= 1 << i;
305 			}
306 		}
307 		write_sysreg(ALL_SET, pmovsclr_el0);
308 	} else {
309 		pmu_stats.unexpected = true;
310 	}
311 	gic_write_eoir(irqstat);
312 }
313 
314 static void pmu_reset_stats(void)
315 {
316 	int i;
317 
318 	for (i = 0; i < 32; i++)
319 		pmu_stats.interrupts[i] = 0;
320 
321 	pmu_stats.bitmap = 0;
322 	pmu_stats.unexpected = false;
323 }
324 
325 static void pmu_reset(void)
326 {
327 	/* reset all counters, counting disabled at PMCR level*/
328 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P);
329 	/* Disable all counters */
330 	write_sysreg_s(ALL_SET, PMCNTENCLR_EL0);
331 	/* clear overflow reg */
332 	write_sysreg(ALL_SET, pmovsclr_el0);
333 	/* disable overflow interrupts on all counters */
334 	write_sysreg(ALL_SET, pmintenclr_el1);
335 	pmu_reset_stats();
336 	isb();
337 }
338 
339 static void test_event_counter_config(void)
340 {
341 	int i;
342 
343 	if (!pmu.nb_implemented_counters) {
344 		report_skip("No event counter, skip ...");
345 		return;
346 	}
347 
348 	pmu_reset();
349 
350 	/*
351 	 * Test setting through PMESELR/PMXEVTYPER and PMEVTYPERn read,
352 	 * select counter 0
353 	 */
354 	write_sysreg(1, PMSELR_EL0);
355 	/* program this counter to count unsupported event */
356 	write_sysreg(0xEA, PMXEVTYPER_EL0);
357 	write_sysreg(0xdeadbeef, PMXEVCNTR_EL0);
358 	report((read_regn_el0(pmevtyper, 1) & 0xFFF) == 0xEA,
359 		"PMESELR/PMXEVTYPER/PMEVTYPERn");
360 	report((read_regn_el0(pmevcntr, 1) == 0xdeadbeef),
361 		"PMESELR/PMXEVCNTR/PMEVCNTRn");
362 
363 	/* try to configure an unsupported event within the range [0x0, 0x3F] */
364 	for (i = 0; i <= 0x3F; i++) {
365 		if (!is_event_supported(i, false))
366 			break;
367 	}
368 	if (i > 0x3F) {
369 		report_skip("pmevtyper: all events within [0x0, 0x3F] are supported");
370 		return;
371 	}
372 
373 	/* select counter 0 */
374 	write_sysreg(0, PMSELR_EL0);
375 	/* program this counter to count unsupported event */
376 	write_sysreg(i, PMXEVCNTR_EL0);
377 	/* read the counter value */
378 	read_sysreg(PMXEVCNTR_EL0);
379 	report(read_sysreg(PMXEVCNTR_EL0) == i,
380 		"read of a counter programmed with unsupported event");
381 }
382 
383 static bool satisfy_prerequisites(uint32_t *events, unsigned int nb_events)
384 {
385 	int i;
386 
387 	if (pmu.nb_implemented_counters < nb_events) {
388 		report_skip("Skip test as number of counters is too small (%d)",
389 			    pmu.nb_implemented_counters);
390 		return false;
391 	}
392 
393 	for (i = 0; i < nb_events; i++) {
394 		if (!is_event_supported(events[i], false)) {
395 			report_skip("Skip test as event 0x%x is not supported",
396 				    events[i]);
397 			return false;
398 		}
399 	}
400 	return true;
401 }
402 
403 static void test_basic_event_count(void)
404 {
405 	uint32_t implemented_counter_mask, non_implemented_counter_mask;
406 	uint32_t counter_mask;
407 	uint32_t events[] = {CPU_CYCLES, INST_RETIRED};
408 
409 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
410 		return;
411 
412 	implemented_counter_mask = BIT(pmu.nb_implemented_counters) - 1;
413 	non_implemented_counter_mask = ~(BIT(31) | implemented_counter_mask);
414 	counter_mask = implemented_counter_mask | non_implemented_counter_mask;
415 
416 	write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
417 	write_regn_el0(pmevtyper, 1, INST_RETIRED | PMEVTYPER_EXCLUDE_EL0);
418 
419 	/* disable all counters */
420 	write_sysreg_s(ALL_SET, PMCNTENCLR_EL0);
421 	report(!read_sysreg_s(PMCNTENCLR_EL0) && !read_sysreg_s(PMCNTENSET_EL0),
422 		"pmcntenclr: disable all counters");
423 
424 	/*
425 	 * clear cycle and all event counters and allow counter enablement
426 	 * through PMCNTENSET. LC is RES1.
