1 // Copyright © 2019 Intel Corporation 2 // 3 // SPDX-License-Identifier: Apache-2.0 4 // 5 #[cfg(target_arch = "x86_64")] 6 use crate::config::SgxEpcConfig; 7 use crate::config::{HotplugMethod, MemoryConfig, MemoryZoneConfig}; 8 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 9 use crate::coredump::{ 10 CoredumpMemoryRegion, CoredumpMemoryRegions, DumpState, GuestDebuggableError, 11 }; 12 use crate::migration::url_to_path; 13 use crate::MEMORY_MANAGER_SNAPSHOT_ID; 14 use crate::{GuestMemoryMmap, GuestRegionMmap}; 15 use acpi_tables::{aml, Aml}; 16 use anyhow::anyhow; 17 #[cfg(target_arch = "x86_64")] 18 use arch::x86_64::{SgxEpcRegion, SgxEpcSection}; 19 use arch::RegionType; 20 #[cfg(target_arch = "x86_64")] 21 use devices::ioapic; 22 #[cfg(target_arch = "aarch64")] 23 use hypervisor::HypervisorVmError; 24 #[cfg(target_arch = "x86_64")] 25 use libc::{MAP_NORESERVE, MAP_POPULATE, MAP_SHARED, PROT_READ, PROT_WRITE}; 26 use serde::{Deserialize, Serialize}; 27 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 28 use std::collections::BTreeMap; 29 use std::collections::HashMap; 30 use std::convert::TryInto; 31 use std::ffi; 32 use std::fs::{File, OpenOptions}; 33 use std::io::{self}; 34 use std::ops::{BitAnd, Deref, Not, Sub}; 35 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 36 use std::os::fd::AsFd; 37 use std::os::unix::io::{AsRawFd, FromRawFd, RawFd}; 38 use std::path::PathBuf; 39 use std::result; 40 use std::sync::{Arc, Barrier, Mutex}; 41 use tracer::trace_scoped; 42 use versionize::{VersionMap, Versionize, VersionizeResult}; 43 use versionize_derive::Versionize; 44 use virtio_devices::BlocksState; 45 #[cfg(target_arch = "x86_64")] 46 use vm_allocator::GsiApic; 47 use vm_allocator::{AddressAllocator, SystemAllocator}; 48 use vm_device::BusDevice; 49 use vm_memory::bitmap::AtomicBitmap; 50 use vm_memory::guest_memory::FileOffset; 51 use vm_memory::{ 52 mmap::MmapRegionError, Address, Error as MmapError, GuestAddress, GuestAddressSpace, 53 GuestMemory, GuestMemoryAtomic, GuestMemoryError, GuestMemoryRegion, GuestUsize, MmapRegion, 54 ReadVolatile, 55 }; 56 use vm_migration::{ 57 protocol::MemoryRange, protocol::MemoryRangeTable, Migratable, MigratableError, Pausable, 58 Snapshot, SnapshotData, Snapshottable, Transportable, VersionMapped, 59 }; 60 61 pub const MEMORY_MANAGER_ACPI_SIZE: usize = 0x18; 62 63 const DEFAULT_MEMORY_ZONE: &str = "mem0"; 64 65 const SNAPSHOT_FILENAME: &str = "memory-ranges"; 66 67 #[cfg(target_arch = "x86_64")] 68 const X86_64_IRQ_BASE: u32 = 5; 69 70 #[cfg(target_arch = "x86_64")] 71 const SGX_PAGE_SIZE: u64 = 1 << 12; 72 73 const HOTPLUG_COUNT: usize = 8; 74 75 // Memory policy constants 76 const MPOL_BIND: u32 = 2; 77 const MPOL_MF_STRICT: u32 = 1; 78 const MPOL_MF_MOVE: u32 = 1 << 1; 79 80 // Reserve 1 MiB for platform MMIO devices (e.g. ACPI control devices) 81 const PLATFORM_DEVICE_AREA_SIZE: u64 = 1 << 20; 82 83 #[derive(Clone, Default, Serialize, Deserialize, Versionize)] 84 struct HotPlugState { 85 base: u64, 86 length: u64, 87 active: bool, 88 inserting: bool, 89 removing: bool, 90 } 91 92 pub struct VirtioMemZone { 93 region: Arc<GuestRegionMmap>, 94 virtio_device: Option<Arc<Mutex<virtio_devices::Mem>>>, 95 hotplugged_size: u64, 96 hugepages: bool, 97 blocks_state: Arc<Mutex<BlocksState>>, 98 } 99 100 impl VirtioMemZone { 101 pub fn region(&self) -> &Arc<GuestRegionMmap> { 102 &self.region 103 } 104 pub fn set_virtio_device(&mut self, virtio_device: Arc<Mutex<virtio_devices::Mem>>) { 105 self.virtio_device = Some(virtio_device); 106 } 107 pub fn hotplugged_size(&self) -> u64 { 108 self.hotplugged_size 109 } 110 pub fn hugepages(&self) -> bool { 111 self.hugepages 112 } 113 pub fn blocks_state(&self) -> &Arc<Mutex<BlocksState>> { 114 &self.blocks_state 115 } 116 pub fn plugged_ranges(&self) -> MemoryRangeTable { 117 self.blocks_state 118 .lock() 119 .unwrap() 120 .memory_ranges(self.region.start_addr().raw_value(), true) 121 } 122 } 123 124 #[derive(Default)] 125 pub struct MemoryZone { 126 regions: Vec<Arc<GuestRegionMmap>>, 127 virtio_mem_zone: Option<VirtioMemZone>, 128 } 129 130 impl MemoryZone { 131 pub fn regions(&self) -> &Vec<Arc<GuestRegionMmap>> { 132 &self.regions 133 } 134 pub fn virtio_mem_zone(&self) -> &Option<VirtioMemZone> { 135 &self.virtio_mem_zone 136 } 137 pub fn virtio_mem_zone_mut(&mut self) -> Option<&mut VirtioMemZone> { 138 self.virtio_mem_zone.as_mut() 139 } 140 } 141 142 pub type MemoryZones = HashMap<String, MemoryZone>; 143 144 #[derive(Clone, Serialize, Deserialize, Versionize)] 145 struct GuestRamMapping { 146 slot: u32, 147 gpa: u64, 148 size: u64, 149 zone_id: String, 150 virtio_mem: bool, 151 file_offset: u64, 152 } 153 154 #[derive(Clone, Serialize, Deserialize, Versionize)] 155 struct ArchMemRegion { 156 base: u64, 157 size: usize, 158 r_type: RegionType, 159 } 160 161 pub struct MemoryManager { 162 boot_guest_memory: GuestMemoryMmap, 163 guest_memory: GuestMemoryAtomic<GuestMemoryMmap>, 164 next_memory_slot: u32, 165 start_of_device_area: GuestAddress, 166 end_of_device_area: GuestAddress, 167 end_of_ram_area: GuestAddress, 168 pub vm: Arc<dyn hypervisor::Vm>, 169 hotplug_slots: Vec<HotPlugState>, 170 selected_slot: usize, 171 mergeable: bool, 172 allocator: Arc<Mutex<SystemAllocator>>, 173 hotplug_method: HotplugMethod, 174 boot_ram: u64, 175 current_ram: u64, 176 next_hotplug_slot: usize, 177 shared: bool, 178 hugepages: bool, 179 hugepage_size: Option<u64>, 180 prefault: bool, 181 thp: bool, 182 #[cfg(target_arch = "x86_64")] 183 sgx_epc_region: Option<SgxEpcRegion>, 184 user_provided_zones: bool, 185 snapshot_memory_ranges: MemoryRangeTable, 186 memory_zones: MemoryZones, 187 log_dirty: bool, // Enable dirty logging for created RAM regions 188 arch_mem_regions: Vec<ArchMemRegion>, 189 ram_allocator: AddressAllocator, 190 dynamic: bool, 191 192 // Keep track of calls to create_userspace_mapping() for guest RAM. 193 // This is useful for getting the dirty pages as we need to know the 194 // slots that the mapping is created in. 195 guest_ram_mappings: Vec<GuestRamMapping>, 196 197 pub acpi_address: Option<GuestAddress>, 198 #[cfg(target_arch = "aarch64")] 199 uefi_flash: Option<GuestMemoryAtomic<GuestMemoryMmap>>, 200 } 201 202 #[derive(Debug)] 203 pub enum Error { 204 /// Failed to create shared file. 205 SharedFileCreate(io::Error), 206 207 /// Failed to set shared file length. 208 SharedFileSetLen(io::Error), 209 210 /// Mmap backed guest memory error 211 GuestMemory(MmapError), 212 213 /// Failed to allocate a memory range. 214 MemoryRangeAllocation, 215 216 /// Error from region creation 217 GuestMemoryRegion(MmapRegionError), 218 219 /// No ACPI slot available 220 NoSlotAvailable, 221 222 /// Not enough space in the hotplug RAM region 223 InsufficientHotplugRam, 224 225 /// The requested hotplug memory addition is not a valid size 226 InvalidSize, 227 228 /// Failed to create the user memory region. 229 CreateUserMemoryRegion(hypervisor::HypervisorVmError), 230 231 /// Failed to remove the user memory region. 232 RemoveUserMemoryRegion(hypervisor::HypervisorVmError), 233 234 /// Failed to EventFd. 235 EventFdFail(io::Error), 236 237 /// Eventfd write error 238 EventfdError(io::Error), 239 240 /// Failed to virtio-mem resize 241 VirtioMemResizeFail(virtio_devices::mem::Error), 242 243 /// Cannot restore VM 244 Restore(MigratableError), 245 246 /// Cannot restore VM because source URL is missing 247 RestoreMissingSourceUrl, 248 249 /// Cannot create the system allocator 250 CreateSystemAllocator, 251 252 /// Invalid SGX EPC section size 253 #[cfg(target_arch = "x86_64")] 254 EpcSectionSizeInvalid, 255 256 /// Failed allocating SGX EPC region 257 #[cfg(target_arch = "x86_64")] 258 SgxEpcRangeAllocation, 259 260 /// Failed opening SGX virtual EPC device 261 #[cfg(target_arch = "x86_64")] 262 SgxVirtEpcOpen(io::Error), 263 264 /// Failed setting the SGX virtual EPC section size 265 #[cfg(target_arch = "x86_64")] 266 SgxVirtEpcFileSetLen(io::Error), 267 268 /// Failed opening SGX provisioning device 269 #[cfg(target_arch = "x86_64")] 270 SgxProvisionOpen(io::Error), 271 272 /// Failed enabling SGX provisioning 273 #[cfg(target_arch = "x86_64")] 274 SgxEnableProvisioning(hypervisor::HypervisorVmError), 275 276 /// Failed creating a new MmapRegion instance. 