1 // Copyright © 2019 Intel Corporation 2 // 3 // SPDX-License-Identifier: Apache-2.0 4 // 5 #[cfg(target_arch = "x86_64")] 6 use crate::config::SgxEpcConfig; 7 use crate::config::{HotplugMethod, MemoryConfig, MemoryZoneConfig}; 8 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 9 use crate::coredump::{ 10 CoredumpMemoryRegion, CoredumpMemoryRegions, DumpState, GuestDebuggableError, 11 }; 12 use crate::migration::url_to_path; 13 use crate::MEMORY_MANAGER_SNAPSHOT_ID; 14 use crate::{GuestMemoryMmap, GuestRegionMmap}; 15 use acpi_tables::{aml, Aml}; 16 use anyhow::anyhow; 17 #[cfg(target_arch = "x86_64")] 18 use arch::x86_64::{SgxEpcRegion, SgxEpcSection}; 19 use arch::RegionType; 20 #[cfg(target_arch = "x86_64")] 21 use devices::ioapic; 22 #[cfg(target_arch = "aarch64")] 23 use hypervisor::HypervisorVmError; 24 use libc::_SC_NPROCESSORS_ONLN; 25 #[cfg(target_arch = "x86_64")] 26 use libc::{MAP_NORESERVE, MAP_POPULATE, MAP_SHARED, PROT_READ, PROT_WRITE}; 27 use serde::{Deserialize, Serialize}; 28 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 29 use std::collections::BTreeMap; 30 use std::collections::HashMap; 31 use std::fs::{File, OpenOptions}; 32 use std::io::{self}; 33 use std::ops::{BitAnd, Deref, Not, Sub}; 34 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 35 use std::os::fd::AsFd; 36 use std::os::unix::io::{AsRawFd, FromRawFd, RawFd}; 37 use std::path::PathBuf; 38 use std::result; 39 use std::sync::{Arc, Barrier, Mutex}; 40 use std::{ffi, thread}; 41 use tracer::trace_scoped; 42 use versionize::{VersionMap, Versionize, VersionizeResult}; 43 use versionize_derive::Versionize; 44 use virtio_devices::BlocksState; 45 #[cfg(target_arch = "x86_64")] 46 use vm_allocator::GsiApic; 47 use vm_allocator::{AddressAllocator, SystemAllocator}; 48 use vm_device::BusDevice; 49 use vm_memory::bitmap::AtomicBitmap; 50 use vm_memory::guest_memory::FileOffset; 51 use vm_memory::{ 52 mmap::MmapRegionError, Address, Error as MmapError, GuestAddress, GuestAddressSpace, 53 GuestMemory, GuestMemoryAtomic, GuestMemoryError, GuestMemoryRegion, GuestUsize, MmapRegion, 54 ReadVolatile, 55 }; 56 use vm_migration::{ 57 protocol::MemoryRange, protocol::MemoryRangeTable, Migratable, MigratableError, Pausable, 58 Snapshot, SnapshotData, Snapshottable, Transportable, VersionMapped, 59 }; 60 61 pub const MEMORY_MANAGER_ACPI_SIZE: usize = 0x18; 62 63 const DEFAULT_MEMORY_ZONE: &str = "mem0"; 64 65 const SNAPSHOT_FILENAME: &str = "memory-ranges"; 66 67 #[cfg(target_arch = "x86_64")] 68 const X86_64_IRQ_BASE: u32 = 5; 69 70 #[cfg(target_arch = "x86_64")] 71 const SGX_PAGE_SIZE: u64 = 1 << 12; 72 73 const HOTPLUG_COUNT: usize = 8; 74 75 // Memory policy constants 76 const MPOL_BIND: u32 = 2; 77 const MPOL_MF_STRICT: u32 = 1; 78 const MPOL_MF_MOVE: u32 = 1 << 1; 79 80 // Reserve 1 MiB for platform MMIO devices (e.g. ACPI control devices) 81 const PLATFORM_DEVICE_AREA_SIZE: u64 = 1 << 20; 82 83 const MAX_PREFAULT_THREAD_COUNT: usize = 16; 84 85 #[derive(Clone, Default, Serialize, Deserialize, Versionize)] 86 struct HotPlugState { 87 base: u64, 88 length: u64, 89 active: bool, 90 inserting: bool, 91 removing: bool, 92 } 93 94 pub struct VirtioMemZone { 95 region: Arc<GuestRegionMmap>, 96 virtio_device: Option<Arc<Mutex<virtio_devices::Mem>>>, 97 hotplugged_size: u64, 98 hugepages: bool, 99 blocks_state: Arc<Mutex<BlocksState>>, 100 } 101 102 impl VirtioMemZone { 103 pub fn region(&self) -> &Arc<GuestRegionMmap> { 104 &self.region 105 } 106 pub fn set_virtio_device(&mut self, virtio_device: Arc<Mutex<virtio_devices::Mem>>) { 107 self.virtio_device = Some(virtio_device); 108 } 109 pub fn hotplugged_size(&self) -> u64 { 110 self.hotplugged_size 111 } 112 pub fn hugepages(&self) -> bool { 113 self.hugepages 114 } 115 pub fn blocks_state(&self) -> &Arc<Mutex<BlocksState>> { 116 &self.blocks_state 117 } 118 pub fn plugged_ranges(&self) -> MemoryRangeTable { 119 self.blocks_state 120 .lock() 121 .unwrap() 122 .memory_ranges(self.region.start_addr().raw_value(), true) 123 } 124 } 125 126 #[derive(Default)] 127 pub struct MemoryZone { 128 regions: Vec<Arc<GuestRegionMmap>>, 129 virtio_mem_zone: Option<VirtioMemZone>, 130 } 131 132 impl MemoryZone { 133 pub fn regions(&self) -> &Vec<Arc<GuestRegionMmap>> { 134 &self.regions 135 } 136 pub fn virtio_mem_zone(&self) -> &Option<VirtioMemZone> { 137 &self.virtio_mem_zone 138 } 139 pub fn virtio_mem_zone_mut(&mut self) -> Option<&mut VirtioMemZone> { 140 self.virtio_mem_zone.as_mut() 141 } 142 } 143 144 pub type MemoryZones = HashMap<String, MemoryZone>; 145 146 #[derive(Clone, Serialize, Deserialize, Versionize)] 147 struct GuestRamMapping { 148 slot: u32, 149 gpa: u64, 150 size: u64, 151 zone_id: String, 152 virtio_mem: bool, 153 file_offset: u64, 154 } 155 156 #[derive(Clone, Serialize, Deserialize, Versionize)] 157 struct ArchMemRegion { 158 base: u64, 159 size: usize, 160 r_type: RegionType, 161 } 162 163 pub struct MemoryManager { 164 boot_guest_memory: GuestMemoryMmap, 165 guest_memory: GuestMemoryAtomic<GuestMemoryMmap>, 166 next_memory_slot: u32, 167 start_of_device_area: GuestAddress, 168 end_of_device_area: GuestAddress, 169 end_of_ram_area: GuestAddress, 170 pub vm: Arc<dyn hypervisor::Vm>, 171 hotplug_slots: Vec<HotPlugState>, 172 selected_slot: usize, 173 mergeable: bool, 174 allocator: Arc<Mutex<SystemAllocator>>, 175 hotplug_method: HotplugMethod, 176 boot_ram: u64, 177 current_ram: u64, 178 next_hotplug_slot: usize, 179 shared: bool, 180 hugepages: bool, 181 hugepage_size: Option<u64>, 182 prefault: bool, 183 thp: bool, 184 #[cfg(target_arch = "x86_64")] 185 sgx_epc_region: Option<SgxEpcRegion>, 186 user_provided_zones: bool, 187 snapshot_memory_ranges: MemoryRangeTable, 188 memory_zones: MemoryZones, 189 log_dirty: bool, // Enable dirty logging for created RAM regions 190 arch_mem_regions: Vec<ArchMemRegion>, 191 ram_allocator: AddressAllocator, 192 dynamic: bool, 193 194 // Keep track of calls to create_userspace_mapping() for guest RAM. 195 // This is useful for getting the dirty pages as we need to know the 196 // slots that the mapping is created in. 197 guest_ram_mappings: Vec<GuestRamMapping>, 198 199 pub acpi_address: Option<GuestAddress>, 200 #[cfg(target_arch = "aarch64")] 201 uefi_flash: Option<GuestMemoryAtomic<GuestMemoryMmap>>, 202 } 203 204 #[derive(Debug)] 205 pub enum Error { 206 /// Failed to create shared file. 207 SharedFileCreate(io::Error), 208 209 /// Failed to set shared file length. 210 SharedFileSetLen(io::Error), 211 212 /// Mmap backed guest memory error 213 GuestMemory(MmapError), 214 215 /// Failed to allocate a memory range. 216 MemoryRangeAllocation, 217 218 /// Error from region creation 219 GuestMemoryRegion(MmapRegionError), 220 221 /// No ACPI slot available 222 NoSlotAvailable, 223 224 /// Not enough space in the hotplug RAM region 225 InsufficientHotplugRam, 226 227 /// The requested hotplug memory addition is not a valid size 228 InvalidSize, 229 230 /// Failed to create the user memory region. 231 CreateUserMemoryRegion(hypervisor::HypervisorVmError), 232 233 /// Failed to remove the user memory region. 234 RemoveUserMemoryRegion(hypervisor::HypervisorVmError), 235 236 /// Failed to EventFd. 237 EventFdFail(io::Error), 238 239 /// Eventfd write error 240 EventfdError(io::Error), 241 242 /// Failed to virtio-mem resize 243 VirtioMemResizeFail(virtio_devices::mem::Error), 244 245 /// Cannot restore VM 246 Restore(MigratableError), 247 248 /// Cannot restore VM because source URL is missing 249 RestoreMissingSourceUrl, 250 251 /// Cannot create the system allocator 252 CreateSystemAllocator, 253 254 /// Invalid SGX EPC section size 255 #[cfg(target_arch = "x86_64")] 256 EpcSectionSizeInvalid, 257 258 /// Failed allocating SGX EPC region 259 #[cfg(target_arch = "x86_64")] 260 SgxEpcRangeAllocation, 261 262 /// Failed opening SGX virtual EPC device 263 #[cfg(target_arch = "x86_64")] 264 SgxVirtEpcOpen(io::Error), 265 266 /// Failed setting the SGX virtual EPC section size 267 #[cfg(target_arch = "x86_64")] 268 SgxVirtEpcFileSetLen(io::Error), 269 270 /// Failed opening SGX provisioning device 271 #[cfg(target_arch = "x86_64")] 272 SgxProvisionOpen(io::Error), 273 274 /// Failed enabling SGX provisioning 275 #[cfg(target_arch = "x86_64")] 276 SgxEnableProvisioning(hypervisor::HypervisorVmError), 277 278 /// Failed creating a new MmapRegion instance. 279 #[cfg(target_arch = "x86_64")] 280 NewMmapRegion(vm_memory::mmap::MmapRegionError), 281 282 /// No memory zones found. 283 MissingMemoryZones, 284 285 /// Memory configuration is not valid. 286 InvalidMemoryParameters, 287 288 /// Forbidden operation. Impossible to resize guest memory if it is 289 /// backed by user defined memory regions. 290 InvalidResizeWithMemoryZones, 291 292 /// It's invalid to try applying a NUMA policy to a memory zone that is 293 /// memory mapped with MAP_SHARED. 294 InvalidSharedMemoryZoneWithHostNuma, 295 296 /// Failed applying NUMA memory policy. 297 ApplyNumaPolicy(io::Error), 298 299 /// Memory zone identifier is not unique. 300 DuplicateZoneId, 301 302 /// No virtio-mem resizing handler found. 303 MissingVirtioMemHandler, 304 305 /// Unknown memory zone. 306 UnknownMemoryZone, 307 308 /// Invalid size for resizing. Can be anything except 0. 309 InvalidHotplugSize, 310 311 /// Invalid hotplug method associated with memory zones resizing capability. 312 InvalidHotplugMethodWithMemoryZones, 313 314 /// Could not find specified memory zone identifier from hash map. 315 MissingZoneIdentifier, 316 317 /// Resizing the memory zone failed. 318 ResizeZone, 319 320 /// Guest address overflow 321 GuestAddressOverFlow, 322 323 /// Error opening snapshot file 324 SnapshotOpen(io::Error), 325 326 // Error copying snapshot into region 327 SnapshotCopy(GuestMemoryError), 328 329 /// Failed to allocate MMIO address 330 AllocateMmioAddress, 331 332 #[cfg(target_arch = "aarch64")] 333 /// Failed to create UEFI flash 334 CreateUefiFlash(HypervisorVmError), 335 336 /// Using a directory as a backing file for memory is not supported 337 DirectoryAsBackingFileForMemory, 338 339 /// Failed to stat filesystem 340 GetFileSystemBlockSize(io::Error), 341 342 /// Memory size is misaligned with default page size or its hugepage size 343 MisalignedMemorySize, 344 } 345 346 const ENABLE_FLAG: usize = 0; 347 const INSERTING_FLAG: usize = 1; 348 const REMOVING_FLAG: usize = 2; 349 const EJECT_FLAG: usize = 3; 350 351 const BASE_OFFSET_LOW: u64 = 0; 352 const BASE_OFFSET_HIGH: u64 = 0x4; 353 const LENGTH_OFFSET_LOW: u64 = 0x8; 354 const LENGTH_OFFSET_HIGH: u64 = 0xC; 355 const STATUS_OFFSET: u64 = 0x14; 356 const SELECTION_OFFSET: u64 = 0; 357 358 // The MMIO address space size is subtracted with 64k. This is done for the 359 // following reasons: 360 // - Reduce the addressable space size by at least 4k to workaround a Linux 361 // bug when the VMM allocates devices at the end of the addressable space 362 // - Windows requires the addressable space size to be 64k aligned 363 fn mmio_address_space_size(phys_bits: u8) -> u64 { 364 (1 << phys_bits) - (1 << 16) 365 } 366 367 // The `statfs` function can get information of hugetlbfs, and the hugepage size is in the 368 // `f_bsize` field. 