427 	 */
428 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P);
429 	isb();
430 	report(get_pmcr() == (pmu.pmcr_ro | PMU_PMCR_LC), "pmcr: reset counters");
431 
432 	/* Preset counter #0 to pre overflow value to trigger an overflow */
433 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
434 	report(read_regn_el0(pmevcntr, 0) == PRE_OVERFLOW,
435 		"counter #0 preset to pre-overflow value");
436 	report(!read_regn_el0(pmevcntr, 1), "counter #1 is 0");
437 
438 	/*
439 	 * Enable all implemented counters and also attempt to enable
440 	 * not supported counters. Counting still is disabled by !PMCR.E
441 	 */
442 	write_sysreg_s(counter_mask, PMCNTENSET_EL0);
443 
444 	/* check only those implemented are enabled */
445 	report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) &&
446 		(read_sysreg_s(PMCNTENSET_EL0) == implemented_counter_mask),
447 		"pmcntenset: enabled implemented_counters");
448 
449 	/* Disable all counters but counters #0 and #1 */
450 	write_sysreg_s(~0x3, PMCNTENCLR_EL0);
451 	report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) &&
452 		(read_sysreg_s(PMCNTENSET_EL0) == 0x3),
453 		"pmcntenset: just enabled #0 and #1");
454 
455 	/* clear overflow register */
456 	write_sysreg(ALL_SET, pmovsclr_el0);
457 	report(!read_sysreg(pmovsclr_el0), "check overflow reg is 0");
458 
459 	/* disable overflow interrupts on all counters*/
460 	write_sysreg(ALL_SET, pmintenclr_el1);
461 	report(!read_sysreg(pmintenclr_el1),
462 		"pmintenclr_el1=0, all interrupts disabled");
463 
464 	/* enable overflow interrupts on all event counters */
465 	write_sysreg(implemented_counter_mask | non_implemented_counter_mask,
466 		     pmintenset_el1);
467 	report(read_sysreg(pmintenset_el1) == implemented_counter_mask,
468 		"overflow interrupts enabled on all implemented counters");
469 
470 	/* Set PMCR.E, execute asm code and unset PMCR.E */
471 	precise_instrs_loop(20, pmu.pmcr_ro | PMU_PMCR_E);
472 
473 	report_info("counter #0 is 0x%lx (CPU_CYCLES)",
474 		    read_regn_el0(pmevcntr, 0));
475 	report_info("counter #1 is 0x%lx (INST_RETIRED)",
476 		    read_regn_el0(pmevcntr, 1));
477 
478 	report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
479 	report(read_sysreg(pmovsclr_el0) & 0x1,
480 		"check overflow happened on #0 only");
481 }
482 
483 static void test_mem_access(void)
484 {
485 	void *addr = malloc(PAGE_SIZE);
486 	uint32_t events[] = {MEM_ACCESS, MEM_ACCESS};
487 
488 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
489 		return;
490 
491 	pmu_reset();
492 
493 	write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
494 	write_regn_el0(pmevtyper, 1, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
495 	write_sysreg_s(0x3, PMCNTENSET_EL0);
496 	isb();
497 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
498 	report_info("counter #0 is %ld (MEM_ACCESS)", read_regn_el0(pmevcntr, 0));
499 	report_info("counter #1 is %ld (MEM_ACCESS)", read_regn_el0(pmevcntr, 1));
500 	/* We may measure more than 20 mem access depending on the core */
501 	report((read_regn_el0(pmevcntr, 0) == read_regn_el0(pmevcntr, 1)) &&
502 	       (read_regn_el0(pmevcntr, 0) >= 20) && !read_sysreg(pmovsclr_el0),
503 	       "Ran 20 mem accesses");
504 
505 	pmu_reset();
506 
507 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
508 	write_regn_el0(pmevcntr, 1, PRE_OVERFLOW);
509 	write_sysreg_s(0x3, PMCNTENSET_EL0);
510 	isb();
511 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
512 	report(read_sysreg(pmovsclr_el0) == 0x3,
513 	       "Ran 20 mem accesses with expected overflows on both counters");
514 	report_info("cnt#0 = %ld cnt#1=%ld overflow=0x%lx",
515 			read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1),
516 			read_sysreg(pmovsclr_el0));
517 }
518 
519 static void test_sw_incr(void)
520 {
521 	uint32_t events[] = {SW_INCR, SW_INCR};
522 	int i;
523 
524 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
525 		return;
526 
527 	pmu_reset();
528 
529 	write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
530 	write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
531 	/* enable counters #0 and #1 */
