xref: /cloud-hypervisor/vmm/src/memory_manager.rs (revision eeae63b4595fbf0cc69f62b6e9d9a79c543c4ac7)
1 // Copyright © 2019 Intel Corporation
2 //
3 // SPDX-License-Identifier: Apache-2.0
4 //
5 
6 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))]
7 use std::collections::BTreeMap;
8 use std::collections::HashMap;
9 use std::fs::{File, OpenOptions};
10 use std::io::{self};
11 use std::ops::{BitAnd, Deref, Not, Sub};
12 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))]
13 use std::os::fd::AsFd;
14 use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
15 use std::path::PathBuf;
16 use std::sync::atomic::{AtomicU32, Ordering};
17 use std::sync::{Arc, Barrier, Mutex};
18 use std::{ffi, result, thread};
19 
20 use acpi_tables::{aml, Aml};
21 use anyhow::anyhow;
22 #[cfg(target_arch = "x86_64")]
23 use arch::x86_64::{SgxEpcRegion, SgxEpcSection};
24 use arch::RegionType;
25 #[cfg(target_arch = "x86_64")]
26 use devices::ioapic;
27 #[cfg(target_arch = "aarch64")]
28 use hypervisor::HypervisorVmError;
29 use libc::_SC_NPROCESSORS_ONLN;
30 #[cfg(target_arch = "x86_64")]
31 use libc::{MAP_NORESERVE, MAP_POPULATE, MAP_SHARED, PROT_READ, PROT_WRITE};
32 use serde::{Deserialize, Serialize};
33 use tracer::trace_scoped;
34 use virtio_devices::BlocksState;
35 #[cfg(target_arch = "x86_64")]
36 use vm_allocator::GsiApic;
37 use vm_allocator::{AddressAllocator, MemorySlotAllocator, SystemAllocator};
38 use vm_device::BusDevice;
39 use vm_memory::bitmap::AtomicBitmap;
40 use vm_memory::guest_memory::FileOffset;
41 use vm_memory::mmap::MmapRegionError;
42 use vm_memory::{
43     Address, Error as MmapError, GuestAddress, GuestAddressSpace, GuestMemory, GuestMemoryAtomic,
44     GuestMemoryError, GuestMemoryRegion, GuestUsize, MmapRegion, ReadVolatile,
45 };
46 use vm_migration::protocol::{MemoryRange, MemoryRangeTable};
47 use vm_migration::{
48     Migratable, MigratableError, Pausable, Snapshot, SnapshotData, Snapshottable, Transportable,
49 };
50 
51 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))]
52 use crate::coredump::{
53     CoredumpMemoryRegion, CoredumpMemoryRegions, DumpState, GuestDebuggableError,
54 };
55 use crate::migration::url_to_path;
56 #[cfg(target_arch = "x86_64")]
57 use crate::vm_config::SgxEpcConfig;
58 use crate::vm_config::{HotplugMethod, MemoryConfig, MemoryZoneConfig};
59 use crate::{GuestMemoryMmap, GuestRegionMmap, MEMORY_MANAGER_SNAPSHOT_ID};
60 
61 pub const MEMORY_MANAGER_ACPI_SIZE: usize = 0x18;
62 
63 const DEFAULT_MEMORY_ZONE: &str = "mem0";
64 
65 const SNAPSHOT_FILENAME: &str = "memory-ranges";
66 
67 #[cfg(target_arch = "x86_64")]
68 const X86_64_IRQ_BASE: u32 = 5;
69 
70 #[cfg(target_arch = "x86_64")]
71 const SGX_PAGE_SIZE: u64 = 1 << 12;
72 
73 const HOTPLUG_COUNT: usize = 8;
74 
75 // Memory policy constants
76 const MPOL_BIND: u32 = 2;
77 const MPOL_MF_STRICT: u32 = 1;
78 const MPOL_MF_MOVE: u32 = 1 << 1;
79 
80 // Reserve 1 MiB for platform MMIO devices (e.g. ACPI control devices)
81 const PLATFORM_DEVICE_AREA_SIZE: u64 = 1 << 20;
82 
83 const MAX_PREFAULT_THREAD_COUNT: usize = 16;
84 
85 #[derive(Clone, Default, Serialize, Deserialize)]
86 struct HotPlugState {
87     base: u64,
88     length: u64,
89     active: bool,
90     inserting: bool,
91     removing: bool,
92 }
93 
94 pub struct VirtioMemZone {
95     region: Arc<GuestRegionMmap>,
96     virtio_device: Option<Arc<Mutex<virtio_devices::Mem>>>,
97     hotplugged_size: u64,
98     hugepages: bool,
99     blocks_state: Arc<Mutex<BlocksState>>,
100 }
101 
102 impl VirtioMemZone {
103     pub fn region(&self) -> &Arc<GuestRegionMmap> {
104         &self.region
105     }
106     pub fn set_virtio_device(&mut self, virtio_device: Arc<Mutex<virtio_devices::Mem>>) {
107         self.virtio_device = Some(virtio_device);
108     }
109     pub fn hotplugged_size(&self) -> u64 {
110         self.hotplugged_size
111     }
112     pub fn hugepages(&self) -> bool {
113         self.hugepages
114     }
115     pub fn blocks_state(&self) -> &Arc<Mutex<BlocksState>> {
116         &self.blocks_state
117     }
118     pub fn plugged_ranges(&self) -> MemoryRangeTable {
119         self.blocks_state
120             .lock()
121             .unwrap()
122             .memory_ranges(self.region.start_addr().raw_value(), true)
123     }
124 }
125 
126 #[derive(Default)]
127 pub struct MemoryZone {
128     regions: Vec<Arc<GuestRegionMmap>>,
129     virtio_mem_zone: Option<VirtioMemZone>,
130 }
131 
132 impl MemoryZone {
133     pub fn regions(&self) -> &Vec<Arc<GuestRegionMmap>> {
134         &self.regions
135     }
136     pub fn virtio_mem_zone(&self) -> &Option<VirtioMemZone> {
137         &self.virtio_mem_zone
138     }
139     pub fn virtio_mem_zone_mut(&mut self) -> Option<&mut VirtioMemZone> {
140         self.virtio_mem_zone.as_mut()
141     }
142 }
143 
144 pub type MemoryZones = HashMap<String, MemoryZone>;
145 
146 #[derive(Clone, Serialize, Deserialize)]
147 struct GuestRamMapping {
148     slot: u32,
149     gpa: u64,
150     size: u64,
151     zone_id: String,
152     virtio_mem: bool,
153     file_offset: u64,
154 }
155 
156 #[derive(Clone, Serialize, Deserialize)]
157 struct ArchMemRegion {
158     base: u64,
159     size: usize,
160     r_type: RegionType,
161 }
162 
163 pub struct MemoryManager {
164     boot_guest_memory: GuestMemoryMmap,
165     guest_memory: GuestMemoryAtomic<GuestMemoryMmap>,
166     next_memory_slot: Arc<AtomicU32>,
167     memory_slot_free_list: Arc<Mutex<Vec<u32>>>,
168     start_of_device_area: GuestAddress,
169     end_of_device_area: GuestAddress,
170     end_of_ram_area: GuestAddress,
171     pub vm: Arc<dyn hypervisor::Vm>,
172     hotplug_slots: Vec<HotPlugState>,
173     selected_slot: usize,
174     mergeable: bool,
175     allocator: Arc<Mutex<SystemAllocator>>,
176     hotplug_method: HotplugMethod,
177     boot_ram: u64,
178     current_ram: u64,
179     next_hotplug_slot: usize,
180     shared: bool,
181     hugepages: bool,
182     hugepage_size: Option<u64>,
183     prefault: bool,
184     thp: bool,
185     #[cfg(target_arch = "x86_64")]
186     sgx_epc_region: Option<SgxEpcRegion>,
187     user_provided_zones: bool,
188     snapshot_memory_ranges: MemoryRangeTable,
189     memory_zones: MemoryZones,
190     log_dirty: bool, // Enable dirty logging for created RAM regions
191     arch_mem_regions: Vec<ArchMemRegion>,
192     ram_allocator: AddressAllocator,
193     dynamic: bool,
194 
195     // Keep track of calls to create_userspace_mapping() for guest RAM.
196     // This is useful for getting the dirty pages as we need to know the
197     // slots that the mapping is created in.
198     guest_ram_mappings: Vec<GuestRamMapping>,
199 
200     pub acpi_address: Option<GuestAddress>,
201     #[cfg(target_arch = "aarch64")]
202     uefi_flash: Option<GuestMemoryAtomic<GuestMemoryMmap>>,
203 }
204 
205 #[derive(Debug)]
206 pub enum Error {
207     /// Failed to create shared file.
208     SharedFileCreate(io::Error),
209 
210     /// Failed to set shared file length.
211     SharedFileSetLen(io::Error),
212 
213     /// Mmap backed guest memory error
214     GuestMemory(MmapError),
215 
216     /// Failed to allocate a memory range.
217     MemoryRangeAllocation,
218 
219     /// Error from region creation
220     GuestMemoryRegion(MmapRegionError),
221 
222     /// No ACPI slot available
223     NoSlotAvailable,
224 
225     /// Not enough space in the hotplug RAM region
226     InsufficientHotplugRam,
227 
228     /// The requested hotplug memory addition is not a valid size
229     InvalidSize,
230 
231     /// Failed to create the user memory region.
232     CreateUserMemoryRegion(hypervisor::HypervisorVmError),
233 
234     /// Failed to remove the user memory region.
235     RemoveUserMemoryRegion(hypervisor::HypervisorVmError),
236 
237     /// Failed to EventFd.
238     EventFdFail(io::Error),
239 
240     /// Eventfd write error
241     EventfdError(io::Error),
242 
243     /// Failed to virtio-mem resize
244     VirtioMemResizeFail(virtio_devices::mem::Error),
245 
246     /// Cannot restore VM
247     Restore(MigratableError),
248 
249     /// Cannot restore VM because source URL is missing
250     RestoreMissingSourceUrl,
251 
252     /// Cannot create the system allocator
253     CreateSystemAllocator,
254 
255     /// Invalid SGX EPC section size
256     #[cfg(target_arch = "x86_64")]
257     EpcSectionSizeInvalid,
258 
259     /// Failed allocating SGX EPC region
260     #[cfg(target_arch = "x86_64")]
261     SgxEpcRangeAllocation,
262 
263     /// Failed opening SGX virtual EPC device
264     #[cfg(target_arch = "x86_64")]
265     SgxVirtEpcOpen(io::Error),
266 
267     /// Failed setting the SGX virtual EPC section size
268     #[cfg(target_arch = "x86_64")]
269     SgxVirtEpcFileSetLen(io::Error),
270 
271     /// Failed opening SGX provisioning device
272     #[cfg(target_arch = "x86_64")]
273     SgxProvisionOpen(io::Error),
274 
275     /// Failed enabling SGX provisioning
276     #[cfg(target_arch = "x86_64")]
277     SgxEnableProvisioning(hypervisor::HypervisorVmError),
278 
279     /// Failed creating a new MmapRegion instance.
280     #[cfg(target_arch = "x86_64")]
281     NewMmapRegion(vm_memory::mmap::MmapRegionError),
282 
283     /// No memory zones found.
284     MissingMemoryZones,
285 
286     /// Memory configuration is not valid.
287     InvalidMemoryParameters,
288 
289     /// Forbidden operation. Impossible to resize guest memory if it is
290     /// backed by user defined memory regions.
291     InvalidResizeWithMemoryZones,
292 
293     /// It's invalid to try applying a NUMA policy to a memory zone that is
294     /// memory mapped with MAP_SHARED.
295     InvalidSharedMemoryZoneWithHostNuma,
296 
297     /// Failed applying NUMA memory policy.
298     ApplyNumaPolicy(io::Error),
299 
300     /// Memory zone identifier is not unique.
301     DuplicateZoneId,
302 
303     /// No virtio-mem resizing handler found.
304     MissingVirtioMemHandler,
305 
306     /// Unknown memory zone.
307     UnknownMemoryZone,
308 
309     /// Invalid size for resizing. Can be anything except 0.
310     InvalidHotplugSize,
311 
312     /// Invalid hotplug method associated with memory zones resizing capability.
313     InvalidHotplugMethodWithMemoryZones,
314 
315     /// Could not find specified memory zone identifier from hash map.
316     MissingZoneIdentifier,
317 
318     /// Resizing the memory zone failed.