369 // 370 // See: https://github.com/torvalds/linux/blob/v6.3/fs/hugetlbfs/inode.c#L1169 371 fn statfs_get_bsize(path: &str) -> Result<u64, Error> { 372 let path = std::ffi::CString::new(path).map_err(|_| Error::InvalidMemoryParameters)?; 373 let mut buf = std::mem::MaybeUninit::<libc::statfs>::uninit(); 374 375 // SAFETY: FFI call with a valid path and buffer 376 let ret = unsafe { libc::statfs(path.as_ptr(), buf.as_mut_ptr()) }; 377 if ret != 0 { 378 return Err(Error::GetFileSystemBlockSize( 379 std::io::Error::last_os_error(), 380 )); 381 } 382 383 // SAFETY: `buf` is valid at this point 384 // Because this value is always positive, just convert it directly. 385 // Note that the `f_bsize` is `i64` in glibc and `u64` in musl, using `as u64` will be warned 386 // by `clippy` on musl target. To avoid the warning, there should be `as _` instead of 387 // `as u64`. 388 let bsize = unsafe { (*buf.as_ptr()).f_bsize } as _; 389 Ok(bsize) 390 } 391 392 fn memory_zone_get_align_size(zone: &MemoryZoneConfig) -> Result<u64, Error> { 393 // SAFETY: FFI call. Trivially safe. 394 let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }; 395 396 // There is no backend file and the `hugepages` is disabled, just use system page size. 397 if zone.file.is_none() && !zone.hugepages { 398 return Ok(page_size); 399 } 400 401 // The `hugepages` is enabled and the `hugepage_size` is specified, just use it directly. 402 if zone.hugepages && zone.hugepage_size.is_some() { 403 return Ok(zone.hugepage_size.unwrap()); 404 } 405 406 // There are two scenarios here: 407 // - `hugepages` is enabled but `hugepage_size` is not specified: 408 // Call `statfs` for `/dev/hugepages` for getting the default size of hugepage 409 // - The backing file is specified: 410 // Call `statfs` for the file and get its `f_bsize`. If the value is larger than the page 411 // size of normal page, just use the `f_bsize` because the file is in a hugetlbfs. If the 412 // value is less than or equal to the page size, just use the page size. 413 let path = zone.file.as_ref().map_or(Ok("/dev/hugepages"), |pathbuf| { 414 pathbuf.to_str().ok_or(Error::InvalidMemoryParameters) 415 })?; 416 417 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?); 418 419 Ok(align_size) 420 } 421 422 #[inline] 423 fn align_down<T>(val: T, align: T) -> T 424 where 425 T: BitAnd<Output = T> + Not<Output = T> + Sub<Output = T> + From<u8>, 426 { 427 val & !(align - 1u8.into()) 428 } 429 430 #[inline] 431 fn is_aligned<T>(val: T, align: T) -> bool 432 where 433 T: BitAnd<Output = T> + Sub<Output = T> + From<u8> + PartialEq, 434 { 435 (val & (align - 1u8.into())) == 0u8.into() 436 } 437 438 impl BusDevice for MemoryManager { 439 fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) { 440 if self.selected_slot < self.hotplug_slots.len() { 441 let state = &self.hotplug_slots[self.selected_slot]; 442 match offset { 443 BASE_OFFSET_LOW => { 444 data.copy_from_slice(&state.base.to_le_bytes()[..4]); 445 } 446 BASE_OFFSET_HIGH => { 447 data.copy_from_slice(&state.base.to_le_bytes()[4..]); 448 } 449 LENGTH_OFFSET_LOW => { 450 data.copy_from_slice(&state.length.to_le_bytes()[..4]); 451 } 452 LENGTH_OFFSET_HIGH => { 453 data.copy_from_slice(&state.length.to_le_bytes()[4..]); 454 } 455 STATUS_OFFSET => { 456 // The Linux kernel, quite reasonably, doesn't zero the memory it gives us. 457 data.fill(0); 458 if state.active { 459 data[0] |= 1 << ENABLE_FLAG; 460 } 461 if state.inserting { 462 data[0] |= 1 << INSERTING_FLAG; 463 } 464 if state.removing { 465 data[0] |= 1 << REMOVING_FLAG; 466 } 467 } 468 _ => { 469 warn!( 470 "Unexpected offset for accessing memory manager device: {:#}", 471 offset 472 ); 473 } 474 } 475 } else { 476 warn!("Out of range memory slot: {}", self.selected_slot); 477 } 478 } 479 480 fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> { 481 match offset { 482 SELECTION_OFFSET => { 483 self.selected_slot = usize::from(data[0]); 484 } 485 STATUS_OFFSET => { 486 if self.selected_slot < self.hotplug_slots.len() { 487 let state = &mut self.hotplug_slots[self.selected_slot]; 488 // The ACPI code writes back a 1 to acknowledge the insertion 489 if (data[0] & (1 << INSERTING_FLAG) == 1 << INSERTING_FLAG) && state.inserting { 490 state.inserting = false; 491 } 492 // Ditto for removal 493 if (data[0] & (1 << REMOVING_FLAG) == 1 << REMOVING_FLAG) && state.removing { 494 state.removing = false; 495 } 496 // Trigger removal of "DIMM" 497 if data[0] & (1 << EJECT_FLAG) == 1 << EJECT_FLAG { 498 warn!("Ejection of memory not currently supported"); 499 } 500 } else { 501 warn!("Out of range memory slot: {}", self.selected_slot); 502 } 503 } 504 _ => { 505 warn!( 506 "Unexpected offset for accessing memory manager device: {:#}", 507 offset 508 ); 509 } 510 }; 511 None 512 } 513 } 514 515 impl MemoryManager { 516 /// Creates all memory regions based on the available RAM ranges defined 517 /// by `ram_regions`, and based on the description of the memory zones. 518 /// In practice, this function can perform multiple memory mappings of the 519 /// same backing file if there's a hole in the address space between two 520 /// RAM ranges. 521 /// One example might be ram_regions containing 2 regions (0-3G and 4G-6G) 522 /// and zones containing two zones (size 1G and size 4G). 523 /// This function will create 3 resulting memory regions: 524 /// - First one mapping entirely the first memory zone on 0-1G range 525 /// - Second one mapping partially the second memory zone on 1G-3G range 526 /// - Third one mapping partially the second memory zone on 4G-6G range 527 /// Also, all memory regions are page-size aligned (e.g. their sizes must 528 /// be multiple of page-size), which may leave an additional hole in the 529 /// address space when hugepage is used. 530 fn create_memory_regions_from_zones( 531 ram_regions: &[(GuestAddress, usize)], 532 zones: &[MemoryZoneConfig], 533 prefault: Option<bool>, 534 thp: bool, 535 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 536 let mut zone_iter = zones.iter(); 537 let mut mem_regions = Vec::new(); 538 let mut zone = zone_iter.next().ok_or(Error::MissingMemoryZones)?; 539 let mut zone_align_size = memory_zone_get_align_size(zone)?; 540 let mut zone_offset = 0u64; 541 let mut memory_zones = HashMap::new(); 542 543 if !is_aligned(zone.size, zone_align_size) { 544 return Err(Error::MisalignedMemorySize); 545 } 546 547 // Add zone id to the list of memory zones. 548 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 549 550 for ram_region in ram_regions.iter() { 551 let mut ram_region_offset = 0; 552 let mut exit = false; 553 554 loop { 555 let mut ram_region_consumed = false; 556 let mut pull_next_zone = false; 557 558 let ram_region_available_size = 559 align_down(ram_region.1 as u64 - ram_region_offset, zone_align_size); 560 if ram_region_available_size == 0 { 561 break; 562 } 563 let zone_sub_size = zone.size - zone_offset; 564 565 let file_offset = zone_offset; 566 let region_start = ram_region 567 .0 568 .checked_add(ram_region_offset) 569 .ok_or(Error::GuestAddressOverFlow)?; 570 let region_size = if zone_sub_size <= ram_region_available_size { 571 if zone_sub_size == ram_region_available_size { 572 ram_region_consumed = true; 573 } 574 575 ram_region_offset += zone_sub_size; 576 pull_next_zone = true; 577 578 zone_sub_size 579 } else { 580 zone_offset += ram_region_available_size; 581 ram_region_consumed = true; 582 583 ram_region_available_size 584 }; 585 586 info!( 587 "create ram region for zone {}, region_start: {:#x}, region_size: {:#x}", 588 zone.id, 589 region_start.raw_value(), 590 region_size 591 ); 592 let region = MemoryManager::create_ram_region( 593 &zone.file, 594 file_offset, 595 region_start, 596 region_size as usize, 597 prefault.unwrap_or(zone.prefault), 598 zone.shared, 599 zone.hugepages, 600 zone.hugepage_size, 601 zone.host_numa_node, 602 None, 603 thp, 604 )?; 605 606 // Add region to the list of regions associated with the 607 // current memory zone. 608 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 609 memory_zone.regions.push(region.clone()); 610 } 611 612 mem_regions.push(region); 613 614 if pull_next_zone { 615 // Get the next zone and reset the offset. 616 zone_offset = 0; 617 if let Some(z) = zone_iter.next() { 618 zone = z; 619 } else { 620 exit = true; 621 break; 622 } 623 zone_align_size = memory_zone_get_align_size(zone)?; 624 if !is_aligned(zone.size, zone_align_size) { 625 return Err(Error::MisalignedMemorySize); 626 } 627 628 // Check if zone id already exist. In case it does, throw 629 // an error as we need unique identifiers. Otherwise, add 630 // the new zone id to the list of memory zones. 631 if memory_zones.contains_key(&zone.id) { 632 error!( 633 "Memory zone identifier '{}' found more than once. \ 634 It must be unique", 635 zone.id, 636 ); 637 return Err(Error::DuplicateZoneId); 638 } 639 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 640 } 641 642 if ram_region_consumed { 643 break; 644 } 645 } 646 647 if exit { 648 break; 649 } 650 } 651 652 Ok((mem_regions, memory_zones)) 653 } 654 655 // Restore both GuestMemory regions along with MemoryZone zones. 