532 	write_sysreg_s(0x3, PMCNTENSET_EL0);
533 
534 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
535 
536 	for (i = 0; i < 100; i++)
537 		write_sysreg(0x1, pmswinc_el0);
538 
539 	report_info("SW_INCR counter #0 has value %ld", read_regn_el0(pmevcntr, 0));
540 	report(read_regn_el0(pmevcntr, 0) == PRE_OVERFLOW,
541 		"PWSYNC does not increment if PMCR.E is unset");
542 
543 	pmu_reset();
544 
545 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
546 	write_sysreg_s(0x3, PMCNTENSET_EL0);
547 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
548 
549 	for (i = 0; i < 100; i++)
550 		write_sysreg(0x3, pmswinc_el0);
551 
552 	report(read_regn_el0(pmevcntr, 0)  == 84, "counter #1 after + 100 SW_INCR");
553 	report(read_regn_el0(pmevcntr, 1)  == 100,
554 		"counter #0 after + 100 SW_INCR");
555 	report_info("counter values after 100 SW_INCR #0=%ld #1=%ld",
556 		    read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
557 	report(read_sysreg(pmovsclr_el0) == 0x1,
558 		"overflow on counter #0 after 100 SW_INCR");
559 }
560 
561 static void test_chained_counters(void)
562 {
563 	uint32_t events[] = {CPU_CYCLES, CHAIN};
564 
565 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
566 		return;
567 
568 	pmu_reset();
569 
570 	write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
571 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
572 	/* enable counters #0 and #1 */
573 	write_sysreg_s(0x3, PMCNTENSET_EL0);
574 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
575 
576 	precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
577 
578 	report(read_regn_el0(pmevcntr, 1) == 1, "CHAIN counter #1 incremented");
579 	report(!read_sysreg(pmovsclr_el0), "no overflow recorded for chained incr #1");
580 
581 	/* test 64b overflow */
582 
583 	pmu_reset();
584 	write_sysreg_s(0x3, PMCNTENSET_EL0);
585 
586 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
587 	write_regn_el0(pmevcntr, 1, 0x1);
588 	precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
589 	report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
590 	report(read_regn_el0(pmevcntr, 1) == 2, "CHAIN counter #1 set to 2");
591 	report(!read_sysreg(pmovsclr_el0), "no overflow recorded for chained incr #2");
592 
593 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
594 	write_regn_el0(pmevcntr, 1, ALL_SET);
595 
596 	precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
597 	report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
598 	report(!read_regn_el0(pmevcntr, 1), "CHAIN counter #1 wrapped");
599 	report(read_sysreg(pmovsclr_el0) == 0x2, "overflow on chain counter");
600 }
601 
602 static void test_chained_sw_incr(void)
603 {
604 	uint32_t events[] = {SW_INCR, CHAIN};
605 	int i;
606 
607 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
608 		return;
609 
610 	pmu_reset();
611 
612 	write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
613 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
614 	/* enable counters #0 and #1 */
615 	write_sysreg_s(0x3, PMCNTENSET_EL0);
616 
617 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
618 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
619 	for (i = 0; i < 100; i++)
620 		write_sysreg(0x1, pmswinc_el0);
621 
622 	report(!read_sysreg(pmovsclr_el0) && (read_regn_el0(pmevcntr, 1) == 1),
623 		"no overflow and chain counter incremented after 100 SW_INCR/CHAIN");
624 	report_info("overflow=0x%lx, #0=%ld #1=%ld", read_sysreg(pmovsclr_el0),
625 		    read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
626 
627 	/* 64b SW_INCR and overflow on CHAIN counter*/
628 	pmu_reset();
629 
630 	write_regn_el0(pmevtyper, 1, events[1] | PMEVTYPER_EXCLUDE_EL0);
631 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
632 	write_regn_el0(pmevcntr, 1, ALL_SET);
633 	write_sysreg_s(0x3, PMCNTENSET_EL0);
634 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
635 	for (i = 0; i < 100; i++)
636 		write_sysreg(0x1, pmswinc_el0);
637 
638 	report((read_sysreg(pmovsclr_el0) == 0x2) &&
639 		(read_regn_el0(pmevcntr, 1) == 0) &&
640 		(read_regn_el0(pmevcntr, 0) == 84),