319     ResizeZone,
320 
321     /// Guest address overflow
322     GuestAddressOverFlow,
323 
324     /// Error opening snapshot file
325     SnapshotOpen(io::Error),
326 
327     // Error copying snapshot into region
328     SnapshotCopy(GuestMemoryError),
329 
330     /// Failed to allocate MMIO address
331     AllocateMmioAddress,
332 
333     #[cfg(target_arch = "aarch64")]
334     /// Failed to create UEFI flash
335     CreateUefiFlash(HypervisorVmError),
336 
337     /// Using a directory as a backing file for memory is not supported
338     DirectoryAsBackingFileForMemory,
339 
340     /// Failed to stat filesystem
341     GetFileSystemBlockSize(io::Error),
342 
343     /// Memory size is misaligned with default page size or its hugepage size
344     MisalignedMemorySize,
345 }
346 
347 const ENABLE_FLAG: usize = 0;
348 const INSERTING_FLAG: usize = 1;
349 const REMOVING_FLAG: usize = 2;
350 const EJECT_FLAG: usize = 3;
351 
352 const BASE_OFFSET_LOW: u64 = 0;
353 const BASE_OFFSET_HIGH: u64 = 0x4;
354 const LENGTH_OFFSET_LOW: u64 = 0x8;
355 const LENGTH_OFFSET_HIGH: u64 = 0xC;
356 const STATUS_OFFSET: u64 = 0x14;
357 const SELECTION_OFFSET: u64 = 0;
358 
359 // The MMIO address space size is subtracted with 64k. This is done for the
360 // following reasons:
361 //  - Reduce the addressable space size by at least 4k to workaround a Linux
362 //    bug when the VMM allocates devices at the end of the addressable space
363 //  - Windows requires the addressable space size to be 64k aligned
364 fn mmio_address_space_size(phys_bits: u8) -> u64 {
365     (1 << phys_bits) - (1 << 16)
366 }
367 
368 // The `statfs` function can get information of hugetlbfs, and the hugepage size is in the
369 // `f_bsize` field.
370 //
371 // See: https://github.com/torvalds/linux/blob/v6.3/fs/hugetlbfs/inode.c#L1169
372 fn statfs_get_bsize(path: &str) -> Result<u64, Error> {
373     let path = std::ffi::CString::new(path).map_err(|_| Error::InvalidMemoryParameters)?;
374     let mut buf = std::mem::MaybeUninit::<libc::statfs>::uninit();
375 
376     // SAFETY: FFI call with a valid path and buffer
377     let ret = unsafe { libc::statfs(path.as_ptr(), buf.as_mut_ptr()) };
378     if ret != 0 {
379         return Err(Error::GetFileSystemBlockSize(
380             std::io::Error::last_os_error(),
381         ));
382     }
383 
384     // SAFETY: `buf` is valid at this point
385     // Because this value is always positive, just convert it directly.
386     // Note that the `f_bsize` is `i64` in glibc and `u64` in musl, using `as u64` will be warned
387     // by `clippy` on musl target.  To avoid the warning, there should be `as _` instead of
388     // `as u64`.
389     let bsize = unsafe { (*buf.as_ptr()).f_bsize } as _;
390     Ok(bsize)
391 }
392 
393 fn memory_zone_get_align_size(zone: &MemoryZoneConfig) -> Result<u64, Error> {
394     // SAFETY: FFI call. Trivially safe.
395     let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 };
396 
397     // There is no backend file and the `hugepages` is disabled, just use system page size.
398     if zone.file.is_none() && !zone.hugepages {
399         return Ok(page_size);
400     }
401 
402     // The `hugepages` is enabled and the `hugepage_size` is specified, just use it directly.
403     if zone.hugepages && zone.hugepage_size.is_some() {
404         return Ok(zone.hugepage_size.unwrap());
405     }
406 
407     // There are two scenarios here:
408     //  - `hugepages` is enabled but `hugepage_size` is not specified:
409     //     Call `statfs` for `/dev/hugepages` for getting the default size of hugepage
410     //  - The backing file is specified:
411     //     Call `statfs` for the file and get its `f_bsize`.  If the value is larger than the page
412     //     size of normal page, just use the `f_bsize` because the file is in a hugetlbfs.  If the
413     //     value is less than or equal to the page size, just use the page size.
414     let path = zone.file.as_ref().map_or(Ok("/dev/hugepages"), |pathbuf| {
415         pathbuf.to_str().ok_or(Error::InvalidMemoryParameters)
416     })?;
417 
418     let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?);
419 
420     Ok(align_size)
421 }
422 
423 #[inline]
424 fn align_down<T>(val: T, align: T) -> T
425 where
426     T: BitAnd<Output = T> + Not<Output = T> + Sub<Output = T> + From<u8>,
427 {
428     val & !(align - 1u8.into())
429 }
430 
431 #[inline]
432 fn is_aligned<T>(val: T, align: T) -> bool
433 where
434     T: BitAnd<Output = T> + Sub<Output = T> + From<u8> + PartialEq,
435 {
436     (val & (align - 1u8.into())) == 0u8.into()
437 }
438 
439 impl BusDevice for MemoryManager {
440     fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) {
441         if self.selected_slot < self.hotplug_slots.len() {
442             let state = &self.hotplug_slots[self.selected_slot];
443             match offset {
444                 BASE_OFFSET_LOW => {
445                     data.copy_from_slice(&state.base.to_le_bytes()[..4]);
446                 }
447                 BASE_OFFSET_HIGH => {
448                     data.copy_from_slice(&state.base.to_le_bytes()[4..]);
449                 }
450                 LENGTH_OFFSET_LOW => {
451                     data.copy_from_slice(&state.length.to_le_bytes()[..4]);
452                 }
453                 LENGTH_OFFSET_HIGH => {
454                     data.copy_from_slice(&state.length.to_le_bytes()[4..]);
455                 }
456                 STATUS_OFFSET => {
457                     // The Linux kernel, quite reasonably, doesn't zero the memory it gives us.
458                     data.fill(0);
459                     if state.active {
460                         data[0] |= 1 << ENABLE_FLAG;
461                     }
462                     if state.inserting {
463                         data[0] |= 1 << INSERTING_FLAG;
464                     }
465                     if state.removing {
466                         data[0] |= 1 << REMOVING_FLAG;
467                     }
468                 }
469                 _ => {
470                     warn!(
471                         "Unexpected offset for accessing memory manager device: {:#}",
472                         offset
473                     );
474                 }
475             }
476         } else {
477             warn!("Out of range memory slot: {}", self.selected_slot);
478         }
479     }
480 
481     fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
482         match offset {
483             SELECTION_OFFSET => {
484                 self.selected_slot = usize::from(data[0]);
485             }
486             STATUS_OFFSET => {
487                 if self.selected_slot < self.hotplug_slots.len() {
488                     let state = &mut self.hotplug_slots[self.selected_slot];
489                     // The ACPI code writes back a 1 to acknowledge the insertion
490                     if (data[0] & (1 << INSERTING_FLAG) == 1 << INSERTING_FLAG) && state.inserting {
491                         state.inserting = false;
492                     }
493                     // Ditto for removal
494                     if (data[0] & (1 << REMOVING_FLAG) == 1 << REMOVING_FLAG) && state.removing {
495                         state.removing = false;
496                     }
497                     // Trigger removal of "DIMM"
498                     if data[0] & (1 << EJECT_FLAG) == 1 << EJECT_FLAG {
499                         warn!("Ejection of memory not currently supported");
500                     }
501                 } else {
502                     warn!("Out of range memory slot: {}", self.selected_slot);
503                 }
504             }
505             _ => {
506                 warn!(
507                     "Unexpected offset for accessing memory manager device: {:#}",
508                     offset
509                 );
510             }
511         };
512         None
513     }
514 }
515 
516 impl MemoryManager {
517     /// Creates all memory regions based on the available RAM ranges defined
518     /// by `ram_regions`, and based on the description of the memory zones.
519     /// In practice, this function can perform multiple memory mappings of the
520     /// same backing file if there's a hole in the address space between two
521     /// RAM ranges.
522     ///
523     /// One example might be ram_regions containing 2 regions (0-3G and 4G-6G)
524     /// and zones containing two zones (size 1G and size 4G).
525     ///
526     /// This function will create 3 resulting memory regions:
527     /// - First one mapping entirely the first memory zone on 0-1G range
528     /// - Second one mapping partially the second memory zone on 1G-3G range
529     /// - Third one mapping partially the second memory zone on 4G-6G range
530     ///
531     /// Also, all memory regions are page-size aligned (e.g. their sizes must
532     /// be multiple of page-size), which may leave an additional hole in the
533     /// address space when hugepage is used.
534     fn create_memory_regions_from_zones(
535         ram_regions: &[(GuestAddress, usize)],
536         zones: &[MemoryZoneConfig],
537         prefault: Option<bool>,
538         thp: bool,
539     ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> {
540         let mut zone_iter = zones.iter();
541         let mut mem_regions = Vec::new();
542         let mut zone = zone_iter.next().ok_or(Error::MissingMemoryZones)?;
543         let mut zone_align_size = memory_zone_get_align_size(zone)?;
544         let mut zone_offset = 0u64;
545         let mut memory_zones = HashMap::new();
546 
547         if !is_aligned(zone.size, zone_align_size) {
548             return Err(Error::MisalignedMemorySize);
549         }
550 
551         // Add zone id to the list of memory zones.
552         memory_zones.insert(zone.id.clone(), MemoryZone::default());
553 
554         for ram_region in ram_regions.iter() {
555             let mut ram_region_offset = 0;
556             let mut exit = false;
557 
558             loop {
559                 let mut ram_region_consumed = false;
560                 let mut pull_next_zone = false;
561 
562                 let ram_region_available_size =
563                     align_down(ram_region.1 as u64 - ram_region_offset, zone_align_size);
564                 if ram_region_available_size == 0 {
565                     break;
566                 }
567                 let zone_sub_size = zone.size - zone_offset;
568 
569                 let file_offset = zone_offset;
570                 let region_start = ram_region
571                     .0
572                     .checked_add(ram_region_offset)
573                     .ok_or(Error::GuestAddressOverFlow)?;
574                 let region_size = if zone_sub_size <= ram_region_available_size {
575                     if zone_sub_size == ram_region_available_size {
576                         ram_region_consumed = true;
577                     }
578 
579                     ram_region_offset += zone_sub_size;
580                     pull_next_zone = true;
581 
582                     zone_sub_size
583                 } else {
584                     zone_offset += ram_region_available_size;
585                     ram_region_consumed = true;
586 
587                     ram_region_available_size
588                 };
589 
590                 info!(
591                     "create ram region for zone {}, region_start: {:#x}, region_size: {:#x}",
592                     zone.id,
593                     region_start.raw_value(),
594                     region_size
595                 );
596                 let region = MemoryManager::create_ram_region(
597                     &zone.file,
598                     file_offset,
599                     region_start,
600                     region_size as usize,
601                     prefault.unwrap_or(zone.prefault),
602                     zone.shared,
603                     zone.hugepages,
604                     zone.hugepage_size,
605                     zone.host_numa_node,
606                     None,
607                     thp,
608                 )?;
609 
610                 // Add region to the list of regions associated with the
611                 // current memory zone.
612                 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) {
613                     memory_zone.regions.push(region.clone());
614                 }
615 
616                 mem_regions.push(region);
617 
618                 if pull_next_zone {
619                     // Get the next zone and reset the offset.
620                     zone_offset = 0;
621                     if let Some(z) = zone_iter.next() {
622                         zone = z;
623                     } else {
624                         exit = true;
625                         break;
626                     }
627                     zone_align_size = memory_zone_get_align_size(zone)?;
628                     if !is_aligned(zone.size, zone_align_size) {
629                         return Err(Error::MisalignedMemorySize);
630                     }
631 
632                     // Check if zone id already exist. In case it does, throw
633                     // an error as we need unique identifiers. Otherwise, add
634                     // the new zone id to the list of memory zones.
635                     if memory_zones.contains_key(&zone.id) {
636                         error!(
637                             "Memory zone identifier '{}' found more than once. \
638                             It must be unique",
639                             zone.id,
640                         );
641                         return Err(Error::DuplicateZoneId);
642                     }
643                     memory_zones.insert(zone.id.clone(), MemoryZone::default());
644                 }
645 
646                 if ram_region_consumed {
647                     break;
648                 }
649             }
650 
651             if exit {
652                 break;
653             }
654         }
655 
656         Ok((mem_regions, memory_zones))
657     }
658 
659     // Restore both GuestMemory regions along with MemoryZone zones.
660     fn restore_memory_regions_and_zones(
661         guest_ram_mappings: &[GuestRamMapping],
662         zones_config: &[MemoryZoneConfig],
663         prefault: Option<bool>,
664         mut existing_memory_files: HashMap<u32, File>,
665         thp: bool,
666     ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> {
667         let mut memory_regions = Vec::new();
668         let mut memory_zones = HashMap::new();
669 
670         for zone_config in zones_config {
671             memory_zones.insert(zone_config.id.clone(), MemoryZone::default());
672         }
673 
674         for guest_ram_mapping in guest_ram_mappings {
675             for zone_config in zones_config {
676                 if guest_ram_mapping.zone_id == zone_config.id {
677                     let region = MemoryManager::create_ram_region(
678                         if guest_ram_mapping.virtio_mem {
679                             &None
680                         } else {
681                             &zone_config.file
682                         },
683                         guest_ram_mapping.file_offset,
684                         GuestAddress(guest_ram_mapping.gpa),
685                         guest_ram_mapping.size as usize,
686                         prefault.unwrap_or(zone_config.prefault),
687                         zone_config.shared,
688                         zone_config.hugepages,
689                         zone_config.hugepage_size,
690                         zone_config.host_numa_node,
691                         existing_memory_files.remove(&guest_ram_mapping.slot),
692                         thp,
693                     )?;
694                     memory_regions.push(Arc::clone(&region));
695                     if let Some(memory_zone) = memory_zones.get_mut(&guest_ram_mapping.zone_id) {
696                         if guest_ram_mapping.virtio_mem {
697                             let hotplugged_size = zone_config.hotplugged_size.unwrap_or(0);
698                             let region_size = region.len();
699                             memory_zone.virtio_mem_zone = Some(VirtioMemZone {
700                                 region,
701                                 virtio_device: None,
702                                 hotplugged_size,
703                                 hugepages: zone_config.hugepages,
704                                 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))),
705                             });
706                         } else {
707                             memory_zone.regions.push(region);
708                         }
709                     }
710                 }
711             }
712         }
713 
714         memory_regions.sort_by_key(|x| x.start_addr());
715 
716         Ok((memory_regions, memory_zones))
717     }
718 
719     fn fill_saved_regions(
720         &mut self,
721         file_path: PathBuf,
722         saved_regions: MemoryRangeTable,
723     ) -> Result<(), Error> {
724         if saved_regions.is_empty() {
725             return Ok(());
726         }
727 
728         // Open (read only) the snapshot file.