656 fn restore_memory_regions_and_zones( 657 guest_ram_mappings: &[GuestRamMapping], 658 zones_config: &[MemoryZoneConfig], 659 prefault: Option<bool>, 660 mut existing_memory_files: HashMap<u32, File>, 661 thp: bool, 662 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 663 let mut memory_regions = Vec::new(); 664 let mut memory_zones = HashMap::new(); 665 666 for zone_config in zones_config { 667 memory_zones.insert(zone_config.id.clone(), MemoryZone::default()); 668 } 669 670 for guest_ram_mapping in guest_ram_mappings { 671 for zone_config in zones_config { 672 if guest_ram_mapping.zone_id == zone_config.id { 673 let region = MemoryManager::create_ram_region( 674 &zone_config.file, 675 guest_ram_mapping.file_offset, 676 GuestAddress(guest_ram_mapping.gpa), 677 guest_ram_mapping.size as usize, 678 prefault.unwrap_or(zone_config.prefault), 679 zone_config.shared, 680 zone_config.hugepages, 681 zone_config.hugepage_size, 682 zone_config.host_numa_node, 683 existing_memory_files.remove(&guest_ram_mapping.slot), 684 thp, 685 )?; 686 memory_regions.push(Arc::clone(®ion)); 687 if let Some(memory_zone) = memory_zones.get_mut(&guest_ram_mapping.zone_id) { 688 if guest_ram_mapping.virtio_mem { 689 let hotplugged_size = zone_config.hotplugged_size.unwrap_or(0); 690 let region_size = region.len(); 691 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 692 region, 693 virtio_device: None, 694 hotplugged_size, 695 hugepages: zone_config.hugepages, 696 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 697 }); 698 } else { 699 memory_zone.regions.push(region); 700 } 701 } 702 } 703 } 704 } 705 706 memory_regions.sort_by_key(|x| x.start_addr()); 707 708 Ok((memory_regions, memory_zones)) 709 } 710 711 fn fill_saved_regions( 712 &mut self, 713 file_path: PathBuf, 714 saved_regions: MemoryRangeTable, 715 ) -> Result<(), Error> { 716 if saved_regions.is_empty() { 717 return Ok(()); 718 } 719 720 // Open (read only) the snapshot file. 721 let mut memory_file = OpenOptions::new() 722 .read(true) 723 .open(file_path) 724 .map_err(Error::SnapshotOpen)?; 725 726 let guest_memory = self.guest_memory.memory(); 727 for range in saved_regions.regions() { 728 let mut offset: u64 = 0; 729 // Here we are manually handling the retry in case we can't write 730 // the whole region at once because we can't use the implementation 731 // from vm-memory::GuestMemory of read_exact_from() as it is not 732 // following the correct behavior. For more info about this issue 733 // see: https://github.com/rust-vmm/vm-memory/issues/174 734 loop { 735 let bytes_read = guest_memory 736 .read_volatile_from( 737 GuestAddress(range.gpa + offset), 738 &mut memory_file, 739 (range.length - offset) as usize, 740 ) 741 .map_err(Error::SnapshotCopy)?; 742 offset += bytes_read as u64; 743 744 if offset == range.length { 745 break; 746 } 747 } 748 } 749 750 Ok(()) 751 } 752 753 fn validate_memory_config( 754 config: &MemoryConfig, 755 user_provided_zones: bool, 756 ) -> Result<(u64, Vec<MemoryZoneConfig>, bool), Error> { 757 let mut allow_mem_hotplug = false; 758 759 if !user_provided_zones { 760 if config.zones.is_some() { 761 error!( 762 "User defined memory regions can't be provided if the \ 763 memory size is not 0" 764 ); 765 return Err(Error::InvalidMemoryParameters); 766 } 767 768 if config.hotplug_size.is_some() { 769 allow_mem_hotplug = true; 770 } 771 772 if let Some(hotplugged_size) = config.hotplugged_size { 773 if let Some(hotplug_size) = config.hotplug_size { 774 if hotplugged_size > hotplug_size { 775 error!( 776 "'hotplugged_size' {} can't be bigger than \ 777 'hotplug_size' {}", 778 hotplugged_size, hotplug_size, 779 ); 780 return Err(Error::InvalidMemoryParameters); 781 } 782 } else { 783 error!( 784 "Invalid to define 'hotplugged_size' when there is\ 785 no 'hotplug_size'" 786 ); 787 return Err(Error::InvalidMemoryParameters); 788 } 789 if config.hotplug_method == HotplugMethod::Acpi { 790 error!( 791 "Invalid to define 'hotplugged_size' with hotplug \ 792 method 'acpi'" 793 ); 794 return Err(Error::InvalidMemoryParameters); 795 } 796 } 797 798 // Create a single zone from the global memory config. This lets 799 // us reuse the codepath for user defined memory zones. 800 let zones = vec![MemoryZoneConfig { 801 id: String::from(DEFAULT_MEMORY_ZONE), 802 size: config.size, 803 file: None, 804 shared: config.shared, 805 hugepages: config.hugepages, 806 hugepage_size: config.hugepage_size, 807 host_numa_node: None, 808 hotplug_size: config.hotplug_size, 809 hotplugged_size: config.hotplugged_size, 810 prefault: config.prefault, 811 }]; 812 813 Ok((config.size, zones, allow_mem_hotplug)) 814 } else { 815 if config.zones.is_none() { 816 error!( 817 "User defined memory regions must be provided if the \ 818 memory size is 0" 819 ); 820 return Err(Error::MissingMemoryZones); 821 } 822 823 // Safe to unwrap as we checked right above there were some 824 // regions. 825 let zones = config.zones.clone().unwrap(); 826 if zones.is_empty() { 827 return Err(Error::MissingMemoryZones); 828 } 829 830 let mut total_ram_size: u64 = 0; 831 for zone in zones.iter() { 832 total_ram_size += zone.size; 833 834 if zone.shared && zone.file.is_some() && zone.host_numa_node.is_some() { 835 error!( 836 "Invalid to set host NUMA policy for a memory zone \ 837 backed by a regular file and mapped as 'shared'" 838 ); 839 return Err(Error::InvalidSharedMemoryZoneWithHostNuma); 840 } 841 842 if zone.hotplug_size.is_some() && config.hotplug_method == HotplugMethod::Acpi { 843 error!("Invalid to set ACPI hotplug method for memory zones"); 844 return Err(Error::InvalidHotplugMethodWithMemoryZones); 845 } 846 847 if let Some(hotplugged_size) = zone.hotplugged_size { 848 if let Some(hotplug_size) = zone.hotplug_size { 849 if hotplugged_size > hotplug_size { 850 error!( 851 "'hotplugged_size' {} can't be bigger than \ 852 'hotplug_size' {}", 853 hotplugged_size, hotplug_size, 854 ); 855 return Err(Error::InvalidMemoryParameters); 856 } 857 } else { 858 error!( 859 "Invalid to define 'hotplugged_size' when there is\ 860 no 'hotplug_size' for a memory zone" 861 ); 862 return Err(Error::InvalidMemoryParameters); 863 } 864 if config.hotplug_method == HotplugMethod::Acpi { 865 error!( 866 "Invalid to define 'hotplugged_size' with hotplug \ 867 method 'acpi'" 868 ); 869 return Err(Error::InvalidMemoryParameters); 870 } 871 } 872 } 873 874 Ok((total_ram_size, zones, allow_mem_hotplug)) 875 } 876 } 877 878 pub fn allocate_address_space(&mut self) -> Result<(), Error> { 879 let mut list = Vec::new(); 880 881 for (zone_id, memory_zone) in self.memory_zones.iter() { 882 let mut regions: Vec<(Arc<vm_memory::GuestRegionMmap<AtomicBitmap>>, bool)> = 883 memory_zone 884 .regions() 885 .iter() 886 .map(|r| (r.clone(), false)) 887 .collect(); 888 889 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 890 regions.push((virtio_mem_zone.region().clone(), true)); 891 } 892 893 list.push((zone_id.clone(), regions)); 894 } 895 896 for (zone_id, regions) in list { 897 for (region, virtio_mem) in regions { 898 let slot = self.create_userspace_mapping( 899 region.start_addr().raw_value(), 900 region.len(), 901 region.as_ptr() as u64, 902 self.mergeable, 903 false, 904 self.log_dirty, 905 )?; 906 907 let file_offset = if let Some(file_offset) = region.file_offset() { 908 file_offset.start() 909 } else { 910 0 911 }; 912 913 self.guest_ram_mappings.push(GuestRamMapping { 914 gpa: region.start_addr().raw_value(), 915 size: region.len(), 916 slot, 917 zone_id: zone_id.clone(), 918 virtio_mem, 919 file_offset, 920 }); 921 self.ram_allocator 922 .allocate(Some(region.start_addr()), region.len(), None) 923 .ok_or(Error::MemoryRangeAllocation)?; 924 } 925 } 926 927 // Allocate SubRegion and Reserved address ranges. 928 for region in self.arch_mem_regions.iter() { 929 if region.r_type == RegionType::Ram { 930 // Ignore the RAM type since ranges have already been allocated 931 // based on the GuestMemory regions. 932 continue; 933 } 934 self.ram_allocator 935 .allocate( 936 Some(GuestAddress(region.base)), 937 region.size as GuestUsize, 938 None, 939 ) 940 .ok_or(Error::MemoryRangeAllocation)?; 941 } 942 943 Ok(()) 944 } 945 946 #[cfg(target_arch = "aarch64")] 947 fn add_uefi_flash(&mut self) -> Result<(), Error> { 948 // On AArch64, the UEFI binary requires a flash device at address 0. 949 // 4 MiB memory is mapped to simulate the flash. 950 let uefi_mem_slot = self.allocate_memory_slot(); 951 let uefi_region = GuestRegionMmap::new( 952 MmapRegion::new(arch::layout::UEFI_SIZE as usize).unwrap(), 953 arch::layout::UEFI_START, 954 ) 955 .unwrap(); 956 let uefi_mem_region = self.vm.make_user_memory_region( 957 uefi_mem_slot, 958 uefi_region.start_addr().raw_value(), 959 uefi_region.len(), 960 uefi_region.as_ptr() as u64, 961 false, 962 false, 963 ); 964 self.vm 965 .create_user_memory_region(uefi_mem_region) 966 .map_err(Error::CreateUefiFlash)?; 967 968 let uefi_flash = 969 GuestMemoryAtomic::new(GuestMemoryMmap::from_regions(vec![uefi_region]).unwrap()); 970 971 self.uefi_flash = Some(uefi_flash); 972 973 Ok(()) 974 } 975 976 #[allow(clippy::too_many_arguments)] 977 pub fn new( 978 vm: Arc<dyn hypervisor::Vm>, 979 config: &MemoryConfig, 980 prefault: Option<bool>, 981 phys_bits: u8, 982 #[cfg(feature = "tdx")] tdx_enabled: bool, 983 restore_data: Option<&MemoryManagerSnapshotData>, 984 existing_memory_files: Option<HashMap<u32, File>>, 985 #[cfg(target_arch = "x86_64")] sgx_epc_config: Option<Vec<SgxEpcConfig>>, 986 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 987 trace_scoped!("MemoryManager::new"); 988 989 let user_provided_zones = config.size == 0; 990 991 let mmio_address_space_size = mmio_address_space_size(phys_bits); 992 debug_assert_eq!( 993 (((mmio_address_space_size) >> 16) << 16), 994 mmio_address_space_size 995 ); 996 let start_of_platform_device_area = 997 GuestAddress(mmio_address_space_size - PLATFORM_DEVICE_AREA_SIZE); 998 let end_of_device_area = start_of_platform_device_area.unchecked_sub(1); 999 1000 let (ram_size, zones, allow_mem_hotplug) = 1001 Self::validate_memory_config(config, user_provided_zones)?; 1002 1003 let ( 1004 start_of_device_area, 1005 boot_ram, 1006 current_ram, 1007 arch_mem_regions, 1008 memory_zones, 1009 guest_memory, 1010 boot_guest_memory, 1011 hotplug_slots, 1012 next_memory_slot, 1013 selected_slot, 1014 next_hotplug_slot, 1015 ) = if let Some(data) = restore_data { 1016 let (regions, memory_zones) = Self::restore_memory_regions_and_zones( 1017 &data.guest_ram_mappings, 1018 &zones, 1019 prefault, 1020 existing_memory_files.unwrap_or_default(), 1021 config.thp, 1022 )?; 1023 let guest_memory = 1024 GuestMemoryMmap::from_arc_regions(regions).map_err(Error::GuestMemory)?; 1025 let boot_guest_memory = guest_memory.clone(); 1026 ( 1027 GuestAddress(data.start_of_device_area), 1028 data.boot_ram, 1029 data.current_ram, 1030 data.arch_mem_regions.clone(), 1031 memory_zones, 1032 guest_memory, 1033 boot_guest_memory, 1034 data.hotplug_slots.clone(), 1035 data.next_memory_slot, 1036 data.selected_slot, 1037 data.next_hotplug_slot, 1038 ) 1039 } else { 1040 // Init guest memory 1041 let arch_mem_regions = arch::arch_memory_regions(); 1042 1043 let ram_regions: Vec<(GuestAddress, usize)> = arch_mem_regions 1044 .iter() 1045 .filter(|r| r.2 == RegionType::Ram) 1046 .map(|r| (r.0, r.1)) 1047 .collect(); 1048 1049 let arch_mem_regions: Vec<ArchMemRegion> = arch_mem_regions 1050 .iter() 1051 .map(|(a, b, c)| ArchMemRegion { 1052 base: a.0, 1053 size: *b, 1054 r_type: *c, 1055 }) 1056 .collect(); 1057 1058 let (mem_regions, mut memory_zones) = 1059 Self::create_memory_regions_from_zones(&ram_regions, &zones, prefault, config.thp)?; 1060 1061 let mut guest_memory = 1062 GuestMemoryMmap::from_arc_regions(mem_regions).map_err(Error::GuestMemory)?; 1063 1064 let boot_guest_memory = guest_memory.clone(); 1065 1066 let mut start_of_device_area = 1067 MemoryManager::start_addr(guest_memory.last_addr(), allow_mem_hotplug)?; 1068 1069 // Update list of memory zones for resize. 