641 		"overflow on chain counter and expected values after 100 SW_INCR/CHAIN");
642 	report_info("overflow=0x%lx, #0=%ld #1=%ld", read_sysreg(pmovsclr_el0),
643 		    read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
644 }
645 
646 static void test_chain_promotion(void)
647 {
648 	uint32_t events[] = {MEM_ACCESS, CHAIN};
649 	void *addr = malloc(PAGE_SIZE);
650 
651 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
652 		return;
653 
654 	/* Only enable CHAIN counter */
655 	pmu_reset();
656 	write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
657 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
658 	write_sysreg_s(0x2, PMCNTENSET_EL0);
659 	isb();
660 
661 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
662 	report(!read_regn_el0(pmevcntr, 0),
663 		"chain counter not counting if even counter is disabled");
664 
665 	/* Only enable even counter */
666 	pmu_reset();
667 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
668 	write_sysreg_s(0x1, PMCNTENSET_EL0);
669 	isb();
670 
671 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
672 	report(!read_regn_el0(pmevcntr, 1) && (read_sysreg(pmovsclr_el0) == 0x1),
673 		"odd counter did not increment on overflow if disabled");
674 	report_info("MEM_ACCESS counter #0 has value %ld",
675 		    read_regn_el0(pmevcntr, 0));
676 	report_info("CHAIN counter #1 has value %ld",
677 		    read_regn_el0(pmevcntr, 1));
678 	report_info("overflow counter %ld", read_sysreg(pmovsclr_el0));
679 
680 	/* start at 0xFFFFFFDC, +20 with CHAIN enabled, +20 with CHAIN disabled */
681 	pmu_reset();
682 	write_sysreg_s(0x3, PMCNTENSET_EL0);
683 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2);
684 	isb();
685 
686 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
687 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
688 		    read_regn_el0(pmevcntr, 0));
689 
690 	/* disable the CHAIN event */
691 	write_sysreg_s(0x2, PMCNTENCLR_EL0);
692 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
693 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
694 		    read_regn_el0(pmevcntr, 0));
695 	report(read_sysreg(pmovsclr_el0) == 0x1,
696 		"should have triggered an overflow on #0");
697 	report(!read_regn_el0(pmevcntr, 1),
698 		"CHAIN counter #1 shouldn't have incremented");
699 
700 	/* start at 0xFFFFFFDC, +20 with CHAIN disabled, +20 with CHAIN enabled */
701 
702 	pmu_reset();
703 	write_sysreg_s(0x1, PMCNTENSET_EL0);
704 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2);
705 	isb();
706 	report_info("counter #0 = 0x%lx, counter #1 = 0x%lx overflow=0x%lx",
707 		    read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1),
708 		    read_sysreg(pmovsclr_el0));
709 
710 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
711 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
712 		    read_regn_el0(pmevcntr, 0));
713 
714 	/* enable the CHAIN event */
715 	write_sysreg_s(0x3, PMCNTENSET_EL0);
716 	isb();
717 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
718 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
719 		    read_regn_el0(pmevcntr, 0));
720 
721 	report((read_regn_el0(pmevcntr, 1) == 1) && !read_sysreg(pmovsclr_el0),
722 		"CHAIN counter enabled: CHAIN counter was incremented and no overflow");
723 
724 	report_info("CHAIN counter #1 = 0x%lx, overflow=0x%lx",
725 		read_regn_el0(pmevcntr, 1), read_sysreg(pmovsclr_el0));
726 
727 	/* start as MEM_ACCESS/CPU_CYCLES and move to CHAIN/MEM_ACCESS */
728 	pmu_reset();
729 	write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
730 	write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
731 	write_sysreg_s(0x3, PMCNTENSET_EL0);
732 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2);
733 	isb();
734 
735 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
736 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
737 		    read_regn_el0(pmevcntr, 0));
738 
739 	/* 0 becomes CHAINED */
740 	write_sysreg_s(0x0, PMCNTENSET_EL0);
741 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
742 	write_sysreg_s(0x3, PMCNTENSET_EL0);
743 	write_regn_el0(pmevcntr, 1, 0x0);
744 
745 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