277 #[cfg(target_arch = "x86_64")] 278 NewMmapRegion(vm_memory::mmap::MmapRegionError), 279 280 /// No memory zones found. 281 MissingMemoryZones, 282 283 /// Memory configuration is not valid. 284 InvalidMemoryParameters, 285 286 /// Forbidden operation. Impossible to resize guest memory if it is 287 /// backed by user defined memory regions. 288 InvalidResizeWithMemoryZones, 289 290 /// It's invalid to try applying a NUMA policy to a memory zone that is 291 /// memory mapped with MAP_SHARED. 292 InvalidSharedMemoryZoneWithHostNuma, 293 294 /// Failed applying NUMA memory policy. 295 ApplyNumaPolicy(io::Error), 296 297 /// Memory zone identifier is not unique. 298 DuplicateZoneId, 299 300 /// No virtio-mem resizing handler found. 301 MissingVirtioMemHandler, 302 303 /// Unknown memory zone. 304 UnknownMemoryZone, 305 306 /// Invalid size for resizing. Can be anything except 0. 307 InvalidHotplugSize, 308 309 /// Invalid hotplug method associated with memory zones resizing capability. 310 InvalidHotplugMethodWithMemoryZones, 311 312 /// Could not find specified memory zone identifier from hash map. 313 MissingZoneIdentifier, 314 315 /// Resizing the memory zone failed. 316 ResizeZone, 317 318 /// Guest address overflow 319 GuestAddressOverFlow, 320 321 /// Error opening snapshot file 322 SnapshotOpen(io::Error), 323 324 // Error copying snapshot into region 325 SnapshotCopy(GuestMemoryError), 326 327 /// Failed to allocate MMIO address 328 AllocateMmioAddress, 329 330 #[cfg(target_arch = "aarch64")] 331 /// Failed to create UEFI flash 332 CreateUefiFlash(HypervisorVmError), 333 334 /// Using a directory as a backing file for memory is not supported 335 DirectoryAsBackingFileForMemory, 336 337 /// Failed to stat filesystem 338 GetFileSystemBlockSize(io::Error), 339 340 /// Memory size is misaligned with default page size or its hugepage size 341 MisalignedMemorySize, 342 } 343 344 const ENABLE_FLAG: usize = 0; 345 const INSERTING_FLAG: usize = 1; 346 const REMOVING_FLAG: usize = 2; 347 const EJECT_FLAG: usize = 3; 348 349 const BASE_OFFSET_LOW: u64 = 0; 350 const BASE_OFFSET_HIGH: u64 = 0x4; 351 const LENGTH_OFFSET_LOW: u64 = 0x8; 352 const LENGTH_OFFSET_HIGH: u64 = 0xC; 353 const STATUS_OFFSET: u64 = 0x14; 354 const SELECTION_OFFSET: u64 = 0; 355 356 // The MMIO address space size is subtracted with 64k. This is done for the 357 // following reasons: 358 // - Reduce the addressable space size by at least 4k to workaround a Linux 359 // bug when the VMM allocates devices at the end of the addressable space 360 // - Windows requires the addressable space size to be 64k aligned 361 fn mmio_address_space_size(phys_bits: u8) -> u64 { 362 (1 << phys_bits) - (1 << 16) 363 } 364 365 // The `statfs` function can get information of hugetlbfs, and the hugepage size is in the 366 // `f_bsize` field. 367 // 368 // See: https://github.com/torvalds/linux/blob/v6.3/fs/hugetlbfs/inode.c#L1169 369 fn statfs_get_bsize(path: &str) -> Result<u64, Error> { 370 let path = std::ffi::CString::new(path).map_err(|_| Error::InvalidMemoryParameters)?; 371 let mut buf = std::mem::MaybeUninit::<libc::statfs>::uninit(); 372 373 // SAFETY: FFI call with a valid path and buffer 374 let ret = unsafe { libc::statfs(path.as_ptr(), buf.as_mut_ptr()) }; 375 if ret != 0 { 376 return Err(Error::GetFileSystemBlockSize( 377 std::io::Error::last_os_error(), 378 )); 379 } 380 381 // SAFETY: `buf` is valid at this point 382 // Because this value is always positive, just convert it directly. 383 // Note that the `f_bsize` is `i64` in glibc and `u64` in musl, using `as u64` will be warned 384 // by `clippy` on musl target. To avoid the warning, there should be `as _` instead of 385 // `as u64`. 386 let bsize = unsafe { (*buf.as_ptr()).f_bsize } as _; 387 Ok(bsize) 388 } 389 390 fn memory_zone_get_align_size(zone: &MemoryZoneConfig) -> Result<u64, Error> { 391 // SAFETY: FFI call. Trivially safe. 392 let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }; 393 394 // There is no backend file and the `hugepages` is disabled, just use system page size. 395 if zone.file.is_none() && !zone.hugepages { 396 return Ok(page_size); 397 } 398 399 // The `hugepages` is enabled and the `hugepage_size` is specified, just use it directly. 400 if zone.hugepages && zone.hugepage_size.is_some() { 401 return Ok(zone.hugepage_size.unwrap()); 402 } 403 404 // There are two scenarios here: 405 // - `hugepages` is enabled but `hugepage_size` is not specified: 406 // Call `statfs` for `/dev/hugepages` for getting the default size of hugepage 407 // - The backing file is specified: 408 // Call `statfs` for the file and get its `f_bsize`. If the value is larger than the page 409 // size of normal page, just use the `f_bsize` because the file is in a hugetlbfs. If the 410 // value is less than or equal to the page size, just use the page size. 411 let path = zone.file.as_ref().map_or(Ok("/dev/hugepages"), |pathbuf| { 412 pathbuf.to_str().ok_or(Error::InvalidMemoryParameters) 413 })?; 414 415 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?); 416 417 Ok(align_size) 418 } 419 420 #[inline] 421 fn align_down<T>(val: T, align: T) -> T 422 where 423 T: BitAnd<Output = T> + Not<Output = T> + Sub<Output = T> + From<u8>, 424 { 425 val & !(align - 1u8.into()) 426 } 427 428 #[inline] 429 fn is_aligned<T>(val: T, align: T) -> bool 430 where 431 T: BitAnd<Output = T> + Sub<Output = T> + From<u8> + PartialEq, 432 { 433 (val & (align - 1u8.into())) == 0u8.into() 434 } 435 436 impl BusDevice for MemoryManager { 437 fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) { 438 if self.selected_slot < self.hotplug_slots.len() { 439 let state = &self.hotplug_slots[self.selected_slot]; 440 match offset { 441 BASE_OFFSET_LOW => { 442 data.copy_from_slice(&state.base.to_le_bytes()[..4]); 443 } 444 BASE_OFFSET_HIGH => { 445 data.copy_from_slice(&state.base.to_le_bytes()[4..]); 446 } 447 LENGTH_OFFSET_LOW => { 448 data.copy_from_slice(&state.length.to_le_bytes()[..4]); 449 } 450 LENGTH_OFFSET_HIGH => { 451 data.copy_from_slice(&state.length.to_le_bytes()[4..]); 452 } 453 STATUS_OFFSET => { 454 // The Linux kernel, quite reasonably, doesn't zero the memory it gives us. 455 data.fill(0); 456 if state.active { 457 data[0] |= 1 << ENABLE_FLAG; 458 } 459 if state.inserting { 460 data[0] |= 1 << INSERTING_FLAG; 461 } 462 if state.removing { 463 data[0] |= 1 << REMOVING_FLAG; 464 } 465 } 466 _ => { 467 warn!( 468 "Unexpected offset for accessing memory manager device: {:#}", 469 offset 470 ); 471 } 472 } 473 } else { 474 warn!("Out of range memory slot: {}", self.selected_slot); 475 } 476 } 477 478 fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> { 479 match offset { 480 SELECTION_OFFSET => { 481 self.selected_slot = usize::from(data[0]); 482 } 483 STATUS_OFFSET => { 484 if self.selected_slot < self.hotplug_slots.len() { 485 let state = &mut self.hotplug_slots[self.selected_slot]; 486 // The ACPI code writes back a 1 to acknowledge the insertion 487 if (data[0] & (1 << INSERTING_FLAG) == 1 << INSERTING_FLAG) && state.inserting { 488 state.inserting = false; 489 } 490 // Ditto for removal 491 if (data[0] & (1 << REMOVING_FLAG) == 1 << REMOVING_FLAG) && state.removing { 492 state.removing = false; 493 } 494 // Trigger removal of "DIMM" 495 if data[0] & (1 << EJECT_FLAG) == 1 << EJECT_FLAG { 496 warn!("Ejection of memory not currently supported"); 497 } 498 } else { 499 warn!("Out of range memory slot: {}", self.selected_slot); 500 } 501 } 502 _ => { 503 warn!