1070 for zone in zones.iter() { 1071 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 1072 if let Some(hotplug_size) = zone.hotplug_size { 1073 if hotplug_size == 0 { 1074 error!("'hotplug_size' can't be 0"); 1075 return Err(Error::InvalidHotplugSize); 1076 } 1077 1078 if !user_provided_zones && config.hotplug_method == HotplugMethod::Acpi { 1079 start_of_device_area = start_of_device_area 1080 .checked_add(hotplug_size) 1081 .ok_or(Error::GuestAddressOverFlow)?; 1082 } else { 1083 // Alignment must be "natural" i.e. same as size of block 1084 let start_addr = GuestAddress( 1085 (start_of_device_area.0 + virtio_devices::VIRTIO_MEM_ALIGN_SIZE 1086 - 1) 1087 / virtio_devices::VIRTIO_MEM_ALIGN_SIZE 1088 * virtio_devices::VIRTIO_MEM_ALIGN_SIZE, 1089 ); 1090 1091 // When `prefault` is set by vm_restore, memory manager 1092 // will create ram region with `prefault` option in 1093 // restore config rather than same option in zone 1094 let region = MemoryManager::create_ram_region( 1095 &None, 1096 0, 1097 start_addr, 1098 hotplug_size as usize, 1099 prefault.unwrap_or(zone.prefault), 1100 zone.shared, 1101 zone.hugepages, 1102 zone.hugepage_size, 1103 zone.host_numa_node, 1104 None, 1105 config.thp, 1106 )?; 1107 1108 guest_memory = guest_memory 1109 .insert_region(Arc::clone(®ion)) 1110 .map_err(Error::GuestMemory)?; 1111 1112 let hotplugged_size = zone.hotplugged_size.unwrap_or(0); 1113 let region_size = region.len(); 1114 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 1115 region, 1116 virtio_device: None, 1117 hotplugged_size, 1118 hugepages: zone.hugepages, 1119 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 1120 }); 1121 1122 start_of_device_area = start_addr 1123 .checked_add(hotplug_size) 1124 .ok_or(Error::GuestAddressOverFlow)?; 1125 } 1126 } 1127 } else { 1128 return Err(Error::MissingZoneIdentifier); 1129 } 1130 } 1131 1132 let mut hotplug_slots = Vec::with_capacity(HOTPLUG_COUNT); 1133 hotplug_slots.resize_with(HOTPLUG_COUNT, HotPlugState::default); 1134 1135 ( 1136 start_of_device_area, 1137 ram_size, 1138 ram_size, 1139 arch_mem_regions, 1140 memory_zones, 1141 guest_memory, 1142 boot_guest_memory, 1143 hotplug_slots, 1144 0, 1145 0, 1146 0, 1147 ) 1148 }; 1149 1150 let guest_memory = GuestMemoryAtomic::new(guest_memory); 1151 1152 // Both MMIO and PIO address spaces start at address 0. 1153 let allocator = Arc::new(Mutex::new( 1154 SystemAllocator::new( 1155 #[cfg(target_arch = "x86_64")] 1156 { 1157 GuestAddress(0) 1158 }, 1159 #[cfg(target_arch = "x86_64")] 1160 { 1161 1 << 16 1162 }, 1163 start_of_platform_device_area, 1164 PLATFORM_DEVICE_AREA_SIZE, 1165 #[cfg(target_arch = "x86_64")] 1166 vec![GsiApic::new( 1167 X86_64_IRQ_BASE, 1168 ioapic::NUM_IOAPIC_PINS as u32 - X86_64_IRQ_BASE, 1169 )], 1170 ) 1171 .ok_or(Error::CreateSystemAllocator)?, 1172 )); 1173 1174 #[cfg(not(feature = "tdx"))] 1175 let dynamic = true; 1176 #[cfg(feature = "tdx")] 1177 let dynamic = !tdx_enabled; 1178 1179 let acpi_address = if dynamic 1180 && config.hotplug_method == HotplugMethod::Acpi 1181 && (config.hotplug_size.unwrap_or_default() > 0) 1182 { 1183 Some( 1184 allocator 1185 .lock() 1186 .unwrap() 1187 .allocate_platform_mmio_addresses(None, MEMORY_MANAGER_ACPI_SIZE as u64, None) 1188 .ok_or(Error::AllocateMmioAddress)?, 1189 ) 1190 } else { 1191 None 1192 }; 1193 1194 // If running on SGX the start of device area and RAM area may diverge but 1195 // at this point they are next to each other. 1196 let end_of_ram_area = start_of_device_area.unchecked_sub(1); 1197 let ram_allocator = AddressAllocator::new(GuestAddress(0), start_of_device_area.0).unwrap(); 1198 1199 let mut memory_manager = MemoryManager { 1200 boot_guest_memory, 1201 guest_memory, 1202 next_memory_slot, 1203 start_of_device_area, 1204 end_of_device_area, 1205 end_of_ram_area, 1206 vm, 1207 hotplug_slots, 1208 selected_slot, 1209 mergeable: config.mergeable, 1210 allocator, 1211 hotplug_method: config.hotplug_method, 1212 boot_ram, 1213 current_ram, 1214 next_hotplug_slot, 1215 shared: config.shared, 1216 hugepages: config.hugepages, 1217 hugepage_size: config.hugepage_size, 1218 prefault: config.prefault, 1219 #[cfg(target_arch = "x86_64")] 1220 sgx_epc_region: None, 1221 user_provided_zones, 1222 snapshot_memory_ranges: MemoryRangeTable::default(), 1223 memory_zones, 1224 guest_ram_mappings: Vec::new(), 1225 acpi_address, 1226 log_dirty: dynamic, // Cannot log dirty pages on a TD 1227 arch_mem_regions, 1228 ram_allocator, 1229 dynamic, 1230 #[cfg(target_arch = "aarch64")] 1231 uefi_flash: None, 1232 thp: config.thp, 1233 }; 1234 1235 #[cfg(target_arch = "aarch64")] 1236 { 1237 // For Aarch64 we cannot lazily allocate the address space like we 1238 // do for x86, because while restoring a VM from snapshot we would 1239 // need the address space to be allocated to properly restore VGIC. 1240 // And the restore of VGIC happens before we attempt to run the vCPUs 1241 // for the first time, thus we need to allocate the address space 1242 // beforehand. 1243 memory_manager.allocate_address_space()?; 1244 memory_manager.add_uefi_flash()?; 1245 } 1246 1247 #[cfg(target_arch = "x86_64")] 1248 if let Some(sgx_epc_config) = sgx_epc_config { 1249 memory_manager.setup_sgx(sgx_epc_config)?; 1250 } 1251 1252 Ok(Arc::new(Mutex::new(memory_manager))) 1253 } 1254 1255 pub fn new_from_snapshot( 1256 snapshot: &Snapshot, 1257 vm: Arc<dyn hypervisor::Vm>, 1258 config: &MemoryConfig, 1259 source_url: Option<&str>, 1260 prefault: bool, 1261 phys_bits: u8, 1262 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 1263 if let Some(source_url) = source_url { 1264 let mut memory_file_path = url_to_path(source_url).map_err(Error::Restore)?; 1265 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 1266 1267 let mem_snapshot: MemoryManagerSnapshotData = 1268 snapshot.to_versioned_state().map_err(Error::Restore)?; 1269 1270 let mm = MemoryManager::new( 1271 vm, 1272 config, 1273 Some(prefault), 1274 phys_bits, 1275 #[cfg(feature = "tdx")] 1276 false, 1277 Some(&mem_snapshot), 1278 None, 1279 #[cfg(target_arch = "x86_64")] 1280 None, 1281 )?; 1282 1283 mm.lock() 1284 .unwrap() 1285 .fill_saved_regions(memory_file_path, mem_snapshot.memory_ranges)?; 1286 1287 Ok(mm) 1288 } else { 1289 Err(Error::RestoreMissingSourceUrl) 1290 } 1291 } 1292 1293 fn memfd_create(name: &ffi::CStr, flags: u32) -> Result<RawFd, io::Error> { 1294 // SAFETY: FFI call with correct arguments 1295 let res = unsafe { libc::syscall(libc::SYS_memfd_create, name.as_ptr(), flags) }; 1296 1297 if res < 0 { 1298 Err(io::Error::last_os_error()) 1299 } else { 1300 Ok(res as RawFd) 1301 } 1302 } 1303 1304 fn mbind( 1305 addr: *mut u8, 1306 len: u64, 1307 mode: u32, 1308 nodemask: Vec<u64>, 1309 maxnode: u64, 1310 flags: u32, 1311 ) -> Result<(), io::Error> { 1312 // SAFETY: FFI call with correct arguments 1313 let res = unsafe { 1314 libc::syscall( 1315 libc::SYS_mbind, 1316 addr as *mut libc::c_void, 1317 len, 1318 mode, 1319 nodemask.as_ptr(), 1320 maxnode, 1321 flags, 1322 ) 1323 }; 1324 1325 if res < 0 { 1326 Err(io::Error::last_os_error()) 1327 } else { 1328 Ok(()) 1329 } 1330 } 1331 1332 fn create_anonymous_file( 1333 size: usize, 1334 hugepages: bool, 1335 hugepage_size: Option<u64>, 1336 ) -> Result<FileOffset, Error> { 1337 let fd = Self::memfd_create( 1338 &ffi::CString::new("ch_ram").unwrap(), 1339 libc::MFD_CLOEXEC 1340 | if hugepages { 1341 libc::MFD_HUGETLB 1342 | if let Some(hugepage_size) = hugepage_size { 1343 /* 1344 * From the Linux kernel: 1345 * Several system calls take a flag to request "hugetlb" huge pages. 1346 * Without further specification, these system calls will use the 1347 * system's default huge page size. If a system supports multiple 1348 * huge page sizes, the desired huge page size can be specified in 1349 * bits [26:31] of the flag arguments. The value in these 6 bits 1350 * will encode the log2 of the huge page size. 1351 */ 1352 1353 hugepage_size.trailing_zeros() << 26 1354 } else { 1355 // Use the system default huge page size 1356 0 1357 } 1358 } else { 1359 0 1360 }, 1361 ) 1362 .map_err(Error::SharedFileCreate)?; 1363 1364 // SAFETY: fd is valid 1365 let f = unsafe { File::from_raw_fd(fd) }; 1366 f.set_len(size as u64).map_err(Error::SharedFileSetLen)?; 1367 1368 Ok(FileOffset::new(f, 0)) 1369 } 1370 1371 fn open_backing_file(backing_file: &PathBuf, file_offset: u64) -> Result<FileOffset, Error> { 1372 if backing_file.is_dir() { 1373 Err(Error::DirectoryAsBackingFileForMemory) 1374 } else { 1375 let f = OpenOptions::new() 1376 .read(true) 1377 .write(true) 1378 .open(backing_file) 1379 .map_err(Error::SharedFileCreate)?; 1380 1381 Ok(FileOffset::new(f, file_offset)) 1382 } 1383 } 1384 1385 #[allow(clippy::too_many_arguments)] 1386 pub fn create_ram_region( 1387 backing_file: &Option<PathBuf>, 1388 file_offset: u64, 1389 start_addr: GuestAddress, 1390 size: usize, 1391 prefault: bool, 1392 shared: bool, 1393 hugepages: bool, 1394 hugepage_size: Option<u64>, 1395 host_numa_node: Option<u32>, 1396 existing_memory_file: Option<File>, 1397 thp: bool, 1398 ) -> Result<Arc<GuestRegionMmap>, Error> { 1399 let mut mmap_flags = libc::MAP_NORESERVE; 1400 1401 // The duplication of mmap_flags ORing here is unfortunate but it also makes 1402 // the complexity of the handling clear. 1403 let fo = if let Some(f) = existing_memory_file { 1404 // It must be MAP_SHARED as we wouldn't already have an FD 1405 mmap_flags |= libc::MAP_SHARED; 1406 Some(FileOffset::new(f, file_offset)) 1407 } else if let Some(backing_file) = backing_file { 1408 if shared { 1409 mmap_flags |= libc::MAP_SHARED; 1410 } else { 1411 mmap_flags |= libc::MAP_PRIVATE; 1412 } 1413 Some(Self::open_backing_file(backing_file, file_offset)?) 