746 	report_info("MEM_ACCESS counter #0 has value 0x%lx",
747 		    read_regn_el0(pmevcntr, 0));
748 
749 	report((read_regn_el0(pmevcntr, 1) == 1) && !read_sysreg(pmovsclr_el0),
750 		"32b->64b: CHAIN counter incremented and no overflow");
751 
752 	report_info("CHAIN counter #1 = 0x%lx, overflow=0x%lx",
753 		read_regn_el0(pmevcntr, 1), read_sysreg(pmovsclr_el0));
754 
755 	/* start as CHAIN/MEM_ACCESS and move to MEM_ACCESS/CPU_CYCLES */
756 	pmu_reset();
757 	write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
758 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
759 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2);
760 	write_sysreg_s(0x3, PMCNTENSET_EL0);
761 
762 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
763 	report_info("counter #0=0x%lx, counter #1=0x%lx",
764 			read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
765 
766 	write_sysreg_s(0x0, PMCNTENSET_EL0);
767 	write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
768 	write_sysreg_s(0x3, PMCNTENSET_EL0);
769 
770 	mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E);
771 	report(read_sysreg(pmovsclr_el0) == 1,
772 		"overflow is expected on counter 0");
773 	report_info("counter #0=0x%lx, counter #1=0x%lx overflow=0x%lx",
774 			read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1),
775 			read_sysreg(pmovsclr_el0));
776 }
777 
778 static bool expect_interrupts(uint32_t bitmap)
779 {
780 	int i;
781 
782 	if (pmu_stats.bitmap ^ bitmap || pmu_stats.unexpected)
783 		return false;
784 
785 	for (i = 0; i < 32; i++) {
786 		if (test_and_clear_bit(i, &pmu_stats.bitmap))
787 			if (pmu_stats.interrupts[i] != 1)
788 				return false;
789 	}
790 	return true;
791 }
792 
793 static void test_overflow_interrupt(void)
794 {
795 	uint32_t events[] = {MEM_ACCESS, SW_INCR};
796 	void *addr = malloc(PAGE_SIZE);
797 	int i;
798 
799 	if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
800 		return;
801 
802 	gic_enable_defaults();
803 	install_irq_handler(EL1H_IRQ, irq_handler);
804 	local_irq_enable();
805 	gic_enable_irq(23);
806 
807 	pmu_reset();
808 
809 	write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
810 	write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
811 	write_sysreg_s(0x3, PMCNTENSET_EL0);
812 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
813 	write_regn_el0(pmevcntr, 1, PRE_OVERFLOW);
814 	isb();
815 
816 	/* interrupts are disabled */
817 
818 	mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E);
819 	report(expect_interrupts(0), "no overflow interrupt after preset");
820 
821 	set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
822 	for (i = 0; i < 100; i++)
823 		write_sysreg(0x2, pmswinc_el0);
824 
825 	set_pmcr(pmu.pmcr_ro);
826 	report(expect_interrupts(0), "no overflow interrupt after counting");
827 
828 	/* enable interrupts */
829 
830 	pmu_reset_stats();
831 
832 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
833 	write_regn_el0(pmevcntr, 1, PRE_OVERFLOW);
834 	write_sysreg(ALL_SET, pmintenset_el1);
835 	isb();
836 
837 	mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E);
838 	for (i = 0; i < 100; i++)
839 		write_sysreg(0x3, pmswinc_el0);
840 
841 	mem_access_loop(addr, 200, pmu.pmcr_ro);
842 	report_info("overflow=0x%lx", read_sysreg(pmovsclr_el0));
843 	report(expect_interrupts(0x3),
844 		"overflow interrupts expected on #0 and #1");
845 
846 	/* promote to 64-b */
847 
848 	pmu_reset_stats();
849 
850 	write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
851 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
852 	isb();
853 	mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E);
854 	report(expect_interrupts(0),
855 		"no overflow interrupt expected on 32b boundary");
856 
857 	/* overflow on odd counter */
858 	pmu_reset_stats();
859 	write_regn_el0(pmevcntr, 0, PRE_OVERFLOW);
860 	write_regn_el0(pmevcntr, 1, ALL_SET);
861 	isb();
862 	mem_access_loop(addr, 400, pmu.pmcr_ro | PMU_PMCR_E);
863 	report(expect_interrupts(0x2),
864 		"expect overflow interrupt on odd counter");
865 }
866 #endif
867 
868 /*
869  * Ensure that the cycle counter progresses between back-to-back reads.