( 504 "Unexpected offset for accessing memory manager device: {:#}", 505 offset 506 ); 507 } 508 }; 509 None 510 } 511 } 512 513 impl MemoryManager { 514 /// Creates all memory regions based on the available RAM ranges defined 515 /// by `ram_regions`, and based on the description of the memory zones. 516 /// In practice, this function can perform multiple memory mappings of the 517 /// same backing file if there's a hole in the address space between two 518 /// RAM ranges. 519 /// One example might be ram_regions containing 2 regions (0-3G and 4G-6G) 520 /// and zones containing two zones (size 1G and size 4G). 521 /// This function will create 3 resulting memory regions: 522 /// - First one mapping entirely the first memory zone on 0-1G range 523 /// - Second one mapping partially the second memory zone on 1G-3G range 524 /// - Third one mapping partially the second memory zone on 4G-6G range 525 /// Also, all memory regions are page-size aligned (e.g. their sizes must 526 /// be multiple of page-size), which may leave an additional hole in the 527 /// address space when hugepage is used. 528 fn create_memory_regions_from_zones( 529 ram_regions: &[(GuestAddress, usize)], 530 zones: &[MemoryZoneConfig], 531 prefault: Option<bool>, 532 thp: bool, 533 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 534 let mut zone_iter = zones.iter(); 535 let mut mem_regions = Vec::new(); 536 let mut zone = zone_iter.next().ok_or(Error::MissingMemoryZones)?; 537 let mut zone_align_size = memory_zone_get_align_size(zone)?; 538 let mut zone_offset = 0u64; 539 let mut memory_zones = HashMap::new(); 540 541 if !is_aligned(zone.size, zone_align_size) { 542 return Err(Error::MisalignedMemorySize); 543 } 544 545 // Add zone id to the list of memory zones. 546 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 547 548 for ram_region in ram_regions.iter() { 549 let mut ram_region_offset = 0; 550 let mut exit = false; 551 552 loop { 553 let mut ram_region_consumed = false; 554 let mut pull_next_zone = false; 555 556 let ram_region_available_size = 557 align_down(ram_region.1 as u64 - ram_region_offset, zone_align_size); 558 if ram_region_available_size == 0 { 559 break; 560 } 561 let zone_sub_size = zone.size - zone_offset; 562 563 let file_offset = zone_offset; 564 let region_start = ram_region 565 .0 566 .checked_add(ram_region_offset) 567 .ok_or(Error::GuestAddressOverFlow)?; 568 let region_size = if zone_sub_size <= ram_region_available_size { 569 if zone_sub_size == ram_region_available_size { 570 ram_region_consumed = true; 571 } 572 573 ram_region_offset += zone_sub_size; 574 pull_next_zone = true; 575 576 zone_sub_size 577 } else { 578 zone_offset += ram_region_available_size; 579 ram_region_consumed = true; 580 581 ram_region_available_size 582 }; 583 584 info!( 585 "create ram region for zone {}, region_start: {:#x}, region_size: {:#x}", 586 zone.id, 587 region_start.raw_value(), 588 region_size 589 ); 590 let region = MemoryManager::create_ram_region( 591 &zone.file, 592 file_offset, 593 region_start, 594 region_size as usize, 595 prefault.unwrap_or(zone.prefault), 596 zone.shared, 597 zone.hugepages, 598 zone.hugepage_size, 599 zone.host_numa_node, 600 None, 601 thp, 602 )?; 603 604 // Add region to the list of regions associated with the 605 // current memory zone. 606 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 607 memory_zone.regions.push(region.clone()); 608 } 609 610 mem_regions.push(region); 611 612 if pull_next_zone { 613 // Get the next zone and reset the offset. 614 zone_offset = 0; 615 if let Some(z) = zone_iter.next() { 616 zone = z; 617 } else { 618 exit = true; 619 break; 620 } 621 zone_align_size = memory_zone_get_align_size(zone)?; 622 if !is_aligned(zone.size, zone_align_size) { 623 return Err(Error::MisalignedMemorySize); 624 } 625 626 // Check if zone id already exist. In case it does, throw 627 // an error as we need unique identifiers. Otherwise, add 628 // the new zone id to the list of memory zones. 629 if memory_zones.contains_key(&zone.id) { 630 error!( 631 "Memory zone identifier '{}' found more than once. \ 632 It must be unique", 633 zone.id, 634 ); 635 return Err(Error::DuplicateZoneId); 636 } 637 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 638 } 639 640 if ram_region_consumed { 641 break; 642 } 643 } 644 645 if exit { 646 break; 647 } 648 } 649 650 Ok((mem_regions, memory_zones)) 651 } 652 653 // Restore both GuestMemory regions along with MemoryZone zones. 654 fn restore_memory_regions_and_zones( 655 guest_ram_mappings: &[GuestRamMapping], 656 zones_config: &[MemoryZoneConfig], 657 prefault: Option<bool>, 658 mut existing_memory_files: HashMap<u32, File>, 659 thp: bool, 660 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 661 let mut memory_regions = Vec::new(); 662 let mut memory_zones = HashMap::new(); 663 664 for zone_config in zones_config { 665 memory_zones.insert(zone_config.id.clone(), MemoryZone::default()); 666 } 667 668 for guest_ram_mapping in guest_ram_mappings { 669 for zone_config in zones_config { 670 if guest_ram_mapping.zone_id == zone_config.id { 671 let region = MemoryManager::create_ram_region( 672 &zone_config.file, 673 guest_ram_mapping.file_offset, 674 GuestAddress(guest_ram_mapping.gpa), 675 guest_ram_mapping.size as usize, 676 prefault.unwrap_or(zone_config.prefault), 677 zone_config.shared, 678 zone_config.hugepages, 679 zone_config.hugepage_size, 680 zone_config.host_numa_node, 681 existing_memory_files.remove(&guest_ram_mapping.slot), 682 thp, 683 )?; 684 memory_regions.push(Arc::clone(®ion)); 685 if let Some(memory_zone) = memory_zones.get_mut(&guest_ram_mapping.zone_id) { 686 if guest_ram_mapping.virtio_mem { 687 let hotplugged_size = zone_config.hotplugged_size.unwrap_or(0); 688 let region_size = region.len(); 689 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 690 region, 691 virtio_device: None, 692 hotplugged_size, 693 hugepages: zone_config.hugepages, 694 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 695 }); 696 } else { 697 memory_zone.regions.push(region); 698 } 699 } 700 } 701 } 702 } 703 704 memory_regions.sort_by_key(|x| x.start_addr()); 705 706 Ok((memory_regions, memory_zones)) 707 } 708 709 fn fill_saved_regions( 710 &mut self, 711 file_path: PathBuf, 712 saved_regions: MemoryRangeTable, 713 ) -> Result<(), Error> { 714 if saved_regions.is_empty() { 715 return Ok(()); 716 } 717 718 // Open (read only) the snapshot file. 719 let mut memory_file = OpenOptions::new() 720 .read(true) 721 .open(file_path) 722 .map_err(Error::SnapshotOpen)?; 723 724 let guest_memory = self.guest_memory.memory(); 725 for range in saved_regions.regions() { 726 let mut offset: u64 = 0; 727 // Here we are manually handling the retry in case we can't write 728 // the whole region at once because we can't use the implementation 729 // from vm-memory::GuestMemory of read_exact_from() as it is not 730 // following the correct behavior. For more info about this issue 731 // see: https://github.com/rust-vmm/vm-memory/issues/174 732 loop { 733 let bytes_read = guest_memory 734 .read_volatile_from( 735 GuestAddress(range.gpa + offset), 736 &mut memory_file, 737 (range.length - offset) as usize, 738 ) 739 .map_err(Error::SnapshotCopy)?; 740 offset += bytes_read as u64; 741 742 if offset == range.length { 743 break; 744 } 745 } 746 } 747 748 Ok(()) 749 } 750 751 fn validate_memory_config( 752 config: &MemoryConfig, 753 user_provided_zones: bool, 754 ) -> Result<(u64, Vec<MemoryZoneConfig>, bool), Error> { 755 let mut allow_mem_hotplug = false; 756 757 if !user_provided_zones { 758 if config.zones.is_some() { 759 error!( 760 "User defined memory regions can't be provided if the \ 761 memory size is not 0" 762 ); 763 return Err(Error::InvalidMemoryParameters); 764 } 765 766 if config.hotplug_size.is_some() { 767 allow_mem_hotplug = true; 768 } 769 770 if let Some(hotplugged_size) = config.hotplugged_size { 771 if let Some(hotplug_size) = config.hotplug_size { 772 if hotplugged_size > hotplug_size { 773 error!