1414 } else if shared || hugepages { 1415 // For hugepages we must also MAP_SHARED otherwise we will trigger #4805 1416 // because the MAP_PRIVATE will trigger CoW against the backing file with 1417 // the VFIO pinning 1418 mmap_flags |= libc::MAP_SHARED; 1419 Some(Self::create_anonymous_file(size, hugepages, hugepage_size)?) 1420 } else { 1421 mmap_flags |= libc::MAP_PRIVATE | libc::MAP_ANONYMOUS; 1422 None 1423 }; 1424 1425 let region = GuestRegionMmap::new( 1426 MmapRegion::build(fo, size, libc::PROT_READ | libc::PROT_WRITE, mmap_flags) 1427 .map_err(Error::GuestMemoryRegion)?, 1428 start_addr, 1429 ) 1430 .map_err(Error::GuestMemory)?; 1431 1432 // Apply NUMA policy if needed. 1433 if let Some(node) = host_numa_node { 1434 let addr = region.deref().as_ptr(); 1435 let len = region.deref().size() as u64; 1436 let mode = MPOL_BIND; 1437 let mut nodemask: Vec<u64> = Vec::new(); 1438 let flags = MPOL_MF_STRICT | MPOL_MF_MOVE; 1439 1440 // Linux is kind of buggy in the way it interprets maxnode as it 1441 // will cut off the last node. That's why we have to add 1 to what 1442 // we would consider as the proper maxnode value. 1443 let maxnode = node as u64 + 1 + 1; 1444 1445 // Allocate the right size for the vector. 1446 nodemask.resize((node as usize / 64) + 1, 0); 1447 1448 // Fill the global bitmask through the nodemask vector. 1449 let idx = (node / 64) as usize; 1450 let shift = node % 64; 1451 nodemask[idx] |= 1u64 << shift; 1452 1453 // Policies are enforced by using MPOL_MF_MOVE flag as it will 1454 // force the kernel to move all pages that might have been already 1455 // allocated to the proper set of NUMA nodes. MPOL_MF_STRICT is 1456 // used to throw an error if MPOL_MF_MOVE didn't succeed. 1457 // MPOL_BIND is the selected mode as it specifies a strict policy 1458 // that restricts memory allocation to the nodes specified in the 1459 // nodemask. 1460 Self::mbind(addr, len, mode, nodemask, maxnode, flags) 1461 .map_err(Error::ApplyNumaPolicy)?; 1462 } 1463 1464 // Prefault the region if needed, in parallel. 1465 if prefault { 1466 let page_size = 1467 Self::get_prefault_align_size(backing_file, hugepages, hugepage_size)? as usize; 1468 1469 if !is_aligned(size, page_size) { 1470 warn!( 1471 "Prefaulting memory size {} misaligned with page size {}", 1472 size, page_size 1473 ); 1474 } 1475 1476 let num_pages = size / page_size; 1477 1478 let num_threads = Self::get_prefault_num_threads(page_size, num_pages); 1479 1480 let pages_per_thread = num_pages / num_threads; 1481 let remainder = num_pages % num_threads; 1482 1483 let barrier = Arc::new(Barrier::new(num_threads)); 1484 thread::scope(|s| { 1485 let r = ®ion; 1486 for i in 0..num_threads { 1487 let barrier = Arc::clone(&barrier); 1488 s.spawn(move || { 1489 // Wait until all threads have been spawned to avoid contention 1490 // over mmap_sem between thread stack allocation and page faulting. 1491 barrier.wait(); 1492 let pages = pages_per_thread + if i < remainder { 1 } else { 0 }; 1493 let offset = 1494 page_size * ((i * pages_per_thread) + std::cmp::min(i, remainder)); 1495 // SAFETY: FFI call with correct arguments 1496 let ret = unsafe { 1497 let addr = r.as_ptr().add(offset); 1498 libc::madvise(addr as _, pages * page_size, libc::MADV_POPULATE_WRITE) 1499 }; 1500 if ret != 0 { 1501 let e = io::Error::last_os_error(); 1502 warn!("Failed to prefault pages: {}", e); 1503 } 1504 }); 1505 } 1506 }); 1507 } 1508 1509 if region.file_offset().is_none() && thp { 1510 info!( 1511 "Anonymous mapping at 0x{:x} (size = 0x{:x})", 1512 region.as_ptr() as u64, 1513 size 1514 ); 1515 // SAFETY: FFI call with correct arguments 1516 let ret = unsafe { libc::madvise(region.as_ptr() as _, size, libc::MADV_HUGEPAGE) }; 1517 if ret != 0 { 1518 let e = io::Error::last_os_error(); 1519 warn!("Failed to mark pages as THP eligible: {}", e); 1520 } 1521 } 1522 1523 Ok(Arc::new(region)) 1524 } 1525 1526 // Duplicate of `memory_zone_get_align_size` that does not require a `zone` 1527 fn get_prefault_align_size( 1528 backing_file: &Option<PathBuf>, 1529 hugepages: bool, 1530 hugepage_size: Option<u64>, 1531 ) -> Result<u64, Error> { 1532 // SAFETY: FFI call. Trivially safe. 1533 let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }; 1534 match (hugepages, hugepage_size, backing_file) { 1535 (false, _, _) => Ok(page_size), 1536 (true, Some(hugepage_size), _) => Ok(hugepage_size), 1537 (true, None, _) => { 1538 // There are two scenarios here: 1539 // - `hugepages` is enabled but `hugepage_size` is not specified: 1540 // Call `statfs` for `/dev/hugepages` for getting the default size of hugepage 1541 // - The backing file is specified: 1542 // Call `statfs` for the file and get its `f_bsize`. If the value is larger than the page 1543 // size of normal page, just use the `f_bsize` because the file is in a hugetlbfs. If the 1544 // value is less than or equal to the page size, just use the page size. 1545 let path = backing_file 1546 .as_ref() 1547 .map_or(Ok("/dev/hugepages"), |pathbuf| { 1548 pathbuf.to_str().ok_or(Error::InvalidMemoryParameters) 1549 })?; 1550 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?); 1551 Ok(align_size) 1552 } 1553 } 1554 } 1555 1556 fn get_prefault_num_threads(page_size: usize, num_pages: usize) -> usize { 1557 let mut n: usize = 1; 1558 1559 // Do not create more threads than processors available. 1560 // SAFETY: FFI call. Trivially safe. 1561 let procs = unsafe { libc::sysconf(_SC_NPROCESSORS_ONLN) }; 1562 if procs > 0 { 1563 n = std::cmp::min(procs as usize, MAX_PREFAULT_THREAD_COUNT); 1564 } 1565 1566 // Do not create more threads than pages being allocated. 1567 n = std::cmp::min(n, num_pages); 1568 1569 // Do not create threads to allocate less than 64 MiB of memory. 1570 n = std::cmp::min( 1571 n, 1572 std::cmp::max(1, page_size * num_pages / (64 * (1 << 26))), 1573 ); 1574 1575 n 1576 } 1577 1578 // Update the GuestMemoryMmap with the new range 1579 fn add_region(&mut self, region: Arc<GuestRegionMmap>) -> Result<(), Error> { 1580 let guest_memory = self 1581 .guest_memory 1582 .memory() 1583 .insert_region(region) 1584 .map_err(Error::GuestMemory)?; 1585 self.guest_memory.lock().unwrap().replace(guest_memory); 1586 1587 Ok(()) 1588 } 1589 1590 // 1591 // Calculate the start address of an area next to RAM. 1592 // 1593 // If memory hotplug is allowed, the start address needs to be aligned 1594 // (rounded-up) to 128MiB boundary. 1595 // If memory hotplug is not allowed, there is no alignment required. 1596 // And it must also start at the 64bit start. 1597 fn start_addr(mem_end: GuestAddress, allow_mem_hotplug: bool) -> Result<GuestAddress, Error> { 1598 let mut start_addr = if allow_mem_hotplug { 1599 GuestAddress(mem_end.0 | ((128 << 20) - 1)) 1600 } else { 1601 mem_end 1602 }; 1603 1604 start_addr = start_addr 1605 .checked_add(1) 1606 .ok_or(Error::GuestAddressOverFlow)?; 1607 1608 if mem_end < arch::layout::MEM_32BIT_RESERVED_START { 1609 return Ok(arch::layout::RAM_64BIT_START); 1610 } 1611 1612 Ok(start_addr) 1613 } 1614 1615 pub fn add_ram_region( 1616 &mut self, 1617 start_addr: GuestAddress, 1618 size: usize, 1619 ) -> Result<Arc<GuestRegionMmap>, Error> { 1620 // Allocate memory for the region 1621 let region = MemoryManager::create_ram_region( 1622 &None, 1623 0, 1624 start_addr, 1625 size, 1626 self.prefault, 1627 self.shared, 1628 self.hugepages, 1629 self.hugepage_size, 1630 None, 1631 None, 1632 self.thp, 1633 )?; 1634 1635 // Map it into the guest 1636 let slot = self.create_userspace_mapping( 1637 region.start_addr().0, 1638 region.len(), 1639 region.as_ptr() as u64, 1640 self.mergeable, 1641 false, 1642 self.log_dirty, 1643 )?; 1644 self.guest_ram_mappings.push(GuestRamMapping { 1645 gpa: region.start_addr().raw_value(), 1646 size: region.len(), 1647 slot, 1648 zone_id: DEFAULT_MEMORY_ZONE.to_string(), 1649 virtio_mem: false, 1650 file_offset: 0, 1651 }); 1652 1653 self.add_region(Arc::clone(®ion))?; 1654 1655 Ok(region) 1656 } 1657 1658 fn hotplug_ram_region(&mut self, size: usize) -> Result<Arc<GuestRegionMmap>, Error> { 1659 info!("Hotplugging new RAM: {}", size); 1660 1661 // Check that there is a free slot 1662 if self.next_hotplug_slot >= HOTPLUG_COUNT { 1663 return Err(Error::NoSlotAvailable); 1664 } 1665 1666 // "Inserted" DIMM must have a size that is a multiple of 128MiB 1667 if size % (128 << 20) != 0 { 1668 return Err(Error::InvalidSize); 1669 } 1670 1671 let start_addr = MemoryManager::start_addr(self.guest_memory.memory().last_addr(), true)?; 1672 1673 if start_addr.checked_add(size.try_into().unwrap()).unwrap() >= self.end_of_ram_area { 1674 return Err(Error::InsufficientHotplugRam); 1675 } 1676 1677 let region = self.add_ram_region(start_addr, size)?; 1678 1679 // Add region to the list of regions associated with the default 1680 // memory zone. 1681 if let Some(memory_zone) = self.memory_zones.get_mut(DEFAULT_MEMORY_ZONE) { 1682 memory_zone.regions.push(Arc::clone(®ion)); 1683 } 1684 1685 // Tell the allocator 1686 self.ram_allocator 1687 .allocate(Some(start_addr), size as GuestUsize, None) 1688 .ok_or(Error::MemoryRangeAllocation)?; 1689 1690 // Update the slot so that it can be queried via the I/O port 1691 let slot = &mut self.hotplug_slots[self.next_hotplug_slot]; 1692 slot.active = true; 1693 slot.inserting = true; 1694 slot.base = region.start_addr().0; 1695 slot.length = region.len(); 1696 1697 self.next_hotplug_slot += 1; 1698 1699 Ok(region) 1700 } 1701 1702 pub fn guest_memory(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 1703 self.guest_memory.clone() 1704 } 1705 1706 pub fn boot_guest_memory(&self) -> GuestMemoryMmap { 1707 self.boot_guest_memory.clone() 1708 } 1709 1710 pub fn allocator(&self) -> Arc<Mutex<SystemAllocator>> { 1711 self.allocator.clone() 1712 } 1713 1714 pub fn start_of_device_area(&self) -> GuestAddress { 1715 self.start_of_device_area 1716 } 1717 1718 pub fn end_of_device_area(&self) -> GuestAddress { 1719 self.end_of_device_area 1720 } 1721 1722 pub fn allocate_memory_slot(&mut self) -> u32 { 1723 let slot_id = self.next_memory_slot; 1724 self.next_memory_slot += 1; 1725 slot_id 1726 } 1727 1728 pub fn create_userspace_mapping( 1729 &mut self, 1730 guest_phys_addr: u64, 1731 memory_size: u64, 1732 userspace_addr: u64, 1733 mergeable: bool, 1734 readonly: bool, 1735 log_dirty: bool, 1736 ) -> Result<u32, Error> { 1737 let slot = self.allocate_memory_slot(); 1738 let mem_region = self.vm.make_user_memory_region( 1739 slot, 1740 guest_phys_addr, 1741 memory_size, 1742 userspace_addr, 1743 readonly, 1744 log_dirty, 1745 ); 1746 1747 info!