729         let mut memory_file = OpenOptions::new()
730             .read(true)
731             .open(file_path)
732             .map_err(Error::SnapshotOpen)?;
733 
734         let guest_memory = self.guest_memory.memory();
735         for range in saved_regions.regions() {
736             let mut offset: u64 = 0;
737             // Here we are manually handling the retry in case we can't write
738             // the whole region at once because we can't use the implementation
739             // from vm-memory::GuestMemory of read_exact_from() as it is not
740             // following the correct behavior. For more info about this issue
741             // see: https://github.com/rust-vmm/vm-memory/issues/174
742             loop {
743                 let bytes_read = guest_memory
744                     .read_volatile_from(
745                         GuestAddress(range.gpa + offset),
746                         &mut memory_file,
747                         (range.length - offset) as usize,
748                     )
749                     .map_err(Error::SnapshotCopy)?;
750                 offset += bytes_read as u64;
751 
752                 if offset == range.length {
753                     break;
754                 }
755             }
756         }
757 
758         Ok(())
759     }
760 
761     fn validate_memory_config(
762         config: &MemoryConfig,
763         user_provided_zones: bool,
764     ) -> Result<(u64, Vec<MemoryZoneConfig>, bool), Error> {
765         let mut allow_mem_hotplug = false;
766 
767         if !user_provided_zones {
768             if config.zones.is_some() {
769                 error!(
770                     "User defined memory regions can't be provided if the \
771                     memory size is not 0"
772                 );
773                 return Err(Error::InvalidMemoryParameters);
774             }
775 
776             if config.hotplug_size.is_some() {
777                 allow_mem_hotplug = true;
778             }
779 
780             if let Some(hotplugged_size) = config.hotplugged_size {
781                 if let Some(hotplug_size) = config.hotplug_size {
782                     if hotplugged_size > hotplug_size {
783                         error!(
784                             "'hotplugged_size' {} can't be bigger than \
785                             'hotplug_size' {}",
786                             hotplugged_size, hotplug_size,
787                         );
788                         return Err(Error::InvalidMemoryParameters);
789                     }
790                 } else {
791                     error!(
792                         "Invalid to define 'hotplugged_size' when there is\
793                         no 'hotplug_size'"
794                     );
795                     return Err(Error::InvalidMemoryParameters);
796                 }
797                 if config.hotplug_method == HotplugMethod::Acpi {
798                     error!(
799                         "Invalid to define 'hotplugged_size' with hotplug \
800                         method 'acpi'"
801                     );
802                     return Err(Error::InvalidMemoryParameters);
803                 }
804             }
805 
806             // Create a single zone from the global memory config. This lets
807             // us reuse the codepath for user defined memory zones.
808             let zones = vec![MemoryZoneConfig {
809                 id: String::from(DEFAULT_MEMORY_ZONE),
810                 size: config.size,
811                 file: None,
812                 shared: config.shared,
813                 hugepages: config.hugepages,
814                 hugepage_size: config.hugepage_size,
815                 host_numa_node: None,
816                 hotplug_size: config.hotplug_size,
817                 hotplugged_size: config.hotplugged_size,
818                 prefault: config.prefault,
819             }];
820 
821             Ok((config.size, zones, allow_mem_hotplug))
822         } else {
823             if config.zones.is_none() {
824                 error!(
825                     "User defined memory regions must be provided if the \
826                     memory size is 0"
827                 );
828                 return Err(Error::MissingMemoryZones);
829             }
830 
831             // Safe to unwrap as we checked right above there were some
832             // regions.
833             let zones = config.zones.clone().unwrap();
834             if zones.is_empty() {
835                 return Err(Error::MissingMemoryZones);
836             }
837 
838             let mut total_ram_size: u64 = 0;
839             for zone in zones.iter() {
840                 total_ram_size += zone.size;
841 
842                 if zone.shared && zone.file.is_some() && zone.host_numa_node.is_some() {
843                     error!(
844                         "Invalid to set host NUMA policy for a memory zone \
845                         backed by a regular file and mapped as 'shared'"
846                     );
847                     return Err(Error::InvalidSharedMemoryZoneWithHostNuma);
848                 }
849 
850                 if zone.hotplug_size.is_some() && config.hotplug_method == HotplugMethod::Acpi {
851                     error!("Invalid to set ACPI hotplug method for memory zones");
852                     return Err(Error::InvalidHotplugMethodWithMemoryZones);
853                 }
854 
855                 if let Some(hotplugged_size) = zone.hotplugged_size {
856                     if let Some(hotplug_size) = zone.hotplug_size {
857                         if hotplugged_size > hotplug_size {
858                             error!(
859                                 "'hotplugged_size' {} can't be bigger than \
860                                 'hotplug_size' {}",
861                                 hotplugged_size, hotplug_size,
862                             );
863                             return Err(Error::InvalidMemoryParameters);
864                         }
865                     } else {
866                         error!(
867                             "Invalid to define 'hotplugged_size' when there is\
868                             no 'hotplug_size' for a memory zone"
869                         );
870                         return Err(Error::InvalidMemoryParameters);
871                     }
872                     if config.hotplug_method == HotplugMethod::Acpi {
873                         error!(
874                             "Invalid to define 'hotplugged_size' with hotplug \
875                             method 'acpi'"
876                         );
877                         return Err(Error::InvalidMemoryParameters);
878                     }
879                 }
880             }
881 
882             Ok((total_ram_size, zones, allow_mem_hotplug))
883         }
884     }
885 
886     pub fn allocate_address_space(&mut self) -> Result<(), Error> {
887         let mut list = Vec::new();
888 
889         for (zone_id, memory_zone) in self.memory_zones.iter() {
890             let mut regions: Vec<(Arc<vm_memory::GuestRegionMmap<AtomicBitmap>>, bool)> =
891                 memory_zone
892                     .regions()
893                     .iter()
894                     .map(|r| (r.clone(), false))
895                     .collect();
896 
897             if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() {
898                 regions.push((virtio_mem_zone.region().clone(), true));
899             }
900 
901             list.push((zone_id.clone(), regions));
902         }
903 
904         for (zone_id, regions) in list {
905             for (region, virtio_mem) in regions {
906                 let slot = self.create_userspace_mapping(
907                     region.start_addr().raw_value(),
908                     region.len(),
909                     region.as_ptr() as u64,
910                     self.mergeable,
911                     false,
912                     self.log_dirty,
913                 )?;
914 
915                 let file_offset = if let Some(file_offset) = region.file_offset() {
916                     file_offset.start()
917                 } else {
918                     0
919                 };
920 
921                 self.guest_ram_mappings.push(GuestRamMapping {
922                     gpa: region.start_addr().raw_value(),
923                     size: region.len(),
924                     slot,
925                     zone_id: zone_id.clone(),
926                     virtio_mem,
927                     file_offset,
928                 });
929                 self.ram_allocator
930                     .allocate(Some(region.start_addr()), region.len(), None)
931                     .ok_or(Error::MemoryRangeAllocation)?;
932             }
933         }
934 
935         // Allocate SubRegion and Reserved address ranges.
936         for region in self.arch_mem_regions.iter() {
937             if region.r_type == RegionType::Ram {
938                 // Ignore the RAM type since ranges have already been allocated
939                 // based on the GuestMemory regions.
940                 continue;
941             }
942             self.ram_allocator
943                 .allocate(
944                     Some(GuestAddress(region.base)),
945                     region.size as GuestUsize,
946                     None,
947                 )
948                 .ok_or(Error::MemoryRangeAllocation)?;
949         }
950 
951         Ok(())
952     }
953 
954     #[cfg(target_arch = "aarch64")]
955     fn add_uefi_flash(&mut self) -> Result<(), Error> {
956         // On AArch64, the UEFI binary requires a flash device at address 0.
957         // 4 MiB memory is mapped to simulate the flash.
958         let uefi_mem_slot = self.allocate_memory_slot();
959         let uefi_region = GuestRegionMmap::new(
960             MmapRegion::new(arch::layout::UEFI_SIZE as usize).unwrap(),
961             arch::layout::UEFI_START,
962         )
963         .unwrap();
964         let uefi_mem_region = self.vm.make_user_memory_region(
965             uefi_mem_slot,
966             uefi_region.start_addr().raw_value(),
967             uefi_region.len(),
968             uefi_region.as_ptr() as u64,
969             false,
970             false,
971         );
972         self.vm
973             .create_user_memory_region(uefi_mem_region)
974             .map_err(Error::CreateUefiFlash)?;
975 
976         let uefi_flash =
977             GuestMemoryAtomic::new(GuestMemoryMmap::from_regions(vec![uefi_region]).unwrap());
978 
979         self.uefi_flash = Some(uefi_flash);
980 
981         Ok(())
982     }
983 
984     #[allow(clippy::too_many_arguments)]
985     pub fn new(
986         vm: Arc<dyn hypervisor::Vm>,
987         config: &MemoryConfig,
988         prefault: Option<bool>,
989         phys_bits: u8,
990         #[cfg(feature = "tdx")] tdx_enabled: bool,
991         restore_data: Option<&MemoryManagerSnapshotData>,
992         existing_memory_files: Option<HashMap<u32, File>>,
993         #[cfg(target_arch = "x86_64")] sgx_epc_config: Option<Vec<SgxEpcConfig>>,
994     ) -> Result<Arc<Mutex<MemoryManager>>, Error> {
995         trace_scoped!("MemoryManager::new");
996 
997         let user_provided_zones = config.size == 0;
998 
999         let mmio_address_space_size = mmio_address_space_size(phys_bits);
1000         debug_assert_eq!(
1001             (((mmio_address_space_size) >> 16) << 16),
1002             mmio_address_space_size
1003         );
1004         let start_of_platform_device_area =
1005             GuestAddress(mmio_address_space_size - PLATFORM_DEVICE_AREA_SIZE);
1006         let end_of_device_area = start_of_platform_device_area.unchecked_sub(1);
1007 
1008         let (ram_size, zones, allow_mem_hotplug) =
1009             Self::validate_memory_config(config, user_provided_zones)?;
1010 
1011         let (
1012             start_of_device_area,
1013             boot_ram,
1014             current_ram,
1015             arch_mem_regions,
1016             memory_zones,
1017             guest_memory,
1018             boot_guest_memory,
1019             hotplug_slots,
1020             next_memory_slot,
1021             selected_slot,
1022             next_hotplug_slot,
1023         ) = if let Some(data) = restore_data {
1024             let (regions, memory_zones) = Self::restore_memory_regions_and_zones(
1025                 &data.guest_ram_mappings,
1026                 &zones,
1027                 prefault,
1028                 existing_memory_files.unwrap_or_default(),
1029                 config.thp,
1030             )?;
1031             let guest_memory =
1032                 GuestMemoryMmap::from_arc_regions(regions).map_err(Error::GuestMemory)?;
1033             let boot_guest_memory = guest_memory.clone();
1034             (
1035                 GuestAddress(data.start_of_device_area),
1036                 data.boot_ram,
1037                 data.current_ram,
1038                 data.arch_mem_regions.clone(),
1039                 memory_zones,
1040                 guest_memory,
1041                 boot_guest_memory,
1042                 data.hotplug_slots.clone(),
1043                 data.next_memory_slot,
1044                 data.selected_slot,
1045                 data.next_hotplug_slot,
1046             )
1047         } else {
1048             // Init guest memory
1049             let arch_mem_regions = arch::arch_memory_regions();
1050 
1051             let ram_regions: Vec<(GuestAddress, usize)> = arch_mem_regions
1052                 .iter()
1053                 .filter(|r| r.2 == RegionType::Ram)
1054                 .map(|r| (r.0, r.1))
1055                 .collect();
1056 
1057             let arch_mem_regions: Vec<ArchMemRegion> = arch_mem_regions
1058                 .iter()
1059                 .map(|(a, b, c)| ArchMemRegion {
1060                     base: a.0,
1061                     size: *b,
1062                     r_type: *c,
1063                 })
1064                 .collect();
1065 
1066             let (mem_regions, mut memory_zones) =
1067                 Self::create_memory_regions_from_zones(&ram_regions, &zones, prefault, config.thp)?;
1068 
1069             let mut guest_memory =
1070                 GuestMemoryMmap::from_arc_regions(mem_regions).map_err(Error::GuestMemory)?;
1071 
1072             let boot_guest_memory = guest_memory.clone();
1073 
1074             let mut start_of_device_area =
1075                 MemoryManager::start_addr(guest_memory.last_addr(), allow_mem_hotplug)?;
1076 
1077             // Update list of memory zones for resize.