( 774 "'hotplugged_size' {} can't be bigger than \ 775 'hotplug_size' {}", 776 hotplugged_size, hotplug_size, 777 ); 778 return Err(Error::InvalidMemoryParameters); 779 } 780 } else { 781 error!( 782 "Invalid to define 'hotplugged_size' when there is\ 783 no 'hotplug_size'" 784 ); 785 return Err(Error::InvalidMemoryParameters); 786 } 787 if config.hotplug_method == HotplugMethod::Acpi { 788 error!( 789 "Invalid to define 'hotplugged_size' with hotplug \ 790 method 'acpi'" 791 ); 792 return Err(Error::InvalidMemoryParameters); 793 } 794 } 795 796 // Create a single zone from the global memory config. This lets 797 // us reuse the codepath for user defined memory zones. 798 let zones = vec![MemoryZoneConfig { 799 id: String::from(DEFAULT_MEMORY_ZONE), 800 size: config.size, 801 file: None, 802 shared: config.shared, 803 hugepages: config.hugepages, 804 hugepage_size: config.hugepage_size, 805 host_numa_node: None, 806 hotplug_size: config.hotplug_size, 807 hotplugged_size: config.hotplugged_size, 808 prefault: config.prefault, 809 }]; 810 811 Ok((config.size, zones, allow_mem_hotplug)) 812 } else { 813 if config.zones.is_none() { 814 error!( 815 "User defined memory regions must be provided if the \ 816 memory size is 0" 817 ); 818 return Err(Error::MissingMemoryZones); 819 } 820 821 // Safe to unwrap as we checked right above there were some 822 // regions. 823 let zones = config.zones.clone().unwrap(); 824 if zones.is_empty() { 825 return Err(Error::MissingMemoryZones); 826 } 827 828 let mut total_ram_size: u64 = 0; 829 for zone in zones.iter() { 830 total_ram_size += zone.size; 831 832 if zone.shared && zone.file.is_some() && zone.host_numa_node.is_some() { 833 error!( 834 "Invalid to set host NUMA policy for a memory zone \ 835 backed by a regular file and mapped as 'shared'" 836 ); 837 return Err(Error::InvalidSharedMemoryZoneWithHostNuma); 838 } 839 840 if zone.hotplug_size.is_some() && config.hotplug_method == HotplugMethod::Acpi { 841 error!("Invalid to set ACPI hotplug method for memory zones"); 842 return Err(Error::InvalidHotplugMethodWithMemoryZones); 843 } 844 845 if let Some(hotplugged_size) = zone.hotplugged_size { 846 if let Some(hotplug_size) = zone.hotplug_size { 847 if hotplugged_size > hotplug_size { 848 error!( 849 "'hotplugged_size' {} can't be bigger than \ 850 'hotplug_size' {}", 851 hotplugged_size, hotplug_size, 852 ); 853 return Err(Error::InvalidMemoryParameters); 854 } 855 } else { 856 error!( 857 "Invalid to define 'hotplugged_size' when there is\ 858 no 'hotplug_size' for a memory zone" 859 ); 860 return Err(Error::InvalidMemoryParameters); 861 } 862 if config.hotplug_method == HotplugMethod::Acpi { 863 error!( 864 "Invalid to define 'hotplugged_size' with hotplug \ 865 method 'acpi'" 866 ); 867 return Err(Error::InvalidMemoryParameters); 868 } 869 } 870 } 871 872 Ok((total_ram_size, zones, allow_mem_hotplug)) 873 } 874 } 875 876 pub fn allocate_address_space(&mut self) -> Result<(), Error> { 877 let mut list = Vec::new(); 878 879 for (zone_id, memory_zone) in self.memory_zones.iter() { 880 let mut regions: Vec<(Arc<vm_memory::GuestRegionMmap<AtomicBitmap>>, bool)> = 881 memory_zone 882 .regions() 883 .iter() 884 .map(|r| (r.clone(), false)) 885 .collect(); 886 887 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 888 regions.push((virtio_mem_zone.region().clone(), true)); 889 } 890 891 list.push((zone_id.clone(), regions)); 892 } 893 894 for (zone_id, regions) in list { 895 for (region, virtio_mem) in regions { 896 let slot = self.create_userspace_mapping( 897 region.start_addr().raw_value(), 898 region.len(), 899 region.as_ptr() as u64, 900 self.mergeable, 901 false, 902 self.log_dirty, 903 )?; 904 905 let file_offset = if let Some(file_offset) = region.file_offset() { 906 file_offset.start() 907 } else { 908 0 909 }; 910 911 self.guest_ram_mappings.push(GuestRamMapping { 912 gpa: region.start_addr().raw_value(), 913 size: region.len(), 914 slot, 915 zone_id: zone_id.clone(), 916 virtio_mem, 917 file_offset, 918 }); 919 self.ram_allocator 920 .allocate(Some(region.start_addr()), region.len(), None) 921 .ok_or(Error::MemoryRangeAllocation)?; 922 } 923 } 924 925 // Allocate SubRegion and Reserved address ranges. 926 for region in self.arch_mem_regions.iter() { 927 if region.r_type == RegionType::Ram { 928 // Ignore the RAM type since ranges have already been allocated 929 // based on the GuestMemory regions. 930 continue; 931 } 932 self.ram_allocator 933 .allocate( 934 Some(GuestAddress(region.base)), 935 region.size as GuestUsize, 936 None, 937 ) 938 .ok_or(Error::MemoryRangeAllocation)?; 939 } 940 941 Ok(()) 942 } 943 944 #[cfg(target_arch = "aarch64")] 945 fn add_uefi_flash(&mut self) -> Result<(), Error> { 946 // On AArch64, the UEFI binary requires a flash device at address 0. 947 // 4 MiB memory is mapped to simulate the flash. 948 let uefi_mem_slot = self.allocate_memory_slot(); 949 let uefi_region = GuestRegionMmap::new( 950 MmapRegion::new(arch::layout::UEFI_SIZE as usize).unwrap(), 951 arch::layout::UEFI_START, 952 ) 953 .unwrap(); 954 let uefi_mem_region = self.vm.make_user_memory_region( 955 uefi_mem_slot, 956 uefi_region.start_addr().raw_value(), 957 uefi_region.len(), 958 uefi_region.as_ptr() as u64, 959 false, 960 false, 961 ); 962 self.vm 963 .create_user_memory_region(uefi_mem_region) 964 .map_err(Error::CreateUefiFlash)?; 965 966 let uefi_flash = 967 GuestMemoryAtomic::new(GuestMemoryMmap::from_regions(vec![uefi_region]).unwrap()); 968 969 self.uefi_flash = Some(uefi_flash); 970 971 Ok(()) 972 } 973 974 #[allow(clippy::too_many_arguments)] 975 pub fn new( 976 vm: Arc<dyn hypervisor::Vm>, 977 config: &MemoryConfig, 978 prefault: Option<bool>, 979 phys_bits: u8, 980 #[cfg(feature = "tdx")] tdx_enabled: bool, 981 restore_data: Option<&MemoryManagerSnapshotData>, 982 existing_memory_files: Option<HashMap<u32, File>>, 983 #[cfg(target_arch = "x86_64")] sgx_epc_config: Option<Vec<SgxEpcConfig>>, 984 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 985 trace_scoped!("MemoryManager::new"); 986 987 let user_provided_zones = config.size == 0; 988 989 let mmio_address_space_size = mmio_address_space_size(phys_bits); 990 debug_assert_eq!( 991 (((mmio_address_space_size) >> 16) << 16), 992 mmio_address_space_size 993 ); 994 let start_of_platform_device_area = 995 GuestAddress(mmio_address_space_size - PLATFORM_DEVICE_AREA_SIZE); 996 let end_of_device_area = start_of_platform_device_area.unchecked_sub(1); 997 998 let (ram_size, zones, allow_mem_hotplug) = 999 Self::validate_memory_config(config, user_provided_zones)?; 1000 1001 let ( 1002 start_of_device_area, 1003 boot_ram, 1004 current_ram, 1005 arch_mem_regions, 1006 memory_zones, 1007 guest_memory, 1008 boot_guest_memory, 1009 hotplug_slots, 1010 next_memory_slot, 1011 selected_slot, 1012 next_hotplug_slot, 1013 ) = if let Some(data) = restore_data { 1014 let (regions, memory_zones) = Self::restore_memory_regions_and_zones( 1015 &data.guest_ram_mappings, 1016 &zones, 1017 prefault, 1018 existing_memory_files.unwrap_or_default(), 1019 config.thp, 1020 )?; 1021 let guest_memory = 1022 GuestMemoryMmap::from_arc_regions(regions).map_err(Error::GuestMemory)?; 1023 let boot_guest_memory = guest_memory.clone(); 1024 ( 1025 GuestAddress(data.start_of_device_area), 1026 data.boot_ram, 1027 data.current_ram, 1028 data.arch_mem_regions.clone(), 1029 memory_zones, 1030 guest_memory, 1031 boot_guest_memory, 1032 data.hotplug_slots.clone(), 1033 data.next_memory_slot, 1034 data.selected_slot, 1035 data.next_hotplug_slot, 1036 ) 1037 } else { 1038 // Init guest memory 1039 let arch_mem_regions = arch::arch_memory_regions(); 1040 1041 let ram_regions: Vec<(GuestAddress, usize)> = arch_mem_regions 1042 .iter() 1043 .filter(|r| r.2 == RegionType::Ram) 1044 .map(|r| (r.0, r.1)) 1045 .collect(); 1046 1047 let arch_mem_regions: Vec<ArchMemRegion> = arch_mem_regions 1048 .iter() 1049 .map(|(a, b, c)| ArchMemRegion { 1050 base: a.0, 1051 size: *b, 1052 r_type: *c, 1053 }) 1054 .collect(); 1055 1056 let (mem_regions, mut memory_zones) = 1057 Self::create_memory_regions_from_zones(&ram_regions, &zones, prefault, config.thp)?; 1058 1059 let mut guest_memory = 1060 GuestMemoryMmap::from_arc_regions(mem_regions).map_err(Error::GuestMemory)?; 1061 1062 let boot_guest_memory = guest_memory.clone(); 1063 1064 let mut start_of_device_area = 1065 MemoryManager::start_addr(guest_memory.last_addr(), allow_mem_hotplug)?; 1066 1067 // Update list of memory zones for resize. 