( 1748 "Creating userspace mapping: {:x} -> {:x} {:x}, slot {}", 1749 guest_phys_addr, userspace_addr, memory_size, slot 1750 ); 1751 1752 self.vm 1753 .create_user_memory_region(mem_region) 1754 .map_err(Error::CreateUserMemoryRegion)?; 1755 1756 // SAFETY: the address and size are valid since the 1757 // mmap succeeded. 1758 let ret = unsafe { 1759 libc::madvise( 1760 userspace_addr as *mut libc::c_void, 1761 memory_size as libc::size_t, 1762 libc::MADV_DONTDUMP, 1763 ) 1764 }; 1765 if ret != 0 { 1766 let e = io::Error::last_os_error(); 1767 warn!("Failed to mark mappin as MADV_DONTDUMP: {}", e); 1768 } 1769 1770 // Mark the pages as mergeable if explicitly asked for. 1771 if mergeable { 1772 // SAFETY: the address and size are valid since the 1773 // mmap succeeded. 1774 let ret = unsafe { 1775 libc::madvise( 1776 userspace_addr as *mut libc::c_void, 1777 memory_size as libc::size_t, 1778 libc::MADV_MERGEABLE, 1779 ) 1780 }; 1781 if ret != 0 { 1782 let err = io::Error::last_os_error(); 1783 // Safe to unwrap because the error is constructed with 1784 // last_os_error(), which ensures the output will be Some(). 1785 let errno = err.raw_os_error().unwrap(); 1786 if errno == libc::EINVAL { 1787 warn!("kernel not configured with CONFIG_KSM"); 1788 } else { 1789 warn!("madvise error: {}", err); 1790 } 1791 warn!("failed to mark pages as mergeable"); 1792 } 1793 } 1794 1795 info!( 1796 "Created userspace mapping: {:x} -> {:x} {:x}", 1797 guest_phys_addr, userspace_addr, memory_size 1798 ); 1799 1800 Ok(slot) 1801 } 1802 1803 pub fn remove_userspace_mapping( 1804 &mut self, 1805 guest_phys_addr: u64, 1806 memory_size: u64, 1807 userspace_addr: u64, 1808 mergeable: bool, 1809 slot: u32, 1810 ) -> Result<(), Error> { 1811 let mem_region = self.vm.make_user_memory_region( 1812 slot, 1813 guest_phys_addr, 1814 memory_size, 1815 userspace_addr, 1816 false, /* readonly -- don't care */ 1817 false, /* log dirty */ 1818 ); 1819 1820 self.vm 1821 .remove_user_memory_region(mem_region) 1822 .map_err(Error::RemoveUserMemoryRegion)?; 1823 1824 // Mark the pages as unmergeable if there were previously marked as 1825 // mergeable. 1826 if mergeable { 1827 // SAFETY: the address and size are valid as the region was 1828 // previously advised. 1829 let ret = unsafe { 1830 libc::madvise( 1831 userspace_addr as *mut libc::c_void, 1832 memory_size as libc::size_t, 1833 libc::MADV_UNMERGEABLE, 1834 ) 1835 }; 1836 if ret != 0 { 1837 let err = io::Error::last_os_error(); 1838 // Safe to unwrap because the error is constructed with 1839 // last_os_error(), which ensures the output will be Some(). 1840 let errno = err.raw_os_error().unwrap(); 1841 if errno == libc::EINVAL { 1842 warn!("kernel not configured with CONFIG_KSM"); 1843 } else { 1844 warn!("madvise error: {}", err); 1845 } 1846 warn!("failed to mark pages as unmergeable"); 1847 } 1848 } 1849 1850 info!( 1851 "Removed userspace mapping: {:x} -> {:x} {:x}", 1852 guest_phys_addr, userspace_addr, memory_size 1853 ); 1854 1855 Ok(()) 1856 } 1857 1858 pub fn virtio_mem_resize(&mut self, id: &str, size: u64) -> Result<(), Error> { 1859 if let Some(memory_zone) = self.memory_zones.get_mut(id) { 1860 if let Some(virtio_mem_zone) = &mut memory_zone.virtio_mem_zone { 1861 if let Some(virtio_mem_device) = virtio_mem_zone.virtio_device.as_ref() { 1862 virtio_mem_device 1863 .lock() 1864 .unwrap() 1865 .resize(size) 1866 .map_err(Error::VirtioMemResizeFail)?; 1867 } 1868 1869 // Keep the hotplugged_size up to date. 1870 virtio_mem_zone.hotplugged_size = size; 1871 } else { 1872 error!("Failed resizing virtio-mem region: No virtio-mem handler"); 1873 return Err(Error::MissingVirtioMemHandler); 1874 } 1875 1876 return Ok(()); 1877 } 1878 1879 error!("Failed resizing virtio-mem region: Unknown memory zone"); 1880 Err(Error::UnknownMemoryZone) 1881 } 1882 1883 /// In case this function resulted in adding a new memory region to the 1884 /// guest memory, the new region is returned to the caller. The virtio-mem 1885 /// use case never adds a new region as the whole hotpluggable memory has 1886 /// already been allocated at boot time. 1887 pub fn resize(&mut self, desired_ram: u64) -> Result<Option<Arc<GuestRegionMmap>>, Error> { 1888 if self.user_provided_zones { 1889 error!( 1890 "Not allowed to resize guest memory when backed with user \ 1891 defined memory zones." 1892 ); 1893 return Err(Error::InvalidResizeWithMemoryZones); 1894 } 1895 1896 let mut region: Option<Arc<GuestRegionMmap>> = None; 1897 match self.hotplug_method { 1898 HotplugMethod::VirtioMem => { 1899 if desired_ram >= self.boot_ram { 1900 if !self.dynamic { 1901 return Ok(region); 1902 } 1903 1904 self.virtio_mem_resize(DEFAULT_MEMORY_ZONE, desired_ram - self.boot_ram)?; 1905 self.current_ram = desired_ram; 1906 } 1907 } 1908 HotplugMethod::Acpi => { 1909 if desired_ram > self.current_ram { 1910 if !self.dynamic { 1911 return Ok(region); 1912 } 1913 1914 region = 1915 Some(self.hotplug_ram_region((desired_ram - self.current_ram) as usize)?); 1916 self.current_ram = desired_ram; 1917 } 1918 } 1919 } 1920 Ok(region) 1921 } 1922 1923 pub fn resize_zone(&mut self, id: &str, virtio_mem_size: u64) -> Result<(), Error> { 1924 if !self.user_provided_zones { 1925 error!( 1926 "Not allowed to resize guest memory zone when no zone is \ 1927 defined." 1928 ); 1929 return Err(Error::ResizeZone); 1930 } 1931 1932 self.virtio_mem_resize(id, virtio_mem_size) 1933 } 1934 1935 #[cfg(target_arch = "x86_64")] 1936 pub fn setup_sgx(&mut self, sgx_epc_config: Vec<SgxEpcConfig>) -> Result<(), Error> { 1937 let file = OpenOptions::new() 1938 .read(true) 1939 .open("/dev/sgx_provision") 1940 .map_err(Error::SgxProvisionOpen)?; 1941 self.vm 1942 .enable_sgx_attribute(file) 1943 .map_err(Error::SgxEnableProvisioning)?; 1944 1945 // Go over each EPC section and verify its size is a 4k multiple. At 1946 // the same time, calculate the total size needed for the contiguous 1947 // EPC region. 1948 let mut epc_region_size = 0; 1949 for epc_section in sgx_epc_config.iter() { 1950 if epc_section.size == 0 { 1951 return Err(Error::EpcSectionSizeInvalid); 1952 } 1953 if epc_section.size & (SGX_PAGE_SIZE - 1) != 0 { 1954 return Err(Error::EpcSectionSizeInvalid); 1955 } 1956 1957 epc_region_size += epc_section.size; 1958 } 1959 1960 // Place the SGX EPC region on a 4k boundary between the RAM and the device area 1961 let epc_region_start = GuestAddress( 1962 ((self.start_of_device_area.0 + SGX_PAGE_SIZE - 1) / SGX_PAGE_SIZE) * SGX_PAGE_SIZE, 1963 ); 1964 1965 self.start_of_device_area = epc_region_start 1966 .checked_add(epc_region_size) 1967 .ok_or(Error::GuestAddressOverFlow)?; 1968 1969 let mut sgx_epc_region = SgxEpcRegion::new(epc_region_start, epc_region_size as GuestUsize); 1970 info!( 1971 "SGX EPC region: 0x{:x} (0x{:x})", 1972 epc_region_start.0, epc_region_size 1973 ); 1974 1975 // Each section can be memory mapped into the allocated region. 1976 let mut epc_section_start = epc_region_start.raw_value(); 1977 for epc_section in sgx_epc_config.iter() { 1978 let file = OpenOptions::new() 1979 .read(true) 1980 .write(true) 1981 .open("/dev/sgx_vepc") 1982 .map_err(Error::SgxVirtEpcOpen)?; 1983 1984 let prot = PROT_READ | PROT_WRITE; 1985 let mut flags = MAP_NORESERVE | MAP_SHARED; 1986 if epc_section.prefault { 1987 flags |= MAP_POPULATE; 1988 } 1989 1990 // We can't use the vm-memory crate to perform the memory mapping 1991 // here as it would try to ensure the size of the backing file is 1992 // matching the size of the expected mapping. The /dev/sgx_vepc 1993 // device does not work that way, it provides a file descriptor 1994 // which is not matching the mapping size, as it's a just a way to 1995 // let KVM know that an EPC section is being created for the guest. 1996 // SAFETY: FFI call with correct arguments 1997 let host_addr = unsafe { 1998 libc::mmap( 1999 std::ptr::null_mut(), 2000 epc_section.size as usize, 2001 prot, 2002 flags, 2003 file.as_raw_fd(), 2004 0, 2005 ) 2006 } as u64; 2007 2008 info!( 2009 "Adding SGX EPC section: 0x{:x} (0x{:x})", 2010 epc_section_start, epc_section.size 2011 ); 2012 2013 let _mem_slot = self.create_userspace_mapping( 2014 epc_section_start, 2015 epc_section.size, 2016 host_addr, 2017 false, 2018 false, 2019 false, 2020 )?; 2021 2022 sgx_epc_region.insert( 2023 epc_section.id.clone(), 2024 SgxEpcSection::new( 2025 GuestAddress(epc_section_start), 2026 epc_section.size as GuestUsize, 2027 ), 2028 ); 2029 2030 epc_section_start += epc_section.size; 2031 } 2032 2033 self.sgx_epc_region = Some(sgx_epc_region); 2034 2035 Ok(()) 2036 } 2037 2038 #[cfg(target_arch = "x86_64")] 2039 pub fn sgx_epc_region(&self) -> &Option<SgxEpcRegion> { 2040 &self.sgx_epc_region 2041 } 2042 2043 pub fn is_hardlink(f: &File) -> bool { 2044 let mut stat = std::mem::MaybeUninit::<libc::stat>::uninit(); 2045 // SAFETY: FFI call with correct arguments 2046 let ret = unsafe { libc::fstat(f.as_raw_fd(), stat.as_mut_ptr()) }; 2047 if ret != 0 { 2048 error!("Couldn't fstat the backing file"); 2049 return false; 2050 } 2051 2052 // SAFETY: stat is valid 2053 unsafe { (*stat.as_ptr()).st_nlink as usize > 0 } 2054 } 2055 2056 pub fn memory_zones(&self) -> &MemoryZones { 2057 &self.memory_zones 2058 } 2059 2060 pub fn memory_zones_mut(&mut self) -> &mut MemoryZones { 2061 &mut self.memory_zones 2062 } 2063 2064 pub fn memory_range_table( 2065 &self, 2066 snapshot: bool, 2067 ) -> std::result::Result<MemoryRangeTable, MigratableError> { 2068 let mut table = MemoryRangeTable::default(); 2069 2070 for memory_zone in self.memory_zones.values() { 2071 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 2072 table.extend(virtio_mem_zone.plugged_ranges()); 2073 } 2074 2075 for region in memory_zone.regions() { 2076 if snapshot { 2077 if let Some(file_offset) = region.file_offset() { 2078 if (region.flags() & libc::MAP_SHARED == libc::MAP_SHARED) 2079 && Self::is_hardlink(file_offset.file()) 2080 { 2081 // In this very specific case, we know the memory 2082 // region is backed by a file on the host filesystem 2083 // that can be accessed by the user, and additionally 2084 // the mapping is shared, which means that modifications 2085 // to the content are written to the actual file. 2086 // When meeting these conditions, we can skip the 2087 // copy of the memory content for this specific region, 2088 // as we can assume the user will have it saved through 2089 // the backing file already. 