1078             for zone in zones.iter() {
1079                 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) {
1080                     if let Some(hotplug_size) = zone.hotplug_size {
1081                         if hotplug_size == 0 {
1082                             error!("'hotplug_size' can't be 0");
1083                             return Err(Error::InvalidHotplugSize);
1084                         }
1085 
1086                         if !user_provided_zones && config.hotplug_method == HotplugMethod::Acpi {
1087                             start_of_device_area = start_of_device_area
1088                                 .checked_add(hotplug_size)
1089                                 .ok_or(Error::GuestAddressOverFlow)?;
1090                         } else {
1091                             // Alignment must be "natural" i.e. same as size of block
1092                             let start_addr = GuestAddress(
1093                                 start_of_device_area
1094                                     .0
1095                                     .div_ceil(virtio_devices::VIRTIO_MEM_ALIGN_SIZE)
1096                                     * virtio_devices::VIRTIO_MEM_ALIGN_SIZE,
1097                             );
1098 
1099                             // When `prefault` is set by vm_restore, memory manager
1100                             // will create ram region with `prefault` option in
1101                             // restore config rather than same option in zone
1102                             let region = MemoryManager::create_ram_region(
1103                                 &None,
1104                                 0,
1105                                 start_addr,
1106                                 hotplug_size as usize,
1107                                 prefault.unwrap_or(zone.prefault),
1108                                 zone.shared,
1109                                 zone.hugepages,
1110                                 zone.hugepage_size,
1111                                 zone.host_numa_node,
1112                                 None,
1113                                 config.thp,
1114                             )?;
1115 
1116                             guest_memory = guest_memory
1117                                 .insert_region(Arc::clone(&region))
1118                                 .map_err(Error::GuestMemory)?;
1119 
1120                             let hotplugged_size = zone.hotplugged_size.unwrap_or(0);
1121                             let region_size = region.len();
1122                             memory_zone.virtio_mem_zone = Some(VirtioMemZone {
1123                                 region,
1124                                 virtio_device: None,
1125                                 hotplugged_size,
1126                                 hugepages: zone.hugepages,
1127                                 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))),
1128                             });
1129 
1130                             start_of_device_area = start_addr
1131                                 .checked_add(hotplug_size)
1132                                 .ok_or(Error::GuestAddressOverFlow)?;
1133                         }
1134                     }
1135                 } else {
1136                     return Err(Error::MissingZoneIdentifier);
1137                 }
1138             }
1139 
1140             let mut hotplug_slots = Vec::with_capacity(HOTPLUG_COUNT);
1141             hotplug_slots.resize_with(HOTPLUG_COUNT, HotPlugState::default);
1142 
1143             (
1144                 start_of_device_area,
1145                 ram_size,
1146                 ram_size,
1147                 arch_mem_regions,
1148                 memory_zones,
1149                 guest_memory,
1150                 boot_guest_memory,
1151                 hotplug_slots,
1152                 0,
1153                 0,
1154                 0,
1155             )
1156         };
1157 
1158         let guest_memory = GuestMemoryAtomic::new(guest_memory);
1159 
1160         let allocator = Arc::new(Mutex::new(
1161             SystemAllocator::new(
1162                 GuestAddress(0),
1163                 1 << 16,
1164                 start_of_platform_device_area,
1165                 PLATFORM_DEVICE_AREA_SIZE,
1166                 #[cfg(target_arch = "x86_64")]
1167                 vec![GsiApic::new(
1168                     X86_64_IRQ_BASE,
1169                     ioapic::NUM_IOAPIC_PINS as u32 - X86_64_IRQ_BASE,
1170                 )],
1171             )
1172             .ok_or(Error::CreateSystemAllocator)?,
1173         ));
1174 
1175         #[cfg(not(feature = "tdx"))]
1176         let dynamic = true;
1177         #[cfg(feature = "tdx")]
1178         let dynamic = !tdx_enabled;
1179 
1180         let acpi_address = if dynamic
1181             && config.hotplug_method == HotplugMethod::Acpi
1182             && (config.hotplug_size.unwrap_or_default() > 0)
1183         {
1184             Some(
1185                 allocator
1186                     .lock()
1187                     .unwrap()
1188                     .allocate_platform_mmio_addresses(None, MEMORY_MANAGER_ACPI_SIZE as u64, None)
1189                     .ok_or(Error::AllocateMmioAddress)?,
1190             )
1191         } else {
1192             None
1193         };
1194 
1195         // If running on SGX the start of device area and RAM area may diverge but
1196         // at this point they are next to each other.
1197         let end_of_ram_area = start_of_device_area.unchecked_sub(1);
1198         let ram_allocator = AddressAllocator::new(GuestAddress(0), start_of_device_area.0).unwrap();
1199 
1200         let mut memory_manager = MemoryManager {
1201             boot_guest_memory,
1202             guest_memory,
1203             next_memory_slot: Arc::new(AtomicU32::new(next_memory_slot)),
1204             memory_slot_free_list: Arc::new(Mutex::new(Vec::new())),
1205             start_of_device_area,
1206             end_of_device_area,
1207             end_of_ram_area,
1208             vm,
1209             hotplug_slots,
1210             selected_slot,
1211             mergeable: config.mergeable,
1212             allocator,
1213             hotplug_method: config.hotplug_method,
1214             boot_ram,
1215             current_ram,
1216             next_hotplug_slot,
1217             shared: config.shared,
1218             hugepages: config.hugepages,
1219             hugepage_size: config.hugepage_size,
1220             prefault: config.prefault,
1221             #[cfg(target_arch = "x86_64")]
1222             sgx_epc_region: None,
1223             user_provided_zones,
1224             snapshot_memory_ranges: MemoryRangeTable::default(),
1225             memory_zones,
1226             guest_ram_mappings: Vec::new(),
1227             acpi_address,
1228             log_dirty: dynamic, // Cannot log dirty pages on a TD
1229             arch_mem_regions,
1230             ram_allocator,
1231             dynamic,
1232             #[cfg(target_arch = "aarch64")]
1233             uefi_flash: None,
1234             thp: config.thp,
1235         };
1236 
1237         #[cfg(target_arch = "aarch64")]
1238         {
1239             // For Aarch64 we cannot lazily allocate the address space like we
1240             // do for x86, because while restoring a VM from snapshot we would
1241             // need the address space to be allocated to properly restore VGIC.
1242             // And the restore of VGIC happens before we attempt to run the vCPUs
1243             // for the first time, thus we need to allocate the address space
1244             // beforehand.
1245             memory_manager.allocate_address_space()?;
1246             memory_manager.add_uefi_flash()?;
1247         }
1248 
1249         #[cfg(target_arch = "x86_64")]
1250         if let Some(sgx_epc_config) = sgx_epc_config {
1251             memory_manager.setup_sgx(sgx_epc_config)?;
1252         }
1253 
1254         Ok(Arc::new(Mutex::new(memory_manager)))
1255     }
1256 
1257     pub fn new_from_snapshot(
1258         snapshot: &Snapshot,
1259         vm: Arc<dyn hypervisor::Vm>,
1260         config: &MemoryConfig,
1261         source_url: Option<&str>,
1262         prefault: bool,
1263         phys_bits: u8,
1264     ) -> Result<Arc<Mutex<MemoryManager>>, Error> {
1265         if let Some(source_url) = source_url {
1266             let mut memory_file_path = url_to_path(source_url).map_err(Error::Restore)?;
1267             memory_file_path.push(String::from(SNAPSHOT_FILENAME));
1268 
1269             let mem_snapshot: MemoryManagerSnapshotData =
1270                 snapshot.to_state().map_err(Error::Restore)?;
1271 
1272             let mm = MemoryManager::new(
1273                 vm,
1274                 config,
1275                 Some(prefault),
1276                 phys_bits,
1277                 #[cfg(feature = "tdx")]
1278                 false,
1279                 Some(&mem_snapshot),
1280                 None,
1281                 #[cfg(target_arch = "x86_64")]
1282                 None,
1283             )?;
1284 
1285             mm.lock()
1286                 .unwrap()
1287                 .fill_saved_regions(memory_file_path, mem_snapshot.memory_ranges)?;
1288 
1289             Ok(mm)
1290         } else {
1291             Err(Error::RestoreMissingSourceUrl)
1292         }
1293     }
1294 
1295     fn memfd_create(name: &ffi::CStr, flags: u32) -> Result<RawFd, io::Error> {
1296         // SAFETY: FFI call with correct arguments
1297         let res = unsafe { libc::syscall(libc::SYS_memfd_create, name.as_ptr(), flags) };
1298 
1299         if res < 0 {
1300             Err(io::Error::last_os_error())
1301         } else {
1302             Ok(res as RawFd)
1303         }
1304     }
1305 
1306     fn mbind(
1307         addr: *mut u8,
1308         len: u64,
1309         mode: u32,
1310         nodemask: Vec<u64>,
1311         maxnode: u64,
1312         flags: u32,
1313     ) -> Result<(), io::Error> {
1314         // SAFETY: FFI call with correct arguments
1315         let res = unsafe {
1316             libc::syscall(
1317                 libc::SYS_mbind,
1318                 addr as *mut libc::c_void,
1319                 len,
1320                 mode,
1321                 nodemask.as_ptr(),
1322                 maxnode,
1323                 flags,
1324             )
1325         };
1326 
1327         if res < 0 {
1328             Err(io::Error::last_os_error())
1329         } else {
1330             Ok(())
1331         }
1332     }
1333 
1334     fn create_anonymous_file(
1335         size: usize,
1336         hugepages: bool,
1337         hugepage_size: Option<u64>,
1338     ) -> Result<FileOffset, Error> {
1339         let fd = Self::memfd_create(
1340             &ffi::CString::new("ch_ram").unwrap(),
1341             libc::MFD_CLOEXEC
1342                 | if hugepages {
1343                     libc::MFD_HUGETLB
1344                         | if let Some(hugepage_size) = hugepage_size {
1345                             /*
1346                              * From the Linux kernel:
1347                              * Several system calls take a flag to request "hugetlb" huge pages.
1348                              * Without further specification, these system calls will use the
1349                              * system's default huge page size.  If a system supports multiple
1350                              * huge page sizes, the desired huge page size can be specified in
1351                              * bits [26:31] of the flag arguments.  The value in these 6 bits
1352                              * will encode the log2 of the huge page size.
1353                              */
1354 
1355                             hugepage_size.trailing_zeros() << 26
1356                         } else {
1357                             // Use the system default huge page size
1358                             0
1359                         }
1360                 } else {
1361                     0
1362                 },
1363         )
1364         .map_err(Error::SharedFileCreate)?;
1365 
1366         // SAFETY: fd is valid
1367         let f = unsafe { File::from_raw_fd(fd) };
1368         f.set_len(size as u64).map_err(Error::SharedFileSetLen)?;
1369 
1370         Ok(FileOffset::new(f, 0))
1371     }
1372 
1373     fn open_backing_file(backing_file: &PathBuf, file_offset: u64) -> Result<FileOffset, Error> {
1374         if backing_file.is_dir() {
1375             Err(Error::DirectoryAsBackingFileForMemory)
1376         } else {
1377             let f = OpenOptions::new()
1378                 .read(true)
1379                 .write(true)
1380                 .open(backing_file)
1381                 .map_err(Error::SharedFileCreate)?;
1382 
1383             Ok(FileOffset::new(f, file_offset))
1384         }
1385     }
1386 
1387     #[allow(clippy::too_many_arguments)]
1388     pub fn create_ram_region(
1389         backing_file: &Option<PathBuf>,
1390         file_offset: u64,
1391         start_addr: GuestAddress,
1392         size: usize,
1393         prefault: bool,
1394         shared: bool,
1395         hugepages: bool,
1396         hugepage_size: Option<u64>,
1397         host_numa_node: Option<u32>,
1398         existing_memory_file: Option<File>,
1399         thp: bool,
1400     ) -> Result<Arc<GuestRegionMmap>, Error> {
1401         let mut mmap_flags = libc::MAP_NORESERVE;
1402 
1403         // The duplication of mmap_flags ORing here is unfortunate but it also makes
1404         // the complexity of the handling clear.