1068 for zone in zones.iter() { 1069 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 1070 if let Some(hotplug_size) = zone.hotplug_size { 1071 if hotplug_size == 0 { 1072 error!("'hotplug_size' can't be 0"); 1073 return Err(Error::InvalidHotplugSize); 1074 } 1075 1076 if !user_provided_zones && config.hotplug_method == HotplugMethod::Acpi { 1077 start_of_device_area = start_of_device_area 1078 .checked_add(hotplug_size) 1079 .ok_or(Error::GuestAddressOverFlow)?; 1080 } else { 1081 // Alignment must be "natural" i.e. same as size of block 1082 let start_addr = GuestAddress( 1083 (start_of_device_area.0 + virtio_devices::VIRTIO_MEM_ALIGN_SIZE 1084 - 1) 1085 / virtio_devices::VIRTIO_MEM_ALIGN_SIZE 1086 * virtio_devices::VIRTIO_MEM_ALIGN_SIZE, 1087 ); 1088 1089 // When `prefault` is set by vm_restore, memory manager 1090 // will create ram region with `prefault` option in 1091 // restore config rather than same option in zone 1092 let region = MemoryManager::create_ram_region( 1093 &None, 1094 0, 1095 start_addr, 1096 hotplug_size as usize, 1097 prefault.unwrap_or(zone.prefault), 1098 zone.shared, 1099 zone.hugepages, 1100 zone.hugepage_size, 1101 zone.host_numa_node, 1102 None, 1103 config.thp, 1104 )?; 1105 1106 guest_memory = guest_memory 1107 .insert_region(Arc::clone(®ion)) 1108 .map_err(Error::GuestMemory)?; 1109 1110 let hotplugged_size = zone.hotplugged_size.unwrap_or(0); 1111 let region_size = region.len(); 1112 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 1113 region, 1114 virtio_device: None, 1115 hotplugged_size, 1116 hugepages: zone.hugepages, 1117 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 1118 }); 1119 1120 start_of_device_area = start_addr 1121 .checked_add(hotplug_size) 1122 .ok_or(Error::GuestAddressOverFlow)?; 1123 } 1124 } 1125 } else { 1126 return Err(Error::MissingZoneIdentifier); 1127 } 1128 } 1129 1130 let mut hotplug_slots = Vec::with_capacity(HOTPLUG_COUNT); 1131 hotplug_slots.resize_with(HOTPLUG_COUNT, HotPlugState::default); 1132 1133 ( 1134 start_of_device_area, 1135 ram_size, 1136 ram_size, 1137 arch_mem_regions, 1138 memory_zones, 1139 guest_memory, 1140 boot_guest_memory, 1141 hotplug_slots, 1142 0, 1143 0, 1144 0, 1145 ) 1146 }; 1147 1148 let guest_memory = GuestMemoryAtomic::new(guest_memory); 1149 1150 // Both MMIO and PIO address spaces start at address 0. 1151 let allocator = Arc::new(Mutex::new( 1152 SystemAllocator::new( 1153 #[cfg(target_arch = "x86_64")] 1154 { 1155 GuestAddress(0) 1156 }, 1157 #[cfg(target_arch = "x86_64")] 1158 { 1159 1 << 16 1160 }, 1161 start_of_platform_device_area, 1162 PLATFORM_DEVICE_AREA_SIZE, 1163 #[cfg(target_arch = "x86_64")] 1164 vec![GsiApic::new( 1165 X86_64_IRQ_BASE, 1166 ioapic::NUM_IOAPIC_PINS as u32 - X86_64_IRQ_BASE, 1167 )], 1168 ) 1169 .ok_or(Error::CreateSystemAllocator)?, 1170 )); 1171 1172 #[cfg(not(feature = "tdx"))] 1173 let dynamic = true; 1174 #[cfg(feature = "tdx")] 1175 let dynamic = !tdx_enabled; 1176 1177 let acpi_address = if dynamic 1178 && config.hotplug_method == HotplugMethod::Acpi 1179 && (config.hotplug_size.unwrap_or_default() > 0) 1180 { 1181 Some( 1182 allocator 1183 .lock() 1184 .unwrap() 1185 .allocate_platform_mmio_addresses(None, MEMORY_MANAGER_ACPI_SIZE as u64, None) 1186 .ok_or(Error::AllocateMmioAddress)?, 1187 ) 1188 } else { 1189 None 1190 }; 1191 1192 // If running on SGX the start of device area and RAM area may diverge but 1193 // at this point they are next to each other. 1194 let end_of_ram_area = start_of_device_area.unchecked_sub(1); 1195 let ram_allocator = AddressAllocator::new(GuestAddress(0), start_of_device_area.0).unwrap(); 1196 1197 let mut memory_manager = MemoryManager { 1198 boot_guest_memory, 1199 guest_memory, 1200 next_memory_slot, 1201 start_of_device_area, 1202 end_of_device_area, 1203 end_of_ram_area, 1204 vm, 1205 hotplug_slots, 1206 selected_slot, 1207 mergeable: config.mergeable, 1208 allocator, 1209 hotplug_method: config.hotplug_method, 1210 boot_ram, 1211 current_ram, 1212 next_hotplug_slot, 1213 shared: config.shared, 1214 hugepages: config.hugepages, 1215 hugepage_size: config.hugepage_size, 1216 prefault: config.prefault, 1217 #[cfg(target_arch = "x86_64")] 1218 sgx_epc_region: None, 1219 user_provided_zones, 1220 snapshot_memory_ranges: MemoryRangeTable::default(), 1221 memory_zones, 1222 guest_ram_mappings: Vec::new(), 1223 acpi_address, 1224 log_dirty: dynamic, // Cannot log dirty pages on a TD 1225 arch_mem_regions, 1226 ram_allocator, 1227 dynamic, 1228 #[cfg(target_arch = "aarch64")] 1229 uefi_flash: None, 1230 thp: config.thp, 1231 }; 1232 1233 #[cfg(target_arch = "aarch64")] 1234 { 1235 // For Aarch64 we cannot lazily allocate the address space like we 1236 // do for x86, because while restoring a VM from snapshot we would 1237 // need the address space to be allocated to properly restore VGIC. 1238 // And the restore of VGIC happens before we attempt to run the vCPUs 1239 // for the first time, thus we need to allocate the address space 1240 // beforehand. 1241 memory_manager.allocate_address_space()?; 1242 memory_manager.add_uefi_flash()?; 1243 } 1244 1245 #[cfg(target_arch = "x86_64")] 1246 if let Some(sgx_epc_config) = sgx_epc_config { 1247 memory_manager.setup_sgx(sgx_epc_config)?; 1248 } 1249 1250 Ok(Arc::new(Mutex::new(memory_manager))) 1251 } 1252 1253 pub fn new_from_snapshot( 1254 snapshot: &Snapshot, 1255 vm: Arc<dyn hypervisor::Vm>, 1256 config: &MemoryConfig, 1257 source_url: Option<&str>, 1258 prefault: bool, 1259 phys_bits: u8, 1260 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 1261 if let Some(source_url) = source_url { 1262 let mut memory_file_path = url_to_path(source_url).map_err(Error::Restore)?; 1263 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 1264 1265 let mem_snapshot: MemoryManagerSnapshotData = 1266 snapshot.to_versioned_state().map_err(Error::Restore)?; 1267 1268 let mm = MemoryManager::new( 1269 vm, 1270 config, 1271 Some(prefault), 1272 phys_bits, 1273 #[cfg(feature = "tdx")] 1274 false, 1275 Some(&mem_snapshot), 1276 None, 1277 #[cfg(target_arch = "x86_64")] 1278 None, 1279 )?; 1280 1281 mm.lock() 1282 .unwrap() 1283 .fill_saved_regions(memory_file_path, mem_snapshot.memory_ranges)?; 1284 1285 Ok(mm) 1286 } else { 1287 Err(Error::RestoreMissingSourceUrl) 1288 } 1289 } 1290 1291 fn memfd_create(name: &ffi::CStr, flags: u32) -> Result<RawFd, io::Error> { 1292 // SAFETY: FFI call with correct arguments 1293 let res = unsafe { libc::syscall(libc::SYS_memfd_create, name.as_ptr(), flags) }; 1294 1295 if res < 0 { 1296 Err(io::Error::last_os_error()) 1297 } else { 1298 Ok(res as RawFd) 1299 } 1300 } 1301 1302 fn mbind( 1303 addr: *mut u8, 1304 len: u64, 1305 mode: u32, 1306 nodemask: Vec<u64>, 1307 maxnode: u64, 1308 flags: u32, 1309 ) -> Result<(), io::Error> { 1310 // SAFETY: FFI call with correct arguments 1311 let res = unsafe { 1312 libc::syscall( 1313 libc::SYS_mbind, 1314 addr as *mut libc::c_void, 1315 len, 1316 mode, 1317 nodemask.as_ptr(), 1318 maxnode, 1319 flags, 1320 ) 1321 }; 1322 1323 if res < 0 { 1324 Err(io::Error::last_os_error()) 1325 } else { 1326 Ok(()) 1327 } 1328 } 1329 1330 fn create_anonymous_file( 1331 size: usize, 1332 hugepages: bool, 1333 hugepage_size: Option<u64>, 1334 ) -> Result<FileOffset, Error> { 1335 let fd = Self::memfd_create( 1336 &ffi::CString::new("ch_ram").unwrap(), 1337 libc::MFD_CLOEXEC 1338 | if hugepages { 1339 libc::MFD_HUGETLB 1340 | if let Some(hugepage_size) = hugepage_size { 1341 /* 1342 * From the Linux kernel: 1343 * Several system calls take a flag to request "hugetlb" huge pages. 