2090 continue; 2091 } 2092 } 2093 } 2094 2095 table.push(MemoryRange { 2096 gpa: region.start_addr().raw_value(), 2097 length: region.len(), 2098 }); 2099 } 2100 } 2101 2102 Ok(table) 2103 } 2104 2105 pub fn snapshot_data(&self) -> MemoryManagerSnapshotData { 2106 MemoryManagerSnapshotData { 2107 memory_ranges: self.snapshot_memory_ranges.clone(), 2108 guest_ram_mappings: self.guest_ram_mappings.clone(), 2109 start_of_device_area: self.start_of_device_area.0, 2110 boot_ram: self.boot_ram, 2111 current_ram: self.current_ram, 2112 arch_mem_regions: self.arch_mem_regions.clone(), 2113 hotplug_slots: self.hotplug_slots.clone(), 2114 next_memory_slot: self.next_memory_slot, 2115 selected_slot: self.selected_slot, 2116 next_hotplug_slot: self.next_hotplug_slot, 2117 } 2118 } 2119 2120 pub fn memory_slot_fds(&self) -> HashMap<u32, RawFd> { 2121 let mut memory_slot_fds = HashMap::new(); 2122 for guest_ram_mapping in &self.guest_ram_mappings { 2123 let slot = guest_ram_mapping.slot; 2124 let guest_memory = self.guest_memory.memory(); 2125 let file = guest_memory 2126 .find_region(GuestAddress(guest_ram_mapping.gpa)) 2127 .unwrap() 2128 .file_offset() 2129 .unwrap() 2130 .file(); 2131 memory_slot_fds.insert(slot, file.as_raw_fd()); 2132 } 2133 memory_slot_fds 2134 } 2135 2136 pub fn acpi_address(&self) -> Option<GuestAddress> { 2137 self.acpi_address 2138 } 2139 2140 pub fn num_guest_ram_mappings(&self) -> u32 { 2141 self.guest_ram_mappings.len() as u32 2142 } 2143 2144 #[cfg(target_arch = "aarch64")] 2145 pub fn uefi_flash(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 2146 self.uefi_flash.as_ref().unwrap().clone() 2147 } 2148 2149 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2150 pub fn coredump_memory_regions(&self, mem_offset: u64) -> CoredumpMemoryRegions { 2151 let mut mapping_sorted_by_gpa = self.guest_ram_mappings.clone(); 2152 mapping_sorted_by_gpa.sort_by_key(|m| m.gpa); 2153 2154 let mut mem_offset_in_elf = mem_offset; 2155 let mut ram_maps = BTreeMap::new(); 2156 for mapping in mapping_sorted_by_gpa.iter() { 2157 ram_maps.insert( 2158 mapping.gpa, 2159 CoredumpMemoryRegion { 2160 mem_offset_in_elf, 2161 mem_size: mapping.size, 2162 }, 2163 ); 2164 mem_offset_in_elf += mapping.size; 2165 } 2166 2167 CoredumpMemoryRegions { ram_maps } 2168 } 2169 2170 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2171 pub fn coredump_iterate_save_mem( 2172 &mut self, 2173 dump_state: &DumpState, 2174 ) -> std::result::Result<(), GuestDebuggableError> { 2175 let snapshot_memory_ranges = self 2176 .memory_range_table(false) 2177 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2178 2179 if snapshot_memory_ranges.is_empty() { 2180 return Ok(()); 2181 } 2182 2183 let coredump_file = dump_state.file.as_ref().unwrap(); 2184 2185 let guest_memory = self.guest_memory.memory(); 2186 let mut total_bytes: u64 = 0; 2187 2188 for range in snapshot_memory_ranges.regions() { 2189 let mut offset: u64 = 0; 2190 loop { 2191 let bytes_written = guest_memory 2192 .write_volatile_to( 2193 GuestAddress(range.gpa + offset), 2194 &mut coredump_file.as_fd(), 2195 (range.length - offset) as usize, 2196 ) 2197 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2198 offset += bytes_written as u64; 2199 total_bytes += bytes_written as u64; 2200 2201 if offset == range.length { 2202 break; 2203 } 2204 } 2205 } 2206 2207 debug!("coredump total bytes {}", total_bytes); 2208 Ok(()) 2209 } 2210 2211 pub fn receive_memory_regions<F>( 2212 &mut self, 2213 ranges: &MemoryRangeTable, 2214 fd: &mut F, 2215 ) -> std::result::Result<(), MigratableError> 2216 where 2217 F: ReadVolatile, 2218 { 2219 let guest_memory = self.guest_memory(); 2220 let mem = guest_memory.memory(); 2221 2222 for range in ranges.regions() { 2223 let mut offset: u64 = 0; 2224 // Here we are manually handling the retry in case we can't the 2225 // whole region at once because we can't use the implementation 2226 // from vm-memory::GuestMemory of read_exact_from() as it is not 2227 // following the correct behavior. For more info about this issue 2228 // see: https://github.com/rust-vmm/vm-memory/issues/174 2229 loop { 2230 let bytes_read = mem 2231 .read_volatile_from( 2232 GuestAddress(range.gpa + offset), 2233 fd, 2234 (range.length - offset) as usize, 2235 ) 2236 .map_err(|e| { 2237 MigratableError::MigrateReceive(anyhow!( 2238 "Error receiving memory from socket: {}", 2239 e 2240 )) 2241 })?; 2242 offset += bytes_read as u64; 2243 2244 if offset == range.length { 2245 break; 2246 } 2247 } 2248 } 2249 2250 Ok(()) 2251 } 2252 } 2253 2254 struct MemoryNotify { 2255 slot_id: usize, 2256 } 2257 2258 impl Aml for MemoryNotify { 2259 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2260 let object = aml::Path::new(&format!("M{:03}", self.slot_id)); 2261 aml::If::new( 2262 &aml::Equal::new(&aml::Arg(0), &self.slot_id), 2263 vec![&aml::Notify::new(&object, &aml::Arg(1))], 2264 ) 2265 .to_aml_bytes(sink) 2266 } 2267 } 2268 2269 struct MemorySlot { 2270 slot_id: usize, 2271 } 2272 2273 impl Aml for MemorySlot { 2274 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2275 aml::Device::new( 2276 format!("M{:03}", self.slot_id).as_str().into(), 2277 vec![ 2278 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C80")), 2279 &aml::Name::new("_UID".into(), &self.slot_id), 2280 /* 2281 _STA return value: 2282 Bit [0] – Set if the device is present. 2283 Bit [1] – Set if the device is enabled and decoding its resources. 2284 Bit [2] – Set if the device should be shown in the UI. 2285 Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics). 2286 Bit [4] – Set if the battery is present. 2287 Bits [31:5] – Reserved (must be cleared). 2288 */ 2289 &aml::Method::new( 2290 "_STA".into(), 2291 0, 2292 false, 2293 // Call into MSTA method which will interrogate device 2294 vec![&aml::Return::new(&aml::MethodCall::new( 2295 "MSTA".into(), 2296 vec![&self.slot_id], 2297 ))], 2298 ), 2299 // Get details of memory 2300 &aml::Method::new( 2301 "_CRS".into(), 2302 0, 2303 false, 2304 // Call into MCRS which provides actual memory details 2305 vec![&aml::Return::new(&aml::MethodCall::new( 2306 "MCRS".into(), 2307 vec![&self.slot_id], 2308 ))], 2309 ), 2310 ], 2311 ) 2312 .to_aml_bytes(sink) 2313 } 2314 } 2315 2316 struct MemorySlots { 2317 slots: usize, 2318 } 2319 2320 impl Aml for MemorySlots { 2321 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2322 for slot_id in 0..self.slots { 2323 MemorySlot { slot_id }.to_aml_bytes(sink); 2324 } 2325 } 2326 } 2327 2328 struct MemoryMethods { 2329 slots: usize, 2330 } 2331 2332 impl Aml for MemoryMethods { 2333 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2334 // Add "MTFY" notification method 2335 let mut memory_notifies = Vec::new(); 2336 for slot_id in 0..self.slots { 2337 memory_notifies.push(MemoryNotify { slot_id }); 2338 } 2339 2340 let mut memory_notifies_refs: Vec<&dyn Aml> = Vec::new(); 2341 for memory_notifier in memory_notifies.iter() { 2342 memory_notifies_refs.push(memory_notifier); 2343 } 2344 2345 aml::Method::new("MTFY".into(), 2, true, memory_notifies_refs).to_aml_bytes(sink); 2346 2347 // MSCN method 2348 aml::Method::new( 2349 "MSCN".into(), 2350 0, 2351 true, 2352 vec![ 2353 // Take lock defined above 2354 &aml::Acquire::new("MLCK".into(), 0xffff), 2355 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2356 &aml::While::new( 2357 &aml::LessThan::new(&aml::Local(0), &self.slots), 2358 vec![ 2359 // Write slot number (in first argument) to I/O port via field 2360 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Local(0)), 2361 // Check if MINS bit is set (inserting) 2362 &aml::If::new( 2363 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2364 // Notify device if it is 2365 vec![ 2366 &aml::MethodCall::new( 2367 "MTFY".into(), 2368 vec![&aml::Local(0), &aml::ONE], 2369 ), 2370 // Reset MINS bit 2371 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2372 ], 2373 ), 2374 // Check if MRMV bit is set 2375 &aml::If::new( 2376 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2377 // Notify device if it is (with the eject constant 0x3) 2378 vec![ 2379 &aml::MethodCall::new("MTFY".into(), vec![&aml::Local(0), &3u8]), 2380 // Reset MRMV bit 2381 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2382 ], 2383 ), 2384 &aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE), 2385 ], 2386 ), 2387 // Release lock 2388 &aml::Release::new("MLCK".into()), 2389 ], 2390 ) 2391 .to_aml_bytes(sink); 2392 2393 // Memory status method 2394 aml::Method::new( 2395 "MSTA".into(), 2396 1, 2397 true, 2398 vec![ 2399 // Take lock defined above 2400 &aml::Acquire::new("MLCK".into(), 0xffff), 2401 // Write slot number (in first argument) to I/O port via field 2402 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2403 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2404 // Check if MEN_ bit is set, if so make the local variable 0xf (see _STA for details of meaning) 2405 &aml::If::new( 2406 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MEN_"), &aml::ONE), 2407 vec![&aml::Store::new(&aml::Local(0), &0xfu8)], 2408 ), 2409 // Release lock 2410 &aml::Release::new("MLCK".into()), 2411 // Return 0 or 0xf 2412 &aml::Return::new(&aml::Local(0)), 2413 ], 2414 ) 2415 .to_aml_bytes(sink); 2416 2417 // Memory range method 2418 aml::Method::new( 2419 "MCRS".into(), 2420 1, 2421 true, 2422 vec![ 2423 // Take lock defined above 2424 &aml::Acquire::new("MLCK".into(), 0xffff), 2425 // Write slot number (in first argument) to I/O port via field 2426 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2427 &aml::Name::new( 2428 "MR64".into(), 2429 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2430 aml::AddressSpaceCacheable::Cacheable, 2431 true, 2432 0x0000_0000_0000_0000u64, 2433 0xFFFF_FFFF_FFFF_FFFEu64, 2434 None, 2435 )]), 2436 ), 2437 &aml::CreateQWordField::new( 2438 &aml::Path::new("MINL"), 2439 &aml::Path::new("MR64"), 2440 &14usize, 2441 ), 2442 &aml::CreateDWordField::new( 2443 &aml::Path::new("MINH"), 2444 &aml::Path::new("MR64"), 2445 &18usize, 2446 ), 2447 &aml::CreateQWordField::new( 2448 &aml::Path::new("MAXL"), 2449 &aml::Path::new("MR64"), 2450 &22usize, 2451 ), 2452 &aml::CreateDWordField::new( 