870  */
871 static bool check_cycles_increase(void)
872 {
873 	bool success = true;
874 
875 	/* init before event access, this test only cares about cycle count */
876 	set_pmcntenset(1 << PMU_CYCLE_IDX);
877 	set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */
878 
879 	set_pmcr(get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E);
880 
881 	for (int i = 0; i < NR_SAMPLES; i++) {
882 		uint64_t a, b;
883 
884 		a = get_pmccntr();
885 		b = get_pmccntr();
886 
887 		if (a >= b) {
888 			printf("Read %"PRId64" then %"PRId64".\n", a, b);
889 			success = false;
890 			break;
891 		}
892 	}
893 
894 	set_pmcr(get_pmcr() & ~PMU_PMCR_E);
895 
896 	return success;
897 }
898 
899 /*
900  * Execute a known number of guest instructions. Only even instruction counts
901  * greater than or equal to 4 are supported by the in-line assembly code. The
902  * control register (PMCR_EL0) is initialized with the provided value (allowing
903  * for example for the cycle counter or event counters to be reset). At the end
904  * of the exact instruction loop, zero is written to PMCR_EL0 to disable
905  * counting, allowing the cycle counter or event counters to be read at the
906  * leisure of the calling code.
907  */
908 static void measure_instrs(int num, uint32_t pmcr)
909 {
910 	int loop = (num - 2) / 2;
911 
912 	assert(num >= 4 && ((num - 2) % 2 == 0));
913 	precise_instrs_loop(loop, pmcr);
914 }
915 
916 /*
917  * Measure cycle counts for various known instruction counts. Ensure that the
918  * cycle counter progresses (similar to check_cycles_increase() but with more
919  * instructions and using reset and stop controls). If supplied a positive,
920  * nonzero CPI parameter, it also strictly checks that every measurement matches
921  * it. Strict CPI checking is used to test -icount mode.
922  */
923 static bool check_cpi(int cpi)
924 {
925 	uint32_t pmcr = get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E;
926 
927 	/* init before event access, this test only cares about cycle count */
928 	set_pmcntenset(1 << PMU_CYCLE_IDX);
929 	set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */
930 
931 	if (cpi > 0)
932 		printf("Checking for CPI=%d.\n", cpi);
933 	printf("instrs : cycles0 cycles1 ...\n");
934 
935 	for (unsigned int i = 4; i < 300; i += 32) {
936 		uint64_t avg, sum = 0;
937 
938 		printf("%4d:", i);
939 		for (int j = 0; j < NR_SAMPLES; j++) {
940 			uint64_t cycles;
941 
942 			set_pmccntr(0);
943 			measure_instrs(i, pmcr);
944 			cycles = get_pmccntr();
945 			printf(" %4"PRId64"", cycles);
946 
947 			if (!cycles) {
948 				printf("\ncycles not incrementing!\n");
949 				return false;
950 			} else if (cpi > 0 && cycles != i * cpi) {
951 				printf("\nunexpected cycle count received!\n");
952 				return false;
953 			} else if ((cycles >> 32) != 0) {
954 				/* The cycles taken by the loop above should
955 				 * fit in 32 bits easily. We check the upper
956 				 * 32 bits of the cycle counter to make sure
957 				 * there is no supprise. */
958 				printf("\ncycle count bigger than 32bit!\n");
959 				return false;
960 			}
961 
962 			sum += cycles;
963 		}
964 		avg = sum / NR_SAMPLES;
965 		printf(" avg=%-4"PRId64" %s=%-3"PRId64"\n", avg,
966 		       (avg >= i) ? "cpi" : "ipc",
967 		       (avg >= i) ? avg / i : i / avg);
968 	}
969 
970 	return true;
971 }
972 
973 static void pmccntr64_test(void)
974 {
975 #ifdef __arm__
976 	if (pmu.version == ID_DFR0_PMU_V3) {