1344 * Without further specification, these system calls will use the 1345 * system's default huge page size. If a system supports multiple 1346 * huge page sizes, the desired huge page size can be specified in 1347 * bits [26:31] of the flag arguments. The value in these 6 bits 1348 * will encode the log2 of the huge page size. 1349 */ 1350 1351 hugepage_size.trailing_zeros() << 26 1352 } else { 1353 // Use the system default huge page size 1354 0 1355 } 1356 } else { 1357 0 1358 }, 1359 ) 1360 .map_err(Error::SharedFileCreate)?; 1361 1362 // SAFETY: fd is valid 1363 let f = unsafe { File::from_raw_fd(fd) }; 1364 f.set_len(size as u64).map_err(Error::SharedFileSetLen)?; 1365 1366 Ok(FileOffset::new(f, 0)) 1367 } 1368 1369 fn open_backing_file(backing_file: &PathBuf, file_offset: u64) -> Result<FileOffset, Error> { 1370 if backing_file.is_dir() { 1371 Err(Error::DirectoryAsBackingFileForMemory) 1372 } else { 1373 let f = OpenOptions::new() 1374 .read(true) 1375 .write(true) 1376 .open(backing_file) 1377 .map_err(Error::SharedFileCreate)?; 1378 1379 Ok(FileOffset::new(f, file_offset)) 1380 } 1381 } 1382 1383 #[allow(clippy::too_many_arguments)] 1384 pub fn create_ram_region( 1385 backing_file: &Option<PathBuf>, 1386 file_offset: u64, 1387 start_addr: GuestAddress, 1388 size: usize, 1389 prefault: bool, 1390 shared: bool, 1391 hugepages: bool, 1392 hugepage_size: Option<u64>, 1393 host_numa_node: Option<u32>, 1394 existing_memory_file: Option<File>, 1395 thp: bool, 1396 ) -> Result<Arc<GuestRegionMmap>, Error> { 1397 let mut mmap_flags = libc::MAP_NORESERVE; 1398 1399 // The duplication of mmap_flags ORing here is unfortunate but it also makes 1400 // the complexity of the handling clear. 1401 let fo = if let Some(f) = existing_memory_file { 1402 // It must be MAP_SHARED as we wouldn't already have an FD 1403 mmap_flags |= libc::MAP_SHARED; 1404 Some(FileOffset::new(f, file_offset)) 1405 } else if let Some(backing_file) = backing_file { 1406 if shared { 1407 mmap_flags |= libc::MAP_SHARED; 1408 } else { 1409 mmap_flags |= libc::MAP_PRIVATE; 1410 } 1411 Some(Self::open_backing_file(backing_file, file_offset)?) 1412 } else if shared || hugepages { 1413 // For hugepages we must also MAP_SHARED otherwise we will trigger #4805 1414 // because the MAP_PRIVATE will trigger CoW against the backing file with 1415 // the VFIO pinning 1416 mmap_flags |= libc::MAP_SHARED; 1417 Some(Self::create_anonymous_file(size, hugepages, hugepage_size)?) 1418 } else { 1419 mmap_flags |= libc::MAP_PRIVATE | libc::MAP_ANONYMOUS; 1420 None 1421 }; 1422 1423 if prefault { 1424 mmap_flags |= libc::MAP_POPULATE; 1425 } 1426 1427 let region = GuestRegionMmap::new( 1428 MmapRegion::build(fo, size, libc::PROT_READ | libc::PROT_WRITE, mmap_flags) 1429 .map_err(Error::GuestMemoryRegion)?, 1430 start_addr, 1431 ) 1432 .map_err(Error::GuestMemory)?; 1433 1434 if region.file_offset().is_none() && thp { 1435 info!( 1436 "Anonymous mapping at 0x{:x} (size = 0x{:x})", 1437 region.as_ptr() as u64, 1438 size 1439 ); 1440 // SAFETY: FFI call with correct arguments 1441 let ret = unsafe { libc::madvise(region.as_ptr() as _, size, libc::MADV_HUGEPAGE) }; 1442 if ret != 0 { 1443 let e = io::Error::last_os_error(); 1444 warn!("Failed to mark pages as THP eligible: {}", e); 1445 } 1446 } 1447 1448 // Apply NUMA policy if needed. 1449 if let Some(node) = host_numa_node { 1450 let addr = region.deref().as_ptr(); 1451 let len = region.deref().size() as u64; 1452 let mode = MPOL_BIND; 1453 let mut nodemask: Vec<u64> = Vec::new(); 1454 let flags = MPOL_MF_STRICT | MPOL_MF_MOVE; 1455 1456 // Linux is kind of buggy in the way it interprets maxnode as it 1457 // will cut off the last node. That's why we have to add 1 to what 1458 // we would consider as the proper maxnode value. 1459 let maxnode = node as u64 + 1 + 1; 1460 1461 // Allocate the right size for the vector. 1462 nodemask.resize((node as usize / 64) + 1, 0); 1463 1464 // Fill the global bitmask through the nodemask vector. 1465 let idx = (node / 64) as usize; 1466 let shift = node % 64; 1467 nodemask[idx] |= 1u64 << shift; 1468 1469 // Policies are enforced by using MPOL_MF_MOVE flag as it will 1470 // force the kernel to move all pages that might have been already 1471 // allocated to the proper set of NUMA nodes. MPOL_MF_STRICT is 1472 // used to throw an error if MPOL_MF_MOVE didn't succeed. 1473 // MPOL_BIND is the selected mode as it specifies a strict policy 1474 // that restricts memory allocation to the nodes specified in the 1475 // nodemask. 1476 Self::mbind(addr, len, mode, nodemask, maxnode, flags) 1477 .map_err(Error::ApplyNumaPolicy)?; 1478 } 1479 1480 Ok(Arc::new(region)) 1481 } 1482 1483 // Update the GuestMemoryMmap with the new range 1484 fn add_region(&mut self, region: Arc<GuestRegionMmap>) -> Result<(), Error> { 1485 let guest_memory = self 1486 .guest_memory 1487 .memory() 1488 .insert_region(region) 1489 .map_err(Error::GuestMemory)?; 1490 self.guest_memory.lock().unwrap().replace(guest_memory); 1491 1492 Ok(()) 1493 } 1494 1495 // 1496 // Calculate the start address of an area next to RAM. 1497 // 1498 // If memory hotplug is allowed, the start address needs to be aligned 1499 // (rounded-up) to 128MiB boundary. 1500 // If memory hotplug is not allowed, there is no alignment required. 1501 // And it must also start at the 64bit start. 1502 fn start_addr(mem_end: GuestAddress, allow_mem_hotplug: bool) -> Result<GuestAddress, Error> { 1503 let mut start_addr = if allow_mem_hotplug { 1504 GuestAddress(mem_end.0 | ((128 << 20) - 1)) 1505 } else { 1506 mem_end 1507 }; 1508 1509 start_addr = start_addr 1510 .checked_add(1) 1511 .ok_or(Error::GuestAddressOverFlow)?; 1512 1513 if mem_end < arch::layout::MEM_32BIT_RESERVED_START { 1514 return Ok(arch::layout::RAM_64BIT_START); 1515 } 1516 1517 Ok(start_addr) 1518 } 1519 1520 pub fn add_ram_region( 1521 &mut self, 1522 start_addr: GuestAddress, 1523 size: usize, 1524 ) -> Result<Arc<GuestRegionMmap>, Error> { 1525 // Allocate memory for the region 1526 let region = MemoryManager::create_ram_region( 1527 &None, 1528 0, 1529 start_addr, 1530 size, 1531 self.prefault, 1532 self.shared, 1533 self.hugepages, 1534 self.hugepage_size, 1535 None, 1536 None, 1537 self.thp, 1538 )?; 1539 1540 // Map it into the guest 1541 let slot = self.create_userspace_mapping( 1542 region.start_addr().0, 1543 region.len(), 1544 region.as_ptr() as u64, 1545 self.mergeable, 1546 false, 1547 self.log_dirty, 1548 )?; 1549 self.guest_ram_mappings.push(GuestRamMapping { 1550 gpa: region.start_addr().raw_value(), 1551 size: region.len(), 1552 slot, 1553 zone_id: DEFAULT_MEMORY_ZONE.to_string(), 1554 virtio_mem: false, 1555 file_offset: 0, 1556 }); 1557 1558 self.add_region(Arc::clone(®ion))?; 1559 1560 Ok(region) 1561 } 1562 1563 fn hotplug_ram_region(&mut self, size: usize) -> Result<Arc<GuestRegionMmap>, Error> { 1564 info!