1405         let fo = if let Some(f) = existing_memory_file {
1406             // It must be MAP_SHARED as we wouldn't already have an FD
1407             mmap_flags |= libc::MAP_SHARED;
1408             Some(FileOffset::new(f, file_offset))
1409         } else if let Some(backing_file) = backing_file {
1410             if shared {
1411                 mmap_flags |= libc::MAP_SHARED;
1412             } else {
1413                 mmap_flags |= libc::MAP_PRIVATE;
1414             }
1415             Some(Self::open_backing_file(backing_file, file_offset)?)
1416         } else if shared || hugepages {
1417             // For hugepages we must also MAP_SHARED otherwise we will trigger #4805
1418             // because the MAP_PRIVATE will trigger CoW against the backing file with
1419             // the VFIO pinning
1420             mmap_flags |= libc::MAP_SHARED;
1421             Some(Self::create_anonymous_file(size, hugepages, hugepage_size)?)
1422         } else {
1423             mmap_flags |= libc::MAP_PRIVATE | libc::MAP_ANONYMOUS;
1424             None
1425         };
1426 
1427         let region = GuestRegionMmap::new(
1428             MmapRegion::build(fo, size, libc::PROT_READ | libc::PROT_WRITE, mmap_flags)
1429                 .map_err(Error::GuestMemoryRegion)?,
1430             start_addr,
1431         )
1432         .map_err(Error::GuestMemory)?;
1433 
1434         // Apply NUMA policy if needed.
1435         if let Some(node) = host_numa_node {
1436             let addr = region.deref().as_ptr();
1437             let len = region.deref().size() as u64;
1438             let mode = MPOL_BIND;
1439             let mut nodemask: Vec<u64> = Vec::new();
1440             let flags = MPOL_MF_STRICT | MPOL_MF_MOVE;
1441 
1442             // Linux is kind of buggy in the way it interprets maxnode as it
1443             // will cut off the last node. That's why we have to add 1 to what
1444             // we would consider as the proper maxnode value.
1445             let maxnode = node as u64 + 1 + 1;
1446 
1447             // Allocate the right size for the vector.
1448             nodemask.resize((node as usize / 64) + 1, 0);
1449 
1450             // Fill the global bitmask through the nodemask vector.
1451             let idx = (node / 64) as usize;
1452             let shift = node % 64;
1453             nodemask[idx] |= 1u64 << shift;
1454 
1455             // Policies are enforced by using MPOL_MF_MOVE flag as it will
1456             // force the kernel to move all pages that might have been already
1457             // allocated to the proper set of NUMA nodes. MPOL_MF_STRICT is
1458             // used to throw an error if MPOL_MF_MOVE didn't succeed.
1459             // MPOL_BIND is the selected mode as it specifies a strict policy
1460             // that restricts memory allocation to the nodes specified in the
1461             // nodemask.
1462             Self::mbind(addr, len, mode, nodemask, maxnode, flags)
1463                 .map_err(Error::ApplyNumaPolicy)?;
1464         }
1465 
1466         // Prefault the region if needed, in parallel.
1467         if prefault {
1468             let page_size =
1469                 Self::get_prefault_align_size(backing_file, hugepages, hugepage_size)? as usize;
1470 
1471             if !is_aligned(size, page_size) {
1472                 warn!(
1473                     "Prefaulting memory size {} misaligned with page size {}",
1474                     size, page_size
1475                 );
1476             }
1477 
1478             let num_pages = size / page_size;
1479 
1480             let num_threads = Self::get_prefault_num_threads(page_size, num_pages);
1481 
1482             let pages_per_thread = num_pages / num_threads;
1483             let remainder = num_pages % num_threads;
1484 
1485             let barrier = Arc::new(Barrier::new(num_threads));
1486             thread::scope(|s| {
1487                 let r = &region;
1488                 for i in 0..num_threads {
1489                     let barrier = Arc::clone(&barrier);
1490                     s.spawn(move || {
1491                         // Wait until all threads have been spawned to avoid contention
1492                         // over mmap_sem between thread stack allocation and page faulting.
1493                         barrier.wait();
1494                         let pages = pages_per_thread + if i < remainder { 1 } else { 0 };
1495                         let offset =
1496                             page_size * ((i * pages_per_thread) + std::cmp::min(i, remainder));
1497                         // SAFETY: FFI call with correct arguments
1498                         let ret = unsafe {
1499                             let addr = r.as_ptr().add(offset);
1500                             libc::madvise(addr as _, pages * page_size, libc::MADV_POPULATE_WRITE)
1501                         };
1502                         if ret != 0 {
1503                             let e = io::Error::last_os_error();
1504                             warn!("Failed to prefault pages: {}", e);
1505                         }
1506                     });
1507                 }
1508             });
1509         }
1510 
1511         if region.file_offset().is_none() && thp {
1512             info!(
1513                 "Anonymous mapping at 0x{:x} (size = 0x{:x})",
1514                 region.as_ptr() as u64,
1515                 size
1516             );
1517             // SAFETY: FFI call with correct arguments
1518             let ret = unsafe { libc::madvise(region.as_ptr() as _, size, libc::MADV_HUGEPAGE) };
1519             if ret != 0 {
1520                 let e = io::Error::last_os_error();
1521                 warn!("Failed to mark pages as THP eligible: {}", e);
1522             }
1523         }
1524 
1525         Ok(Arc::new(region))
1526     }
1527 
1528     // Duplicate of `memory_zone_get_align_size` that does not require a `zone`
1529     fn get_prefault_align_size(
1530         backing_file: &Option<PathBuf>,
1531         hugepages: bool,
1532         hugepage_size: Option<u64>,
1533     ) -> Result<u64, Error> {
1534         // SAFETY: FFI call. Trivially safe.
1535         let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 };
1536         match (hugepages, hugepage_size, backing_file) {
1537             (false, _, _) => Ok(page_size),
1538             (true, Some(hugepage_size), _) => Ok(hugepage_size),
1539             (true, None, _) => {
1540                 // There are two scenarios here:
1541                 //  - `hugepages` is enabled but `hugepage_size` is not specified:
1542                 //     Call `statfs` for `/dev/hugepages` for getting the default size of hugepage
1543                 //  - The backing file is specified:
1544                 //     Call `statfs` for the file and get its `f_bsize`.  If the value is larger than the page
1545                 //     size of normal page, just use the `f_bsize` because the file is in a hugetlbfs.  If the
1546                 //     value is less than or equal to the page size, just use the page size.
1547                 let path = backing_file
1548                     .as_ref()
1549                     .map_or(Ok("/dev/hugepages"), |pathbuf| {
1550                         pathbuf.to_str().ok_or(Error::InvalidMemoryParameters)
1551                     })?;
1552                 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?);
1553                 Ok(align_size)
1554             }
1555         }
1556     }
1557 
1558     fn get_prefault_num_threads(page_size: usize, num_pages: usize) -> usize {
1559         let mut n: usize = 1;
1560 
1561         // Do not create more threads than processors available.
1562         // SAFETY: FFI call. Trivially safe.
1563         let procs = unsafe { libc::sysconf(_SC_NPROCESSORS_ONLN) };
1564         if procs > 0 {
1565             n = std::cmp::min(procs as usize, MAX_PREFAULT_THREAD_COUNT);
1566         }
1567 
1568         // Do not create more threads than pages being allocated.
1569         n = std::cmp::min(n, num_pages);
1570 
1571         // Do not create threads to allocate less than 64 MiB of memory.
1572         n = std::cmp::min(
1573             n,
1574             std::cmp::max(1, page_size * num_pages / (64 * (1 << 26))),
1575         );
1576 
1577         n
1578     }
1579 
1580     // Update the GuestMemoryMmap with the new range
1581     fn add_region(&mut self, region: Arc<GuestRegionMmap>) -> Result<(), Error> {
1582         let guest_memory = self
1583             .guest_memory
1584             .memory()
1585             .insert_region(region)
1586             .map_err(Error::GuestMemory)?;
1587         self.guest_memory.lock().unwrap().replace(guest_memory);
1588 
1589         Ok(())
1590     }
1591 
1592     //
1593     // Calculate the start address of an area next to RAM.
1594     //
1595     // If memory hotplug is allowed, the start address needs to be aligned
1596     // (rounded-up) to 128MiB boundary.
1597     // If memory hotplug is not allowed, there is no alignment required.
1598     // And it must also start at the 64bit start.
1599     fn start_addr(mem_end: GuestAddress, allow_mem_hotplug: bool) -> Result<GuestAddress, Error> {
1600         let mut start_addr = if allow_mem_hotplug {
1601             GuestAddress(mem_end.0 | ((128 << 20) - 1))
1602         } else {
1603             mem_end
1604         };
1605 
1606         start_addr = start_addr
1607             .checked_add(1)
1608             .ok_or(Error::GuestAddressOverFlow)?;
1609 
1610         if mem_end < arch::layout::MEM_32BIT_RESERVED_START {
1611             return Ok(arch::layout::RAM_64BIT_START);
1612         }
1613 
1614         Ok(start_addr)
1615     }
1616 
1617     pub fn add_ram_region(
1618         &mut self,
1619         start_addr: GuestAddress,
1620         size: usize,
1621     ) -> Result<Arc<GuestRegionMmap>, Error> {
1622         // Allocate memory for the region
1623         let region = MemoryManager::create_ram_region(
1624             &None,
1625             0,
1626             start_addr,
1627             size,
1628             self.prefault,
1629             self.shared,
1630             self.hugepages,
1631             self.hugepage_size,
1632             None,
1633             None,
1634             self.thp,
1635         )?;
1636 
1637         // Map it into the guest
1638         let slot = self.create_userspace_mapping(
1639             region.start_addr().0,
1640             region.len(),
1641             region.as_ptr() as u64,
1642             self.mergeable,
1643             false,
1644             self.log_dirty,
1645         )?;
1646         self.guest_ram_mappings.push(GuestRamMapping {
1647             gpa: region.start_addr().raw_value(),
1648             size: region.len(),
1649             slot,
1650             zone_id: DEFAULT_MEMORY_ZONE.to_string(),
1651             virtio_mem: false,
1652             file_offset: 0,
1653         });
1654 
1655         self.add_region(Arc::clone(&region))?;
1656 
1657         Ok(region)
1658     }
1659 
1660     fn hotplug_ram_region(&mut self, size: usize) -> Result<Arc<GuestRegionMmap>, Error> {
1661         info!("Hotplugging new RAM: {}", size);
1662 
1663         // Check that there is a free slot
1664         if self.next_hotplug_slot >= HOTPLUG_COUNT {
1665             return Err(Error::NoSlotAvailable);
1666         }
1667 
1668         // "Inserted" DIMM must have a size that is a multiple of 128MiB
1669         if size % (128 << 20) != 0 {
1670             return Err(Error::InvalidSize);
1671         }
1672 
1673         let start_addr = MemoryManager::start_addr(self.guest_memory.memory().last_addr(), true)?;
1674 
1675         if start_addr
1676             .checked_add((size - 1).try_into().unwrap())
1677             .unwrap()
1678             > self.end_of_ram_area
1679         {
1680             return Err(Error::InsufficientHotplugRam);
1681         }
1682 
1683         let region = self.add_ram_region(start_addr, size)?;
1684 
1685         // Add region to the list of regions associated with the default
1686         // memory zone.
1687         if let Some(memory_zone) = self.memory_zones.get_mut(DEFAULT_MEMORY_ZONE) {
1688             memory_zone.regions.push(Arc::clone(&region));
1689         }
1690 
1691         // Tell the allocator
1692         self.ram_allocator
1693             .allocate(Some(start_addr), size as GuestUsize, None)
1694             .ok_or(Error::MemoryRangeAllocation)?;
1695 
1696         // Update the slot so that it can be queried via the I/O port
1697         let slot = &mut self.hotplug_slots[self.next_hotplug_slot];
1698         slot.active = true;
1699         slot.inserting = true;
1700         slot.base = region.start_addr().0;
1701         slot.length = region.len();
1702 
1703         self.next_hotplug_slot += 1;
1704 
1705         Ok(region)
1706     }
1707 
1708     pub fn guest_memory(&self) -> GuestMemoryAtomic<GuestMemoryMmap> {
1709         self.guest_memory.clone()
1710     }
1711 
1712     pub fn boot_guest_memory(&self) -> GuestMemoryMmap {
1713         self.boot_guest_memory.clone()
1714     }
1715 
1716     pub fn allocator(&self) -> Arc<Mutex<SystemAllocator>> {
1717         self.allocator.clone()
1718     }
1719 
1720     pub fn start_of_device_area(&self) -> GuestAddress {
1721         self.start_of_device_area
1722     }
1723 
1724     pub fn end_of_device_area(&self) -> GuestAddress {
1725         self.end_of_device_area
1726     }
1727 
1728     pub fn memory_slot_allocator(&mut self) -> MemorySlotAllocator {
1729         let memory_slot_free_list = Arc::clone(&self.memory_slot_free_list);
1730         let next_memory_slot = Arc::clone(&self.next_memory_slot);
1731         MemorySlotAllocator::new(next_memory_slot, memory_slot_free_list)
1732     }
1733 
1734     pub fn allocate_memory_slot(&mut self) -> u32 {
1735         self.memory_slot_allocator().next_memory_slot()
1736     }
1737 
1738     pub fn create_userspace_mapping(
1739         &mut self,
1740         guest_phys_addr: u64,
1741         memory_size: u64,
1742         userspace_addr: u64,
1743         mergeable: bool,
1744         readonly: bool,
1745         log_dirty: bool,
1746     ) -> Result<u32, Error> {
1747         let slot = self.allocate_memory_slot();
1748         let mem_region = self.vm.make_user_memory_region(
1749             slot,
1750             guest_phys_addr,
1751             memory_size,
1752             userspace_addr,
1753             readonly,
1754             log_dirty,
1755         );
1756 
1757         info!(
1758             "Creating userspace mapping: {:x} -> {:x} {:x}, slot {}",
1759             guest_phys_addr, userspace_addr, memory_size, slot
1760         );
1761 
1762         self.vm
1763             .create_user_memory_region(mem_region)
1764             .map_err(Error::CreateUserMemoryRegion)?;
1765 
1766         // SAFETY: the address and size are valid since the
1767         // mmap succeeded.