2453 &aml::Path::new("MAXH"), 2454 &aml::Path::new("MR64"), 2455 &26usize, 2456 ), 2457 &aml::CreateQWordField::new( 2458 &aml::Path::new("LENL"), 2459 &aml::Path::new("MR64"), 2460 &38usize, 2461 ), 2462 &aml::CreateDWordField::new( 2463 &aml::Path::new("LENH"), 2464 &aml::Path::new("MR64"), 2465 &42usize, 2466 ), 2467 &aml::Store::new(&aml::Path::new("MINL"), &aml::Path::new("\\_SB_.MHPC.MHBL")), 2468 &aml::Store::new(&aml::Path::new("MINH"), &aml::Path::new("\\_SB_.MHPC.MHBH")), 2469 &aml::Store::new(&aml::Path::new("LENL"), &aml::Path::new("\\_SB_.MHPC.MHLL")), 2470 &aml::Store::new(&aml::Path::new("LENH"), &aml::Path::new("\\_SB_.MHPC.MHLH")), 2471 &aml::Add::new( 2472 &aml::Path::new("MAXL"), 2473 &aml::Path::new("MINL"), 2474 &aml::Path::new("LENL"), 2475 ), 2476 &aml::Add::new( 2477 &aml::Path::new("MAXH"), 2478 &aml::Path::new("MINH"), 2479 &aml::Path::new("LENH"), 2480 ), 2481 &aml::If::new( 2482 &aml::LessThan::new(&aml::Path::new("MAXL"), &aml::Path::new("MINL")), 2483 vec![&aml::Add::new( 2484 &aml::Path::new("MAXH"), 2485 &aml::ONE, 2486 &aml::Path::new("MAXH"), 2487 )], 2488 ), 2489 &aml::Subtract::new(&aml::Path::new("MAXL"), &aml::Path::new("MAXL"), &aml::ONE), 2490 // Release lock 2491 &aml::Release::new("MLCK".into()), 2492 &aml::Return::new(&aml::Path::new("MR64")), 2493 ], 2494 ) 2495 .to_aml_bytes(sink) 2496 } 2497 } 2498 2499 impl Aml for MemoryManager { 2500 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2501 if let Some(acpi_address) = self.acpi_address { 2502 // Memory Hotplug Controller 2503 aml::Device::new( 2504 "_SB_.MHPC".into(), 2505 vec![ 2506 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2507 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2508 // Mutex to protect concurrent access as we write to choose slot and then read back status 2509 &aml::Mutex::new("MLCK".into(), 0), 2510 &aml::Name::new( 2511 "_CRS".into(), 2512 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2513 aml::AddressSpaceCacheable::NotCacheable, 2514 true, 2515 acpi_address.0, 2516 acpi_address.0 + MEMORY_MANAGER_ACPI_SIZE as u64 - 1, 2517 None, 2518 )]), 2519 ), 2520 // OpRegion and Fields map MMIO range into individual field values 2521 &aml::OpRegion::new( 2522 "MHPR".into(), 2523 aml::OpRegionSpace::SystemMemory, 2524 &(acpi_address.0 as usize), 2525 &MEMORY_MANAGER_ACPI_SIZE, 2526 ), 2527 &aml::Field::new( 2528 "MHPR".into(), 2529 aml::FieldAccessType::DWord, 2530 aml::FieldLockRule::NoLock, 2531 aml::FieldUpdateRule::Preserve, 2532 vec![ 2533 aml::FieldEntry::Named(*b"MHBL", 32), // Base (low 4 bytes) 2534 aml::FieldEntry::Named(*b"MHBH", 32), // Base (high 4 bytes) 2535 aml::FieldEntry::Named(*b"MHLL", 32), // Length (low 4 bytes) 2536 aml::FieldEntry::Named(*b"MHLH", 32), // Length (high 4 bytes) 2537 ], 2538 ), 2539 &aml::Field::new( 2540 "MHPR".into(), 2541 aml::FieldAccessType::DWord, 2542 aml::FieldLockRule::NoLock, 2543 aml::FieldUpdateRule::Preserve, 2544 vec![ 2545 aml::FieldEntry::Reserved(128), 2546 aml::FieldEntry::Named(*b"MHPX", 32), // PXM 2547 ], 2548 ), 2549 &aml::Field::new( 2550 "MHPR".into(), 2551 aml::FieldAccessType::Byte, 2552 aml::FieldLockRule::NoLock, 2553 aml::FieldUpdateRule::WriteAsZeroes, 2554 vec![ 2555 aml::FieldEntry::Reserved(160), 2556 aml::FieldEntry::Named(*b"MEN_", 1), // Enabled 2557 aml::FieldEntry::Named(*b"MINS", 1), // Inserting 2558 aml::FieldEntry::Named(*b"MRMV", 1), // Removing 2559 aml::FieldEntry::Named(*b"MEJ0", 1), // Ejecting 2560 ], 2561 ), 2562 &aml::Field::new( 2563 "MHPR".into(), 2564 aml::FieldAccessType::DWord, 2565 aml::FieldLockRule::NoLock, 2566 aml::FieldUpdateRule::Preserve, 2567 vec![ 2568 aml::FieldEntry::Named(*b"MSEL", 32), // Selector 2569 aml::FieldEntry::Named(*b"MOEV", 32), // Event 2570 aml::FieldEntry::Named(*b"MOSC", 32), // OSC 2571 ], 2572 ), 2573 &MemoryMethods { 2574 slots: self.hotplug_slots.len(), 2575 }, 2576 &MemorySlots { 2577 slots: self.hotplug_slots.len(), 2578 }, 2579 ], 2580 ) 2581 .to_aml_bytes(sink); 2582 } else { 2583 aml::Device::new( 2584 "_SB_.MHPC".into(), 2585 vec![ 2586 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2587 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2588 // Empty MSCN for GED 2589 &aml::Method::new("MSCN".into(), 0, true, vec![]), 2590 ], 2591 ) 2592 .to_aml_bytes(sink); 2593 } 2594 2595 #[cfg(target_arch = "x86_64")] 2596 { 2597 if let Some(sgx_epc_region) = &self.sgx_epc_region { 2598 let min = sgx_epc_region.start().raw_value(); 2599 let max = min + sgx_epc_region.size() - 1; 2600 // SGX EPC region 2601 aml::Device::new( 2602 "_SB_.EPC_".into(), 2603 vec![ 2604 &aml::Name::new("_HID".into(), &aml::EISAName::new("INT0E0C")), 2605 // QWORD describing the EPC region start and size 2606 &aml::Name::new( 2607 "_CRS".into(), 2608 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2609 aml::AddressSpaceCacheable::NotCacheable, 2610 true, 2611 min, 2612 max, 2613 None, 2614 )]), 2615 ), 2616 &aml::Method::new("_STA".into(), 0, false, vec![&aml::Return::new(&0xfu8)]), 2617 ], 2618 ) 2619 .to_aml_bytes(sink); 2620 } 2621 } 2622 } 2623 } 2624 2625 impl Pausable for MemoryManager {} 2626 2627 #[derive(Clone, Serialize, Deserialize, Versionize)] 2628 pub struct MemoryManagerSnapshotData { 2629 memory_ranges: MemoryRangeTable, 2630 guest_ram_mappings: Vec<GuestRamMapping>, 2631 start_of_device_area: u64, 2632 boot_ram: u64, 2633 current_ram: u64, 2634 arch_mem_regions: Vec<ArchMemRegion>, 2635 hotplug_slots: Vec<HotPlugState>, 2636 next_memory_slot: u32, 2637 selected_slot: usize, 2638 next_hotplug_slot: usize, 2639 } 2640 2641 impl VersionMapped for MemoryManagerSnapshotData {} 2642 2643 impl Snapshottable for MemoryManager { 2644 fn id(&self) -> String { 2645 MEMORY_MANAGER_SNAPSHOT_ID.to_string() 2646 } 2647 2648 fn snapshot(&mut self) -> result::Result<Snapshot, MigratableError> { 2649 let memory_ranges = self.memory_range_table(true)?; 2650 2651 // Store locally this list of ranges as it will be used through the 2652 // Transportable::send() implementation. The point is to avoid the 2653 // duplication of code regarding the creation of the path for each 2654 // region. The 'snapshot' step creates the list of memory regions, 2655 // including information about the need to copy a memory region or 2656 // not. This saves the 'send' step having to go through the same 2657 // process, and instead it can directly proceed with storing the 2658 // memory range content for the ranges requiring it. 2659 self.snapshot_memory_ranges = memory_ranges; 2660 2661 Ok(Snapshot::from_data(SnapshotData::new_from_versioned_state( 2662 &self.snapshot_data(), 2663 )?)) 2664 } 2665 } 2666 2667 impl Transportable for MemoryManager { 2668 fn send( 2669 &self, 2670 _snapshot: &Snapshot, 2671 destination_url: &str, 2672 ) -> result::Result<(), MigratableError> { 2673 if self.snapshot_memory_ranges.is_empty() { 2674 return Ok(()); 2675 } 2676 2677 let mut memory_file_path = url_to_path(destination_url)?; 2678 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 2679 2680 // Create the snapshot file for the entire memory 2681 let mut memory_file = OpenOptions::new() 2682 .read(true) 2683 .write(true) 2684 .create_new(true) 2685 .open(memory_file_path) 2686 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2687 2688 let guest_memory = self.guest_memory.memory(); 2689 2690 for range in self.snapshot_memory_ranges.regions() { 2691 let mut offset: u64 = 0; 2692 // Here we are manually handling the retry in case we can't read 2693 // the whole region at once because we can't use the implementation 2694 // from vm-memory::GuestMemory of write_all_to() as it is not 2695 // following the correct behavior. For more info about this issue 2696 // see: https://github.com/rust-vmm/vm-memory/issues/174 2697 loop { 2698 let bytes_written = guest_memory 2699 .write_volatile_to( 2700 GuestAddress(range.gpa + offset), 2701 &mut memory_file, 2702 (range.length - offset) as usize, 2703 ) 2704 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2705 offset += bytes_written as u64; 2706 2707 if offset == range.length { 2708 break; 2709 } 2710 } 2711 } 2712 Ok(()) 2713 } 2714 } 2715 2716 impl Migratable for MemoryManager { 2717 // Start the dirty log in the hypervisor (kvm/mshv). 2718 // Also, reset the dirty bitmap logged by the vmm. 2719 // Just before we do a bulk copy we want to start/clear the dirty log so that 2720 // pages touched during our bulk copy are tracked. 2721 fn start_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2722 self.vm.start_dirty_log().map_err(|e| { 2723 MigratableError::MigrateSend(anyhow!("Error starting VM dirty log {}", e)) 2724 })?; 2725 2726 for r in self.guest_memory.memory().iter() { 2727 r.bitmap().reset(); 2728 } 2729 2730 Ok(()) 2731 } 2732 2733 fn stop_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2734 self.vm.stop_dirty_log().map_err(|e| { 2735 MigratableError::MigrateSend(anyhow!("Error stopping VM dirty log {}", e)) 2736 })?; 2737 2738 Ok(()) 2739 } 2740 2741 // Generate a table for the pages that are dirty. The dirty pages are collapsed 2742 // together in the table if they are contiguous. 2743 fn dirty_log(&mut self) -> std::result::Result<MemoryRangeTable, MigratableError> { 2744 let mut table = MemoryRangeTable::default(); 2745 for r in &self.guest_ram_mappings { 2746 let vm_dirty_bitmap = self.vm.get_dirty_log(r.slot, r.gpa, r.size).map_err(|e| { 2747 MigratableError::MigrateSend(anyhow!("Error getting VM dirty log {}", e)) 2748 })?; 2749 let vmm_dirty_bitmap = match self.guest_memory.memory().find_region(GuestAddress(r.gpa)) 2750 { 2751 Some(region) => { 2752 assert!(region.start_addr().raw_value() == r.gpa); 2753 assert!(region.len() == r.size); 2754 region.bitmap().get_and_reset() 2755 } 2756 None => { 2757 return Err(MigratableError::MigrateSend(anyhow!( 2758 "Error finding 'guest memory region' with address {:x}", 2759 r.gpa 2760 ))) 2761 } 2762 }; 2763 2764 let dirty_bitmap: Vec<u64> = vm_dirty_bitmap 2765 .iter() 2766 .zip(vmm_dirty_bitmap.iter()) 2767 .map(|(x, y)| x | y) 2768 .collect(); 2769 2770 let sub_table = MemoryRangeTable::from_bitmap(dirty_bitmap, r.gpa, 4096); 2771 2772 if sub_table.regions().is_empty() { 2773 info!("Dirty Memory Range Table is empty"); 2774 } else { 2775 info!("Dirty Memory Range Table:"); 2776 for range in sub_table.regions() { 2777 info!("GPA: {:x} size: {} (KiB)", range.gpa, range.length / 1024); 2778 } 2779 } 2780 2781 table.extend(sub_table); 2782 } 2783 Ok(table) 2784 } 2785 } 2786