("Hotplugging new RAM: {}", size); 1565 1566 // Check that there is a free slot 1567 if self.next_hotplug_slot >= HOTPLUG_COUNT { 1568 return Err(Error::NoSlotAvailable); 1569 } 1570 1571 // "Inserted" DIMM must have a size that is a multiple of 128MiB 1572 if size % (128 << 20) != 0 { 1573 return Err(Error::InvalidSize); 1574 } 1575 1576 let start_addr = MemoryManager::start_addr(self.guest_memory.memory().last_addr(), true)?; 1577 1578 if start_addr.checked_add(size.try_into().unwrap()).unwrap() >= self.end_of_ram_area { 1579 return Err(Error::InsufficientHotplugRam); 1580 } 1581 1582 let region = self.add_ram_region(start_addr, size)?; 1583 1584 // Add region to the list of regions associated with the default 1585 // memory zone. 1586 if let Some(memory_zone) = self.memory_zones.get_mut(DEFAULT_MEMORY_ZONE) { 1587 memory_zone.regions.push(Arc::clone(®ion)); 1588 } 1589 1590 // Tell the allocator 1591 self.ram_allocator 1592 .allocate(Some(start_addr), size as GuestUsize, None) 1593 .ok_or(Error::MemoryRangeAllocation)?; 1594 1595 // Update the slot so that it can be queried via the I/O port 1596 let slot = &mut self.hotplug_slots[self.next_hotplug_slot]; 1597 slot.active = true; 1598 slot.inserting = true; 1599 slot.base = region.start_addr().0; 1600 slot.length = region.len(); 1601 1602 self.next_hotplug_slot += 1; 1603 1604 Ok(region) 1605 } 1606 1607 pub fn guest_memory(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 1608 self.guest_memory.clone() 1609 } 1610 1611 pub fn boot_guest_memory(&self) -> GuestMemoryMmap { 1612 self.boot_guest_memory.clone() 1613 } 1614 1615 pub fn allocator(&self) -> Arc<Mutex<SystemAllocator>> { 1616 self.allocator.clone() 1617 } 1618 1619 pub fn start_of_device_area(&self) -> GuestAddress { 1620 self.start_of_device_area 1621 } 1622 1623 pub fn end_of_device_area(&self) -> GuestAddress { 1624 self.end_of_device_area 1625 } 1626 1627 pub fn allocate_memory_slot(&mut self) -> u32 { 1628 let slot_id = self.next_memory_slot; 1629 self.next_memory_slot += 1; 1630 slot_id 1631 } 1632 1633 pub fn create_userspace_mapping( 1634 &mut self, 1635 guest_phys_addr: u64, 1636 memory_size: u64, 1637 userspace_addr: u64, 1638 mergeable: bool, 1639 readonly: bool, 1640 log_dirty: bool, 1641 ) -> Result<u32, Error> { 1642 let slot = self.allocate_memory_slot(); 1643 let mem_region = self.vm.make_user_memory_region( 1644 slot, 1645 guest_phys_addr, 1646 memory_size, 1647 userspace_addr, 1648 readonly, 1649 log_dirty, 1650 ); 1651 1652 info!( 1653 "Creating userspace mapping: {:x} -> {:x} {:x}, slot {}", 1654 guest_phys_addr, userspace_addr, memory_size, slot 1655 ); 1656 1657 self.vm 1658 .create_user_memory_region(mem_region) 1659 .map_err(Error::CreateUserMemoryRegion)?; 1660 1661 // SAFETY: the address and size are valid since the 1662 // mmap succeeded. 1663 let ret = unsafe { 1664 libc::madvise( 1665 userspace_addr as *mut libc::c_void, 1666 memory_size as libc::size_t, 1667 libc::MADV_DONTDUMP, 1668 ) 1669 }; 1670 if ret != 0 { 1671 let e = io::Error::last_os_error(); 1672 warn!("Failed to mark mappin as MADV_DONTDUMP: {}", e); 1673 } 1674 1675 // Mark the pages as mergeable if explicitly asked for. 1676 if mergeable { 1677 // SAFETY: the address and size are valid since the 1678 // mmap succeeded. 1679 let ret = unsafe { 1680 libc::madvise( 1681 userspace_addr as *mut libc::c_void, 1682 memory_size as libc::size_t, 1683 libc::MADV_MERGEABLE, 1684 ) 1685 }; 1686 if ret != 0 { 1687 let err = io::Error::last_os_error(); 1688 // Safe to unwrap because the error is constructed with 1689 // last_os_error(), which ensures the output will be Some(). 1690 let errno = err.raw_os_error().unwrap(); 1691 if errno == libc::EINVAL { 1692 warn!("kernel not configured with CONFIG_KSM"); 1693 } else { 1694 warn!("madvise error: {}", err); 1695 } 1696 warn!("failed to mark pages as mergeable"); 1697 } 1698 } 1699 1700 info!( 1701 "Created userspace mapping: {:x} -> {:x} {:x}", 1702 guest_phys_addr, userspace_addr, memory_size 1703 ); 1704 1705 Ok(slot) 1706 } 1707 1708 pub fn remove_userspace_mapping( 1709 &mut self, 1710 guest_phys_addr: u64, 1711 memory_size: u64, 1712 userspace_addr: u64, 1713 mergeable: bool, 1714 slot: u32, 1715 ) -> Result<(), Error> { 1716 let mem_region = self.vm.make_user_memory_region( 1717 slot, 1718 guest_phys_addr, 1719 memory_size, 1720 userspace_addr, 1721 false, /* readonly -- don't care */ 1722 false, /* log dirty */ 1723 ); 1724 1725 self.vm 1726 .remove_user_memory_region(mem_region) 1727 .map_err(Error::RemoveUserMemoryRegion)?; 1728 1729 // Mark the pages as unmergeable if there were previously marked as 1730 // mergeable. 1731 if mergeable { 1732 // SAFETY: the address and size are valid as the region was 1733 // previously advised. 1734 let ret = unsafe { 1735 libc::madvise( 1736 userspace_addr as *mut libc::c_void, 1737 memory_size as libc::size_t, 1738 libc::MADV_UNMERGEABLE, 1739 ) 1740 }; 1741 if ret != 0 { 1742 let err = io::Error::last_os_error(); 1743 // Safe to unwrap because the error is constructed with 1744 // last_os_error(), which ensures the output will be Some(). 1745 let errno = err.raw_os_error().unwrap(); 1746 if errno == libc::EINVAL { 1747 warn!("kernel not configured with CONFIG_KSM"); 1748 } else { 1749 warn!("madvise error: {}", err); 1750 } 1751 warn!("failed to mark pages as unmergeable"); 1752 } 1753 } 1754 1755 info!( 1756 "Removed userspace mapping: {:x} -> {:x} {:x}", 1757 guest_phys_addr, userspace_addr, memory_size 1758 ); 1759 1760 Ok(()) 1761 } 1762 1763 pub fn virtio_mem_resize(&mut self, id: &str, size: u64) -> Result<(), Error> { 1764 if let Some(memory_zone) = self.memory_zones.get_mut(id) { 1765 if let Some(virtio_mem_zone) = &mut memory_zone.virtio_mem_zone { 1766 if let Some(virtio_mem_device) = virtio_mem_zone.virtio_device.as_ref() { 1767 virtio_mem_device 1768 .lock() 1769 .unwrap() 1770 .resize(size) 1771 .map_err(Error::VirtioMemResizeFail)?; 1772 } 1773 1774 // Keep the hotplugged_size up to date. 1775 virtio_mem_zone.hotplugged_size = size; 1776 } else { 1777 error!("Failed resizing virtio-mem region: No virtio-mem handler"); 1778 return Err(Error::MissingVirtioMemHandler); 1779 } 1780 1781 return Ok(()); 1782 } 1783 1784 error!("Failed resizing virtio-mem region: Unknown memory zone"); 1785 Err(Error::UnknownMemoryZone) 1786 } 1787 1788 /// In case this function resulted in adding a new memory region to the 1789 /// guest memory, the new region is returned to the caller. The virtio-mem 1790 /// use case never adds a new region as the whole hotpluggable memory has 1791 /// already been allocated at boot time. 1792 pub fn resize(&mut self, desired_ram: u64) -> Result<Option<Arc<GuestRegionMmap>>, Error> { 1793 if self.user_provided_zones { 1794 error!( 1795 "Not allowed to resize guest memory when backed with user \ 1796 defined memory zones." 1797 ); 1798 return Err(Error::InvalidResizeWithMemoryZones); 1799 } 1800 1801 let mut region: Option<Arc<GuestRegionMmap>> = None; 1802 match self.hotplug_method { 1803 HotplugMethod::VirtioMem => { 1804 if desired_ram >= self.boot_ram { 1805 if !self.dynamic { 1806 return Ok(region); 1807 } 1808 1809 self.virtio_mem_resize(DEFAULT_MEMORY_ZONE, desired_ram - self.boot_ram)?; 1810 self.current_ram = desired_ram; 1811 } 1812 } 1813 HotplugMethod::Acpi => { 1814 if desired_ram > self.current_ram { 1815 if !self.dynamic { 1816 return Ok(region); 1817 } 1818 1819 region = 1820 Some(self.hotplug_ram_region((desired_ram - self.current_ram) as usize)?); 1821 self.current_ram = desired_ram; 1822 } 1823 } 1824 } 1825 Ok(region) 1826 } 1827 1828 pub fn resize_zone(&mut self, id: &str, virtio_mem_size: u64) -> Result<(), Error> { 1829 if !self.user_provided_zones { 1830 error!( 1831 "Not allowed to resize guest memory zone when no zone is \ 1832 defined." 1833 ); 1834 return Err(Error::ResizeZone); 1835 } 1836 1837 self.virtio_mem_resize(id, virtio_mem_size) 1838 } 1839 1840 #[cfg(target_arch = "x86_64")] 1841 pub fn setup_sgx(&mut self, sgx_epc_config: Vec<SgxEpcConfig>) -> Result<(), Error> { 1842 let file = OpenOptions::new() 1843 .read(true) 1844 .open("/dev/sgx_provision") 1845 .map_err(Error::SgxProvisionOpen)?; 1846 self.vm 1847 .enable_sgx_attribute(file) 1848 .map_err(Error::SgxEnableProvisioning)?; 1849 1850 // Go over each EPC section and verify its size is a 4k multiple. At 1851 // the same time, calculate the total size needed for the contiguous 1852 // EPC region. 