1768         let ret = unsafe {
1769             libc::madvise(
1770                 userspace_addr as *mut libc::c_void,
1771                 memory_size as libc::size_t,
1772                 libc::MADV_DONTDUMP,
1773             )
1774         };
1775         if ret != 0 {
1776             let e = io::Error::last_os_error();
1777             warn!("Failed to mark mapping as MADV_DONTDUMP: {}", e);
1778         }
1779 
1780         // Mark the pages as mergeable if explicitly asked for.
1781         if mergeable {
1782             // SAFETY: the address and size are valid since the
1783             // mmap succeeded.
1784             let ret = unsafe {
1785                 libc::madvise(
1786                     userspace_addr as *mut libc::c_void,
1787                     memory_size as libc::size_t,
1788                     libc::MADV_MERGEABLE,
1789                 )
1790             };
1791             if ret != 0 {
1792                 let err = io::Error::last_os_error();
1793                 // Safe to unwrap because the error is constructed with
1794                 // last_os_error(), which ensures the output will be Some().
1795                 let errno = err.raw_os_error().unwrap();
1796                 if errno == libc::EINVAL {
1797                     warn!("kernel not configured with CONFIG_KSM");
1798                 } else {
1799                     warn!("madvise error: {}", err);
1800                 }
1801                 warn!("failed to mark pages as mergeable");
1802             }
1803         }
1804 
1805         info!(
1806             "Created userspace mapping: {:x} -> {:x} {:x}",
1807             guest_phys_addr, userspace_addr, memory_size
1808         );
1809 
1810         Ok(slot)
1811     }
1812 
1813     pub fn remove_userspace_mapping(
1814         &mut self,
1815         guest_phys_addr: u64,
1816         memory_size: u64,
1817         userspace_addr: u64,
1818         mergeable: bool,
1819         slot: u32,
1820     ) -> Result<(), Error> {
1821         let mem_region = self.vm.make_user_memory_region(
1822             slot,
1823             guest_phys_addr,
1824             memory_size,
1825             userspace_addr,
1826             false, /* readonly -- don't care */
1827             false, /* log dirty */
1828         );
1829 
1830         self.vm
1831             .remove_user_memory_region(mem_region)
1832             .map_err(Error::RemoveUserMemoryRegion)?;
1833 
1834         // Mark the pages as unmergeable if there were previously marked as
1835         // mergeable.
1836         if mergeable {
1837             // SAFETY: the address and size are valid as the region was
1838             // previously advised.
1839             let ret = unsafe {
1840                 libc::madvise(
1841                     userspace_addr as *mut libc::c_void,
1842                     memory_size as libc::size_t,
1843                     libc::MADV_UNMERGEABLE,
1844                 )
1845             };
1846             if ret != 0 {
1847                 let err = io::Error::last_os_error();
1848                 // Safe to unwrap because the error is constructed with
1849                 // last_os_error(), which ensures the output will be Some().
1850                 let errno = err.raw_os_error().unwrap();
1851                 if errno == libc::EINVAL {
1852                     warn!("kernel not configured with CONFIG_KSM");
1853                 } else {
1854                     warn!("madvise error: {}", err);
1855                 }
1856                 warn!("failed to mark pages as unmergeable");
1857             }
1858         }
1859 
1860         info!(
1861             "Removed userspace mapping: {:x} -> {:x} {:x}",
1862             guest_phys_addr, userspace_addr, memory_size
1863         );
1864 
1865         Ok(())
1866     }
1867 
1868     pub fn virtio_mem_resize(&mut self, id: &str, size: u64) -> Result<(), Error> {
1869         if let Some(memory_zone) = self.memory_zones.get_mut(id) {
1870             if let Some(virtio_mem_zone) = &mut memory_zone.virtio_mem_zone {
1871                 if let Some(virtio_mem_device) = virtio_mem_zone.virtio_device.as_ref() {
1872                     virtio_mem_device
1873                         .lock()
1874                         .unwrap()
1875                         .resize(size)
1876                         .map_err(Error::VirtioMemResizeFail)?;
1877                 }
1878 
1879                 // Keep the hotplugged_size up to date.
1880                 virtio_mem_zone.hotplugged_size = size;
1881             } else {
1882                 error!("Failed resizing virtio-mem region: No virtio-mem handler");
1883                 return Err(Error::MissingVirtioMemHandler);
1884             }
1885 
1886             return Ok(());
1887         }
1888 
1889         error!("Failed resizing virtio-mem region: Unknown memory zone");
1890         Err(Error::UnknownMemoryZone)
1891     }
1892 
1893     /// In case this function resulted in adding a new memory region to the
1894     /// guest memory, the new region is returned to the caller. The virtio-mem
1895     /// use case never adds a new region as the whole hotpluggable memory has
1896     /// already been allocated at boot time.
1897     pub fn resize(&mut self, desired_ram: u64) -> Result<Option<Arc<GuestRegionMmap>>, Error> {
1898         if self.user_provided_zones {
1899             error!(
1900                 "Not allowed to resize guest memory when backed with user \
1901                 defined memory zones."
1902             );
1903             return Err(Error::InvalidResizeWithMemoryZones);
1904         }
1905 
1906         let mut region: Option<Arc<GuestRegionMmap>> = None;
1907         match self.hotplug_method {
1908             HotplugMethod::VirtioMem => {
1909                 if desired_ram >= self.boot_ram {
1910                     if !self.dynamic {
1911                         return Ok(region);
1912                     }
1913 
1914                     self.virtio_mem_resize(DEFAULT_MEMORY_ZONE, desired_ram - self.boot_ram)?;
1915                     self.current_ram = desired_ram;
1916                 }
1917             }
1918             HotplugMethod::Acpi => {
1919                 if desired_ram > self.current_ram {
1920                     if !self.dynamic {
1921                         return Ok(region);
1922                     }
1923 
1924                     region =
1925                         Some(self.hotplug_ram_region((desired_ram - self.current_ram) as usize)?);
1926                     self.current_ram = desired_ram;
1927                 }
1928             }
1929         }
1930         Ok(region)
1931     }
1932 
1933     pub fn resize_zone(&mut self, id: &str, virtio_mem_size: u64) -> Result<(), Error> {
1934         if !self.user_provided_zones {
1935             error!(
1936                 "Not allowed to resize guest memory zone when no zone is \
1937                 defined."
1938             );
1939             return Err(Error::ResizeZone);
1940         }
1941 
1942         self.virtio_mem_resize(id, virtio_mem_size)
1943     }
1944 
1945     #[cfg(target_arch = "x86_64")]
1946     pub fn setup_sgx(&mut self, sgx_epc_config: Vec<SgxEpcConfig>) -> Result<(), Error> {
1947         let file = OpenOptions::new()
1948             .read(true)
1949             .open("/dev/sgx_provision")
1950             .map_err(Error::SgxProvisionOpen)?;
1951         self.vm
1952             .enable_sgx_attribute(file)
1953             .map_err(Error::SgxEnableProvisioning)?;
1954 
1955         // Go over each EPC section and verify its size is a 4k multiple. At
1956         // the same time, calculate the total size needed for the contiguous
1957         // EPC region.
1958         let mut epc_region_size = 0;
1959         for epc_section in sgx_epc_config.iter() {
1960             if epc_section.size == 0 {
1961                 return Err(Error::EpcSectionSizeInvalid);
1962             }
1963             if epc_section.size & (SGX_PAGE_SIZE - 1) != 0 {
1964                 return Err(Error::EpcSectionSizeInvalid);
1965             }
1966 
1967             epc_region_size += epc_section.size;
1968         }
1969 
1970         // Place the SGX EPC region on a 4k boundary between the RAM and the device area
1971         let epc_region_start =
1972             GuestAddress(self.start_of_device_area.0.div_ceil(SGX_PAGE_SIZE) * SGX_PAGE_SIZE);
1973 
1974         self.start_of_device_area = epc_region_start
1975             .checked_add(epc_region_size)
1976             .ok_or(Error::GuestAddressOverFlow)?;
1977 
1978         let mut sgx_epc_region = SgxEpcRegion::new(epc_region_start, epc_region_size as GuestUsize);
1979         info!(
1980             "SGX EPC region: 0x{:x} (0x{:x})",
1981             epc_region_start.0, epc_region_size
1982         );
1983 
1984         // Each section can be memory mapped into the allocated region.
1985         let mut epc_section_start = epc_region_start.raw_value();
1986         for epc_section in sgx_epc_config.iter() {
1987             let file = OpenOptions::new()
1988                 .read(true)
1989                 .write(true)
1990                 .open("/dev/sgx_vepc")
1991                 .map_err(Error::SgxVirtEpcOpen)?;
1992 
1993             let prot = PROT_READ | PROT_WRITE;
1994             let mut flags = MAP_NORESERVE | MAP_SHARED;
1995             if epc_section.prefault {
1996                 flags |= MAP_POPULATE;
1997             }
1998 
1999             // We can't use the vm-memory crate to perform the memory mapping
2000             // here as it would try to ensure the size of the backing file is
2001             // matching the size of the expected mapping. The /dev/sgx_vepc
2002             // device does not work that way, it provides a file descriptor
2003             // which is not matching the mapping size, as it's a just a way to
2004             // let KVM know that an EPC section is being created for the guest.
2005             // SAFETY: FFI call with correct arguments
2006             let host_addr = unsafe {
2007                 libc::mmap(
2008                     std::ptr::null_mut(),
2009                     epc_section.size as usize,
2010                     prot,
2011                     flags,
2012                     file.as_raw_fd(),
2013                     0,
2014                 )
2015             } as u64;
2016 
2017             info!(
2018                 "Adding SGX EPC section: 0x{:x} (0x{:x})",
2019                 epc_section_start, epc_section.size
2020             );
2021 
2022             let _mem_slot = self.create_userspace_mapping(
2023                 epc_section_start,
2024                 epc_section.size,
2025                 host_addr,
2026                 false,
2027                 false,
2028                 false,
2029             )?;
2030 
2031             sgx_epc_region.insert(
2032                 epc_section.id.clone(),
2033                 SgxEpcSection::new(
2034                     GuestAddress(epc_section_start),
2035                     epc_section.size as GuestUsize,
2036                 ),
2037             );
2038 
2039             epc_section_start += epc_section.size;
2040         }
2041 
2042         self.sgx_epc_region = Some(sgx_epc_region);
2043 
2044         Ok(())
2045     }
2046 
2047     #[cfg(target_arch = "x86_64")]
2048     pub fn sgx_epc_region(&self) -> &Option<SgxEpcRegion> {
2049         &self.sgx_epc_region
2050     }
2051 
2052     pub fn is_hardlink(f: &File) -> bool {
2053         let mut stat = std::mem::MaybeUninit::<libc::stat>::uninit();
2054         // SAFETY: FFI call with correct arguments
2055         let ret = unsafe { libc::fstat(f.as_raw_fd(), stat.as_mut_ptr()) };
2056         if ret != 0 {
2057             error!("Couldn't fstat the backing file");
2058             return false;
2059         }
2060 
2061         // SAFETY: stat is valid
2062         unsafe { (*stat.as_ptr()).st_nlink as usize > 0 }
2063     }
2064 
2065     pub fn memory_zones(&self) -> &MemoryZones {
2066         &self.memory_zones
2067     }
2068 
2069     pub fn memory_zones_mut(&mut self) -> &mut MemoryZones {
2070         &mut self.memory_zones
2071     }
2072 
2073     pub fn memory_range_table(
2074         &self,
2075         snapshot: bool,
2076     ) -> std::result::Result<MemoryRangeTable, MigratableError> {
2077         let mut table = MemoryRangeTable::default();
2078 
2079         for memory_zone in self.memory_zones.values() {
2080             if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() {
2081                 table.extend(virtio_mem_zone.plugged_ranges());
2082             }
2083 
2084             for region in memory_zone.regions() {
2085                 if snapshot {
2086                     if let Some(file_offset) = region.file_offset() {
2087                         if (region.flags() & libc::MAP_SHARED == libc::MAP_SHARED)
2088                             && Self::is_hardlink(file_offset.file())
2089                         {
2090                             // In this very specific case, we know the memory
2091                             // region is backed by a file on the host filesystem
2092                             // that can be accessed by the user, and additionally
2093                             // the mapping is shared, which means that modifications
2094                             // to the content are written to the actual file.
2095                             // When meeting these conditions, we can skip the
2096                             // copy of the memory content for this specific region,
2097                             // as we can assume the user will have it saved through
2098                             // the backing file already.