977 		if (ERRATA(9e3f7a296940)) {
978 			write_sysreg(0xdead, PMCCNTR64);
979 			report(read_sysreg(PMCCNTR64) == 0xdead, "pmccntr64");
980 		} else
981 			report_skip("Skipping unsafe pmccntr64 test. Set ERRATA_9e3f7a296940=y to enable.");
982 	}
983 #endif
984 }
985 
986 /* Return FALSE if no PMU found, otherwise return TRUE */
987 static bool pmu_probe(void)
988 {
989 	uint32_t pmcr = get_pmcr();
990 
991 	pmu.version = get_pmu_version();
992 	if (pmu.version == ID_DFR0_PMU_NOTIMPL || pmu.version == ID_DFR0_PMU_IMPDEF)
993 		return false;
994 
995 	report_info("PMU version: 0x%x", pmu.version);
996 
997 	pmcr = get_pmcr();
998 	report_info("PMU implementer/ID code: %#x(\"%c\")/%#x",
999 		    (pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK,
1000 		    ((pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK) ? : ' ',
1001 		    (pmcr >> PMU_PMCR_ID_SHIFT) & PMU_PMCR_ID_MASK);
1002 
1003 	/* store read-only and RES0 fields of the PMCR bottom-half*/
1004 	pmu.pmcr_ro = pmcr & 0xFFFFFF00;
1005 	pmu.nb_implemented_counters =
1006 		(pmcr >> PMU_PMCR_N_SHIFT) & PMU_PMCR_N_MASK;
1007 	report_info("Implements %d event counters",
1008 		    pmu.nb_implemented_counters);
1009 
1010 	return true;
1011 }
1012 
1013 int main(int argc, char *argv[])
1014 {
1015 	int cpi = 0;
1016 
1017 	if (!pmu_probe()) {
1018 		printf("No PMU found, test skipped...\n");
1019 		return report_summary();
1020 	}
1021 
1022 	if (argc < 2)
1023 		report_abort("no test specified");
1024 
1025 	report_prefix_push("pmu");
1026 
1027 	if (strcmp(argv[1], "cycle-counter") == 0) {
1028 		report_prefix_push(argv[1]);
1029 		if (argc > 2)
1030 			cpi = atol(argv[2]);
1031 		report(check_cycles_increase(),
1032 		       "Monotonically increasing cycle count");
1033 		report(check_cpi(cpi), "Cycle/instruction ratio");
1034 		pmccntr64_test();
1035 		report_prefix_pop();
1036 	} else if (strcmp(argv[1], "pmu-event-introspection") == 0) {
1037 		report_prefix_push(argv[1]);
1038 		test_event_introspection();
1039 		report_prefix_pop();
1040 	} else if (strcmp(argv[1], "pmu-event-counter-config") == 0) {
1041 		report_prefix_push(argv[1]);
1042 		test_event_counter_config();
1043 		report_prefix_pop();
1044 	} else if (strcmp(argv[1], "pmu-basic-event-count") == 0) {
1045 		report_prefix_push(argv[1]);
1046 		test_basic_event_count();
1047 		report_prefix_pop();
1048 	} else if (strcmp(argv[1], "pmu-mem-access") == 0) {
1049 		report_prefix_push(argv[1]);
1050 		test_mem_access();
1051 		report_prefix_pop();
1052 	} else if (strcmp(argv[1], "pmu-sw-incr") == 0) {
1053 		report_prefix_push(argv[1]);
1054 		test_sw_incr();
1055 		report_prefix_pop();
1056 	} else if (strcmp(argv[1], "pmu-chained-counters") == 0) {
1057 		report_prefix_push(argv[1]);
1058 		test_chained_counters();
1059 		report_prefix_pop();
1060 	} else if (strcmp(argv[1], "pmu-chained-sw-incr") == 0) {
1061 		report_prefix_push(argv[1]);
1062 		test_chained_sw_incr();
1063 		report_prefix_pop();
1064 	} else if (strcmp(argv[1], "pmu-chain-promotion") == 0) {
1065 		report_prefix_push(argv[1]);
1066 		test_chain_promotion();
1067 		report_prefix_pop();
1068 	} else if (strcmp(argv[1], "pmu-overflow-interrupt") == 0) {
1069 		report_prefix_push(argv[1]);
1070 		test_overflow_interrupt();
1071 		report_prefix_pop();
1072 	} else {
1073 		report_abort("Unknown sub-test '%s'", argv[1]);
1074 	}
1075 
1076 	return report_summary();
1077 }
1078