2099                             continue;
2100                         }
2101                     }
2102                 }
2103 
2104                 table.push(MemoryRange {
2105                     gpa: region.start_addr().raw_value(),
2106                     length: region.len(),
2107                 });
2108             }
2109         }
2110 
2111         Ok(table)
2112     }
2113 
2114     pub fn snapshot_data(&self) -> MemoryManagerSnapshotData {
2115         MemoryManagerSnapshotData {
2116             memory_ranges: self.snapshot_memory_ranges.clone(),
2117             guest_ram_mappings: self.guest_ram_mappings.clone(),
2118             start_of_device_area: self.start_of_device_area.0,
2119             boot_ram: self.boot_ram,
2120             current_ram: self.current_ram,
2121             arch_mem_regions: self.arch_mem_regions.clone(),
2122             hotplug_slots: self.hotplug_slots.clone(),
2123             next_memory_slot: self.next_memory_slot.load(Ordering::SeqCst),
2124             selected_slot: self.selected_slot,
2125             next_hotplug_slot: self.next_hotplug_slot,
2126         }
2127     }
2128 
2129     pub fn memory_slot_fds(&self) -> HashMap<u32, RawFd> {
2130         let mut memory_slot_fds = HashMap::new();
2131         for guest_ram_mapping in &self.guest_ram_mappings {
2132             let slot = guest_ram_mapping.slot;
2133             let guest_memory = self.guest_memory.memory();
2134             let file = guest_memory
2135                 .find_region(GuestAddress(guest_ram_mapping.gpa))
2136                 .unwrap()
2137                 .file_offset()
2138                 .unwrap()
2139                 .file();
2140             memory_slot_fds.insert(slot, file.as_raw_fd());
2141         }
2142         memory_slot_fds
2143     }
2144 
2145     pub fn acpi_address(&self) -> Option<GuestAddress> {
2146         self.acpi_address
2147     }
2148 
2149     pub fn num_guest_ram_mappings(&self) -> u32 {
2150         self.guest_ram_mappings.len() as u32
2151     }
2152 
2153     #[cfg(target_arch = "aarch64")]
2154     pub fn uefi_flash(&self) -> GuestMemoryAtomic<GuestMemoryMmap> {
2155         self.uefi_flash.as_ref().unwrap().clone()
2156     }
2157 
2158     #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))]
2159     pub fn coredump_memory_regions(&self, mem_offset: u64) -> CoredumpMemoryRegions {
2160         let mut mapping_sorted_by_gpa = self.guest_ram_mappings.clone();
2161         mapping_sorted_by_gpa.sort_by_key(|m| m.gpa);
2162 
2163         let mut mem_offset_in_elf = mem_offset;
2164         let mut ram_maps = BTreeMap::new();
2165         for mapping in mapping_sorted_by_gpa.iter() {
2166             ram_maps.insert(
2167                 mapping.gpa,
2168                 CoredumpMemoryRegion {
2169                     mem_offset_in_elf,
2170                     mem_size: mapping.size,
2171                 },
2172             );
2173             mem_offset_in_elf += mapping.size;
2174         }
2175 
2176         CoredumpMemoryRegions { ram_maps }
2177     }
2178 
2179     #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))]
2180     pub fn coredump_iterate_save_mem(
2181         &mut self,
2182         dump_state: &DumpState,
2183     ) -> std::result::Result<(), GuestDebuggableError> {
2184         let snapshot_memory_ranges = self
2185             .memory_range_table(false)
2186             .map_err(|e| GuestDebuggableError::Coredump(e.into()))?;
2187 
2188         if snapshot_memory_ranges.is_empty() {
2189             return Ok(());
2190         }
2191 
2192         let coredump_file = dump_state.file.as_ref().unwrap();
2193 
2194         let guest_memory = self.guest_memory.memory();
2195         let mut total_bytes: u64 = 0;
2196 
2197         for range in snapshot_memory_ranges.regions() {
2198             let mut offset: u64 = 0;
2199             loop {
2200                 let bytes_written = guest_memory
2201                     .write_volatile_to(
2202                         GuestAddress(range.gpa + offset),
2203                         &mut coredump_file.as_fd(),
2204                         (range.length - offset) as usize,
2205                     )
2206                     .map_err(|e| GuestDebuggableError::Coredump(e.into()))?;
2207                 offset += bytes_written as u64;
2208                 total_bytes += bytes_written as u64;
2209 
2210                 if offset == range.length {
2211                     break;
2212                 }
2213             }
2214         }
2215 
2216         debug!("coredump total bytes {}", total_bytes);
2217         Ok(())
2218     }
2219 
2220     pub fn receive_memory_regions<F>(
2221         &mut self,
2222         ranges: &MemoryRangeTable,
2223         fd: &mut F,
2224     ) -> std::result::Result<(), MigratableError>
2225     where
2226         F: ReadVolatile,
2227     {
2228         let guest_memory = self.guest_memory();
2229         let mem = guest_memory.memory();
2230 
2231         for range in ranges.regions() {
2232             let mut offset: u64 = 0;
2233             // Here we are manually handling the retry in case we can't the
2234             // whole region at once because we can't use the implementation
2235             // from vm-memory::GuestMemory of read_exact_from() as it is not
2236             // following the correct behavior. For more info about this issue
2237             // see: https://github.com/rust-vmm/vm-memory/issues/174
2238             loop {
2239                 let bytes_read = mem
2240                     .read_volatile_from(
2241                         GuestAddress(range.gpa + offset),
2242                         fd,
2243                         (range.length - offset) as usize,
2244                     )
2245                     .map_err(|e| {
2246                         MigratableError::MigrateReceive(anyhow!(
2247                             "Error receiving memory from socket: {}",
2248                             e
2249                         ))
2250                     })?;
2251                 offset += bytes_read as u64;
2252 
2253                 if offset == range.length {
2254                     break;
2255                 }
2256             }
2257         }
2258 
2259         Ok(())
2260     }
2261 }
2262 
2263 struct MemoryNotify {
2264     slot_id: usize,
2265 }
2266 
2267 impl Aml for MemoryNotify {
2268     fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) {
2269         let object = aml::Path::new(&format!("M{:03}", self.slot_id));
2270         aml::If::new(
2271             &aml::Equal::new(&aml::Arg(0), &self.slot_id),
2272             vec![&aml::Notify::new(&object, &aml::Arg(1))],
2273         )
2274         .to_aml_bytes(sink)
2275     }
2276 }
2277 
2278 struct MemorySlot {
2279     slot_id: usize,
2280 }
2281 
2282 impl Aml for MemorySlot {
2283     fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) {
2284         aml::Device::new(
2285             format!("M{:03}", self.slot_id).as_str().into(),
2286             vec![
2287                 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C80")),
2288                 &aml::Name::new("_UID".into(), &self.slot_id),
2289                 /*
2290                 _STA return value:
2291                 Bit [0] – Set if the device is present.
2292                 Bit [1] – Set if the device is enabled and decoding its resources.
2293                 Bit [2] – Set if the device should be shown in the UI.
2294                 Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics).
2295                 Bit [4] – Set if the battery is present.
2296                 Bits [31:5] – Reserved (must be cleared).
2297                 */
2298                 &aml::Method::new(
2299                     "_STA".into(),
2300                     0,
2301                     false,
2302                     // Call into MSTA method which will interrogate device
2303                     vec![&aml::Return::new(&aml::MethodCall::new(
2304                         "MSTA".into(),
2305                         vec![&self.slot_id],
2306                     ))],
2307                 ),
2308                 // Get details of memory
2309                 &aml::Method::new(
2310                     "_CRS".into(),
2311                     0,
2312                     false,
2313                     // Call into MCRS which provides actual memory details
2314                     vec![&aml::Return::new(&aml::MethodCall::new(
2315                         "MCRS".into(),
2316                         vec![&self.slot_id],
2317                     ))],
2318                 ),
2319             ],
2320         )
2321         .to_aml_bytes(sink)
2322     }
2323 }
2324 
2325 struct MemorySlots {
2326     slots: usize,
2327 }
2328 
2329 impl Aml for MemorySlots {
2330     fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) {
2331         for slot_id in 0..self.slots {
2332             MemorySlot { slot_id }.to_aml_bytes(sink);
2333         }
2334     }
2335 }
2336 
2337 struct MemoryMethods {
2338     slots: usize,
2339 }
2340 
2341 impl Aml for MemoryMethods {
2342     fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) {
2343         // Add "MTFY" notification method
2344         let mut memory_notifies = Vec::new();
2345         for slot_id in 0..self.slots {
2346             memory_notifies.push(MemoryNotify { slot_id });
2347         }
2348 
2349         let mut memory_notifies_refs: Vec<&dyn Aml> = Vec::new();
2350         for memory_notifier in memory_notifies.iter() {
2351             memory_notifies_refs.push(memory_notifier);
2352         }
2353 
2354         aml::Method::new("MTFY".into(), 2, true, memory_notifies_refs).to_aml_bytes(sink);
2355 
2356         // MSCN method
2357         aml::Method::new(
2358             "MSCN".into(),
2359             0,
2360             true,
2361             vec![
2362                 // Take lock defined above
2363                 &aml::Acquire::new("MLCK".into(), 0xffff),
2364                 &aml::Store::new(&aml::Local(0), &aml::ZERO),
2365                 &aml::While::new(
2366                     &aml::LessThan::new(&aml::Local(0), &self.slots),
2367                     vec![
2368                         // Write slot number (in first argument) to I/O port via field
2369                         &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Local(0)),
2370                         // Check if MINS bit is set (inserting)
2371                         &aml::If::new(
2372                             &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE),
2373                             // Notify device if it is
2374                             vec![
2375                                 &aml::MethodCall::new(
2376                                     "MTFY".into(),
2377                                     vec![&aml::Local(0), &aml::ONE],
2378                                 ),
2379                                 // Reset MINS bit
2380                                 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE),
2381                             ],
2382                         ),
2383                         // Check if MRMV bit is set
2384                         &aml::If::new(
2385                             &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE),
2386                             // Notify device if it is (with the eject constant 0x3)
2387                             vec![
2388                                 &aml::MethodCall::new("MTFY".into(), vec![&aml::Local(0), &3u8]),
2389                                 // Reset MRMV bit
2390                                 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE),
2391                             ],
2392                         ),
2393                         &aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE),
2394                     ],
2395                 ),
2396                 // Release lock
2397                 &aml::Release::new("MLCK".into()),
2398             ],
2399         )
2400         .to_aml_bytes(sink);
2401 
2402         // Memory status method
2403         aml::Method::new(
2404             "MSTA".into(),
2405             1,
2406             true,
2407             vec![
2408                 // Take lock defined above
2409                 &aml::Acquire::new("MLCK".into(), 0xffff),
2410                 // Write slot number (in first argument) to I/O port via field
2411                 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)),
2412                 &aml::Store::new(&aml::Local(0), &aml::ZERO),
2413                 // Check if MEN_ bit is set, if so make the local variable 0xf (see _STA for details of meaning)
2414                 &aml::If::new(
2415                     &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MEN_"), &aml::ONE),
2416                     vec![&aml::Store::new(&aml::Local(0), &0xfu8)],
2417                 ),
2418                 // Release lock
2419                 &aml::Release::new("MLCK".into()),
2420                 // Return 0 or 0xf
2421                 &aml::Return::new(&aml::Local(0)),
2422             ],
2423         )
2424         .to_aml_bytes(sink);
2425 
2426         // Memory range method
2427         aml::Method::new(
2428             "MCRS".into(),
2429             1,
2430             true,
2431             vec![
2432                 // Take lock defined above
2433                 &aml::Acquire::new("MLCK".into(), 0xffff),
2434                 // Write slot number (in first argument) to I/O port via field
2435                 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)),
2436                 &aml::Name::new(
2437                     "MR64".into(),
2438                     &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
2439                         aml::AddressSpaceCacheable::Cacheable,
2440                         true,
2441                         0x0000_0000_0000_0000u64,
2442                         0xFFFF_FFFF_FFFF_FFFEu64,
2443                         None,
2444                     )]),
2445                 ),
2446                 &aml::CreateQWordField::new(
2447                     &aml::Path::new("MINL"),
2448                     &aml::Path::new("MR64"),
2449                     &14usize,
2450                 ),
2451                 &aml::CreateDWordField::new(
2452                     &aml::Path::new("MINH"),
2453                     &aml::Path::new("MR64"),
2454                     &18usize,
2455                 ),
2456                 &aml::CreateQWordField::new(
2457                     &aml::Path::new("MAXL"),
2458                     &aml::Path::new("MR64"),
2459                     &22usize,
2460                 ),
2461                 &aml::CreateDWordField::new(
2462                     &aml::Path::new("MAXH"),
2463                     &aml::Path::new("MR64"),
2464                     &26usize,
2465                 ),
2466                 &aml::CreateQWordField::new(
2467                     &aml::Path::new("LENL"),
2468                     &aml::Path::new("MR64"),
2469                     &38usize,
2470                 ),
2471                 &aml::CreateDWordField::new(
2472                     &aml::Path::new("LENH"),
2473                     &aml::Path::new("MR64"),
2474                     &42usize,
2475                 ),
2476                 &aml::Store::new(&aml::Path::new("MINL"), &aml::Path::new("\\_SB_.MHPC.MHBL")),
2477                 &aml::Store::new(&aml::Path::new("MINH"), &aml::Path::new("\\_SB_.MHPC.MHBH")),
2478                 &aml::Store::new(&aml::Path::new("LENL"), &aml::Path::new("\\_SB_.MHPC.MHLL")),
2479                 &aml::Store::new(&aml::Path::new("LENH"), &aml::Path::new("\\_SB_.MHPC.MHLH")),
2480                 &aml::Add::new(
2481                     &aml::Path::new("MAXL"),
2482                     &aml::Path::new("MINL"),
2483                     &aml::Path::new("LENL"),
2484                 ),
2485                 &aml::Add::new(
2486                     &aml::Path::new("MAXH"),
2487                     &aml::Path::new("MINH"),
2488                     &aml::Path::new("LENH"),
2489                 ),
2490                 &aml::If::new(
2491                     &aml::LessThan::new(&aml::Path::new("MAXL"), &aml::Path::new("MINL")),
2492                     vec![&aml::Add::new(
2493                         &aml::Path::new("MAXH"),
2494                         &aml::ONE,
2495                         &aml::Path::new("MAXH"),
2496                     )],
2497                 ),
2498                 &aml::Subtract::new(&aml::Path::new("MAXL"), &aml::Path::new("MAXL"), &aml::ONE),
2499                 // Release lock
2500                 &aml::Release::new("MLCK".into()),
2501                 &aml::Return::new(&aml::Path::new("MR64")),
2502             ],
2503         )
2504         .to_aml_bytes(sink)
2505     }
2506 }
2507 
2508 impl Aml for MemoryManager {
2509     fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) {
2510         if let Some(acpi_address) = self.acpi_address {
2511             // Memory Hotplug Controller
2512             aml::Device::new(
2513                 "_SB_.MHPC".into(),
2514                 vec![
2515                     &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")),
2516                     &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"),
2517                     // Mutex to protect concurrent access as we write to choose slot and then read back status
2518                     &aml::Mutex::new("MLCK".into(), 0),
2519                     &aml::Name::new(
2520                         "_CRS".into(),
2521                         &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
2522                             aml::AddressSpaceCacheable::NotCacheable,
2523                             true,
2524                             acpi_address.0,
2525                             acpi_address.0 + MEMORY_MANAGER_ACPI_SIZE as u64 - 1,
2526                             None,
2527                         )]),
2528                     ),
2529                     // OpRegion and Fields map MMIO range into individual field values
2530                     &aml::OpRegion::new(
2531                         "MHPR".into(),
2532                         aml::OpRegionSpace::SystemMemory,
2533                         &(acpi_address.0 as usize),
2534                         &MEMORY_MANAGER_ACPI_SIZE,
2535                     ),
2536                     &aml::Field::new(
2537                         "MHPR".into(),
2538                         aml::FieldAccessType::DWord,
2539                         aml::FieldLockRule::NoLock,
2540                         aml::FieldUpdateRule::Preserve,
2541                         vec![
2542                             aml::FieldEntry::Named(*b"MHBL", 32), // Base (low 4 bytes)
2543                             aml::FieldEntry::Named(*b"MHBH", 32), // Base (high 4 bytes)
2544                             aml::FieldEntry::Named(*b"MHLL", 32), // Length (low 4 bytes)
2545                             aml::FieldEntry::Named(*b"MHLH", 32), // Length (high 4 bytes)
2546                         ],
2547                     ),
2548                     &aml::Field::new(
2549                         "MHPR".into(),
2550                         aml::FieldAccessType::DWord,
2551                         aml::FieldLockRule::NoLock,
2552                         aml::FieldUpdateRule::Preserve,
2553                         vec![
2554                             aml::FieldEntry::Reserved(128),
2555                             aml::FieldEntry::Named(*b"MHPX", 32), // PXM
2556                         ],
2557                     ),
2558                     &aml::Field::new(
2559                         "MHPR".into(),
2560                         aml::FieldAccessType::Byte,
2561                         aml::FieldLockRule::NoLock,
2562                         aml::FieldUpdateRule::WriteAsZeroes,
2563                         vec![
2564                             aml::FieldEntry::Reserved(160),
2565                             aml::FieldEntry::Named(*b"MEN_", 1), // Enabled
2566                             aml::FieldEntry::Named(*b"MINS", 1), // Inserting
2567                             aml::FieldEntry::Named(*b"MRMV", 1), // Removing
2568                             aml::FieldEntry::Named(*b"MEJ0", 1), // Ejecting
2569                         ],
2570                     ),
2571                     &aml::Field::new(
2572                         "MHPR".into(),
2573                         aml::FieldAccessType::DWord,
2574                         aml::FieldLockRule::NoLock,
2575                         aml::FieldUpdateRule::Preserve,
2576                         vec![
2577                             aml::FieldEntry::Named(*b"MSEL", 32), // Selector
2578                             aml::FieldEntry::Named(*b"MOEV", 32), // Event
2579                             aml::FieldEntry::Named(*b"MOSC", 32), // OSC
2580                         ],
2581                     ),
2582                     &MemoryMethods {
2583                         slots: self.hotplug_slots.len(),
2584                     },
2585                     &MemorySlots {
2586                         slots: self.hotplug_slots.len(),
2587                     },
2588                 ],
2589             )
2590             .to_aml_bytes(sink);
2591         } else {
2592             aml::Device::new(
2593                 "_SB_.MHPC".into(),
2594                 vec![
2595                     &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")),
2596                     &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"),
2597                     // Empty MSCN for GED
2598                     &aml::Method::new("MSCN".into(), 0, true, vec![]),
2599                 ],
2600             )
2601             .to_aml_bytes(sink);
2602         }
2603 
2604         #[cfg(target_arch = "x86_64")]
2605         {
2606             if let Some(sgx_epc_region) = &self.sgx_epc_region {
2607                 let min = sgx_epc_region.start().raw_value();
2608                 let max = min + sgx_epc_region.size() - 1;
2609                 // SGX EPC region
2610                 aml::Device::new(
2611                     "_SB_.EPC_".into(),
2612                     vec![
2613                         &aml::Name::new("_HID".into(), &aml::EISAName::new("INT0E0C")),
2614                         // QWORD describing the EPC region start and size
2615                         &aml::Name::new(
2616                             "_CRS".into(),
2617                             &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory(
2618                                 aml::AddressSpaceCacheable::NotCacheable,
2619                                 true,
2620                                 min,
2621                                 max,
2622                                 None,
2623                             )]),
2624                         ),
2625                         &aml::Method::new("_STA".into(), 0, false, vec![&aml::Return::new(&0xfu8)]),
2626                     ],
2627                 )
2628                 .to_aml_bytes(sink);
2629             }
2630         }
2631     }
2632 }
2633 
2634 impl Pausable for MemoryManager {}
2635 
2636 #[derive(Clone, Serialize, Deserialize)]
2637 pub struct MemoryManagerSnapshotData {
2638     memory_ranges: MemoryRangeTable,
2639     guest_ram_mappings: Vec<GuestRamMapping>,
2640     start_of_device_area: u64,
2641     boot_ram: u64,
2642     current_ram: u64,
2643     arch_mem_regions: Vec<ArchMemRegion>,
2644     hotplug_slots: Vec<HotPlugState>,
2645     next_memory_slot: u32,
2646     selected_slot: usize,
2647     next_hotplug_slot: usize,
2648 }
2649 
2650 impl Snapshottable for MemoryManager {
2651     fn id(&self) -> String {
2652         MEMORY_MANAGER_SNAPSHOT_ID.to_string()
2653     }
2654 
2655     fn snapshot(&mut self) -> result::Result<Snapshot, MigratableError> {
2656         let memory_ranges = self.memory_range_table(true)?;
2657 
2658         // Store locally this list of ranges as it will be used through the
2659         // Transportable::send() implementation. The point is to avoid the
2660         // duplication of code regarding the creation of the path for each
2661         // region. The 'snapshot' step creates the list of memory regions,
2662         // including information about the need to copy a memory region or
2663         // not. This saves the 'send' step having to go through the same
2664         // process, and instead it can directly proceed with storing the
2665         // memory range content for the ranges requiring it.
2666         self.snapshot_memory_ranges = memory_ranges;
2667 
2668         Ok(Snapshot::from_data(SnapshotData::new_from_state(
2669             &self.snapshot_data(),
2670         )?))
2671     }
2672 }
2673 
2674 impl Transportable for MemoryManager {
2675     fn send(
2676         &self,
2677         _snapshot: &Snapshot,
2678         destination_url: &str,
2679     ) -> result::Result<(), MigratableError> {
2680         if self.snapshot_memory_ranges.is_empty() {
2681             return Ok(());
2682         }
2683 
2684         let mut memory_file_path = url_to_path(destination_url)?;
2685         memory_file_path.push(String::from(SNAPSHOT_FILENAME));
2686 
2687         // Create the snapshot file for the entire memory
2688         let mut memory_file = OpenOptions::new()
2689             .read(true)
2690             .write(true)
2691             .create_new(true)
2692             .open(memory_file_path)
2693             .map_err(|e| MigratableError::MigrateSend(e.into()))?;
2694 
2695         let guest_memory = self.guest_memory.memory();
2696 
2697         for range in self.snapshot_memory_ranges.regions() {
2698             let mut offset: u64 = 0;
2699             // Here we are manually handling the retry in case we can't read
2700             // the whole region at once because we can't use the implementation
2701             // from vm-memory::GuestMemory of write_all_to() as it is not
2702             // following the correct behavior. For more info about this issue
2703             // see: https://github.com/rust-vmm/vm-memory/issues/174
2704             loop {
2705                 let bytes_written = guest_memory
2706                     .write_volatile_to(
2707                         GuestAddress(range.gpa + offset),
2708                         &mut memory_file,
2709                         (range.length - offset) as usize,
2710                     )
2711                     .map_err(|e| MigratableError::MigrateSend(e.into()))?;
2712                 offset += bytes_written as u64;
2713 
2714                 if offset == range.length {
2715                     break;
2716                 }
2717             }
2718         }
2719         Ok(())
2720     }
2721 }
2722 
2723 impl Migratable for MemoryManager {
2724     // Start the dirty log in the hypervisor (kvm/mshv).
2725     // Also, reset the dirty bitmap logged by the vmm.
2726     // Just before we do a bulk copy we want to start/clear the dirty log so that
2727     // pages touched during our bulk copy are tracked.
2728     fn start_dirty_log(&mut self) -> std::result::Result<(), MigratableError> {
2729         self.vm.start_dirty_log().map_err(|e| {
2730             MigratableError::MigrateSend(anyhow!("Error starting VM dirty log {}", e))
2731         })?;
2732 
2733         for r in self.guest_memory.memory().iter() {
2734             r.bitmap().reset();
2735         }
2736 
2737         Ok(())
2738     }
2739 
2740     fn stop_dirty_log(&mut self) -> std::result::Result<(), MigratableError> {
2741         self.vm.stop_dirty_log().map_err(|e| {
2742             MigratableError::MigrateSend(anyhow!("Error stopping VM dirty log {}", e))
2743         })?;
2744 
2745         Ok(())
2746     }
2747 
2748     // Generate a table for the pages that are dirty. The dirty pages are collapsed
2749     // together in the table if they are contiguous.
2750     fn dirty_log(&mut self) -> std::result::Result<MemoryRangeTable, MigratableError> {
2751         let mut table = MemoryRangeTable::default();
2752         for r in &self.guest_ram_mappings {
2753             let vm_dirty_bitmap = self.vm.get_dirty_log(r.slot, r.gpa, r.size).map_err(|e| {
2754                 MigratableError::MigrateSend(anyhow!("Error getting VM dirty log {}", e))
2755             })?;
2756             let vmm_dirty_bitmap = match self.guest_memory.memory().find_region(GuestAddress(r.gpa))
2757             {
2758                 Some(region) => {
2759                     assert!(region.start_addr().raw_value() == r.gpa);
2760                     assert!(region.len() == r.size);
2761                     region.bitmap().get_and_reset()
2762                 }
2763                 None => {
2764                     return Err(MigratableError::MigrateSend(anyhow!(
2765                         "Error finding 'guest memory region' with address {:x}",
2766                         r.gpa
2767                     )))
2768                 }
2769             };
2770 
2771             let dirty_bitmap: Vec<u64> = vm_dirty_bitmap
2772                 .iter()
2773                 .zip(vmm_dirty_bitmap.iter())
2774                 .map(|(x, y)| x | y)
2775                 .collect();
2776 
2777             let sub_table = MemoryRangeTable::from_bitmap(dirty_bitmap, r.gpa, 4096);
2778 
2779             if sub_table.regions().is_empty() {
2780                 info!("Dirty Memory Range Table is empty");
2781             } else {
2782                 info!("Dirty Memory Range Table:");
2783                 for range in sub_table.regions() {
2784                     info!("GPA: {:x} size: {} (KiB)", range.gpa, range.length / 1024);
2785                 }
2786             }
2787 
2788             table.extend(sub_table);
2789         }
2790         Ok(table)
2791     }
2792 }
2793