1853 let mut epc_region_size = 0; 1854 for epc_section in sgx_epc_config.iter() { 1855 if epc_section.size == 0 { 1856 return Err(Error::EpcSectionSizeInvalid); 1857 } 1858 if epc_section.size & (SGX_PAGE_SIZE - 1) != 0 { 1859 return Err(Error::EpcSectionSizeInvalid); 1860 } 1861 1862 epc_region_size += epc_section.size; 1863 } 1864 1865 // Place the SGX EPC region on a 4k boundary between the RAM and the device area 1866 let epc_region_start = GuestAddress( 1867 ((self.start_of_device_area.0 + SGX_PAGE_SIZE - 1) / SGX_PAGE_SIZE) * SGX_PAGE_SIZE, 1868 ); 1869 1870 self.start_of_device_area = epc_region_start 1871 .checked_add(epc_region_size) 1872 .ok_or(Error::GuestAddressOverFlow)?; 1873 1874 let mut sgx_epc_region = SgxEpcRegion::new(epc_region_start, epc_region_size as GuestUsize); 1875 info!( 1876 "SGX EPC region: 0x{:x} (0x{:x})", 1877 epc_region_start.0, epc_region_size 1878 ); 1879 1880 // Each section can be memory mapped into the allocated region. 1881 let mut epc_section_start = epc_region_start.raw_value(); 1882 for epc_section in sgx_epc_config.iter() { 1883 let file = OpenOptions::new() 1884 .read(true) 1885 .write(true) 1886 .open("/dev/sgx_vepc") 1887 .map_err(Error::SgxVirtEpcOpen)?; 1888 1889 let prot = PROT_READ | PROT_WRITE; 1890 let mut flags = MAP_NORESERVE | MAP_SHARED; 1891 if epc_section.prefault { 1892 flags |= MAP_POPULATE; 1893 } 1894 1895 // We can't use the vm-memory crate to perform the memory mapping 1896 // here as it would try to ensure the size of the backing file is 1897 // matching the size of the expected mapping. The /dev/sgx_vepc 1898 // device does not work that way, it provides a file descriptor 1899 // which is not matching the mapping size, as it's a just a way to 1900 // let KVM know that an EPC section is being created for the guest. 1901 // SAFETY: FFI call with correct arguments 1902 let host_addr = unsafe { 1903 libc::mmap( 1904 std::ptr::null_mut(), 1905 epc_section.size as usize, 1906 prot, 1907 flags, 1908 file.as_raw_fd(), 1909 0, 1910 ) 1911 } as u64; 1912 1913 info!( 1914 "Adding SGX EPC section: 0x{:x} (0x{:x})", 1915 epc_section_start, epc_section.size 1916 ); 1917 1918 let _mem_slot = self.create_userspace_mapping( 1919 epc_section_start, 1920 epc_section.size, 1921 host_addr, 1922 false, 1923 false, 1924 false, 1925 )?; 1926 1927 sgx_epc_region.insert( 1928 epc_section.id.clone(), 1929 SgxEpcSection::new( 1930 GuestAddress(epc_section_start), 1931 epc_section.size as GuestUsize, 1932 ), 1933 ); 1934 1935 epc_section_start += epc_section.size; 1936 } 1937 1938 self.sgx_epc_region = Some(sgx_epc_region); 1939 1940 Ok(()) 1941 } 1942 1943 #[cfg(target_arch = "x86_64")] 1944 pub fn sgx_epc_region(&self) -> &Option<SgxEpcRegion> { 1945 &self.sgx_epc_region 1946 } 1947 1948 pub fn is_hardlink(f: &File) -> bool { 1949 let mut stat = std::mem::MaybeUninit::<libc::stat>::uninit(); 1950 // SAFETY: FFI call with correct arguments 1951 let ret = unsafe { libc::fstat(f.as_raw_fd(), stat.as_mut_ptr()) }; 1952 if ret != 0 { 1953 error!("Couldn't fstat the backing file"); 1954 return false; 1955 } 1956 1957 // SAFETY: stat is valid 1958 unsafe { (*stat.as_ptr()).st_nlink as usize > 0 } 1959 } 1960 1961 pub fn memory_zones(&self) -> &MemoryZones { 1962 &self.memory_zones 1963 } 1964 1965 pub fn memory_zones_mut(&mut self) -> &mut MemoryZones { 1966 &mut self.memory_zones 1967 } 1968 1969 pub fn memory_range_table( 1970 &self, 1971 snapshot: bool, 1972 ) -> std::result::Result<MemoryRangeTable, MigratableError> { 1973 let mut table = MemoryRangeTable::default(); 1974 1975 for memory_zone in self.memory_zones.values() { 1976 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 1977 table.extend(virtio_mem_zone.plugged_ranges()); 1978 } 1979 1980 for region in memory_zone.regions() { 1981 if snapshot { 1982 if let Some(file_offset) = region.file_offset() { 1983 if (region.flags() & libc::MAP_SHARED == libc::MAP_SHARED) 1984 && Self::is_hardlink(file_offset.file()) 1985 { 1986 // In this very specific case, we know the memory 1987 // region is backed by a file on the host filesystem 1988 // that can be accessed by the user, and additionally 1989 // the mapping is shared, which means that modifications 1990 // to the content are written to the actual file. 1991 // When meeting these conditions, we can skip the 1992 // copy of the memory content for this specific region, 1993 // as we can assume the user will have it saved through 1994 // the backing file already. 1995 continue; 1996 } 1997 } 1998 } 1999 2000 table.push(MemoryRange { 2001 gpa: region.start_addr().raw_value(), 2002 length: region.len(), 2003 }); 2004 } 2005 } 2006 2007 Ok(table) 2008 } 2009 2010 pub fn snapshot_data(&self) -> MemoryManagerSnapshotData { 2011 MemoryManagerSnapshotData { 2012 memory_ranges: self.snapshot_memory_ranges.clone(), 2013 guest_ram_mappings: self.guest_ram_mappings.clone(), 2014 start_of_device_area: self.start_of_device_area.0, 2015 boot_ram: self.boot_ram, 2016 current_ram: self.current_ram, 2017 arch_mem_regions: self.arch_mem_regions.clone(), 2018 hotplug_slots: self.hotplug_slots.clone(), 2019 next_memory_slot: self.next_memory_slot, 2020 selected_slot: self.selected_slot, 2021 next_hotplug_slot: self.next_hotplug_slot, 2022 } 2023 } 2024 2025 pub fn memory_slot_fds(&self) -> HashMap<u32, RawFd> { 2026 let mut memory_slot_fds = HashMap::new(); 2027 for guest_ram_mapping in &self.guest_ram_mappings { 2028 let slot = guest_ram_mapping.slot; 2029 let guest_memory = self.guest_memory.memory(); 2030 let file = guest_memory 2031 .find_region(GuestAddress(guest_ram_mapping.gpa)) 2032 .unwrap() 2033 .file_offset() 2034 .unwrap() 2035 .file(); 2036 memory_slot_fds.insert(slot, file.as_raw_fd()); 2037 } 2038 memory_slot_fds 2039 } 2040 2041 pub fn acpi_address(&self) -> Option<GuestAddress> { 2042 self.acpi_address 2043 } 2044 2045 pub fn num_guest_ram_mappings(&self) -> u32 { 2046 self.guest_ram_mappings.len() as u32 2047 } 2048 2049 #[cfg(target_arch = "aarch64")] 2050 pub fn uefi_flash(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 2051 self.uefi_flash.as_ref().unwrap().clone() 2052 } 2053 2054 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2055 pub fn coredump_memory_regions(&self, mem_offset: u64) -> CoredumpMemoryRegions { 2056 let mut mapping_sorted_by_gpa = self.guest_ram_mappings.clone(); 2057 mapping_sorted_by_gpa.sort_by_key(|m| m.gpa); 2058 2059 let mut mem_offset_in_elf = mem_offset; 2060 let mut ram_maps = BTreeMap::new(); 2061 for mapping in mapping_sorted_by_gpa.iter() { 2062 ram_maps.insert( 2063 mapping.gpa, 2064 CoredumpMemoryRegion { 2065 mem_offset_in_elf, 2066 mem_size: mapping.size, 2067 }, 2068 ); 2069 mem_offset_in_elf += mapping.size; 2070 } 2071 2072 CoredumpMemoryRegions { ram_maps } 2073 } 2074 2075 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2076 pub fn coredump_iterate_save_mem( 2077 &mut self, 2078 dump_state: &DumpState, 2079 ) -> std::result::Result<(), GuestDebuggableError> { 2080 let snapshot_memory_ranges = self 2081 .memory_range_table(false) 2082 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2083 2084 if snapshot_memory_ranges.is_empty() { 2085 return Ok(()); 2086 } 2087 2088 let coredump_file = dump_state.file.as_ref().unwrap(); 2089 2090 let guest_memory = self.guest_memory.memory(); 2091 let mut total_bytes: u64 = 0; 2092 2093 for range in snapshot_memory_ranges.regions() { 2094 let mut offset: u64 = 0; 2095 loop { 2096 let bytes_written = guest_memory 2097 .write_volatile_to( 2098 GuestAddress(range.gpa + offset), 2099 &mut coredump_file.as_fd(), 2100 (range.length - offset) as usize, 2101 ) 2102 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2103 offset += bytes_written as u64; 2104 total_bytes += bytes_written as u64; 2105 2106 if offset == range.length { 2107 break; 2108 } 2109 } 2110 } 2111 2112 debug!("coredump total bytes {}", total_bytes); 2113 Ok(()) 2114 } 2115 2116 pub fn receive_memory_regions<F>( 2117 &mut self, 2118 ranges: &MemoryRangeTable, 2119 fd: &mut F, 2120 ) -> std::result::Result<(), MigratableError> 2121 where 2122 F: ReadVolatile, 2123 { 2124 let guest_memory = self.guest_memory(); 2125 let mem = guest_memory.memory(); 2126 2127 for range in ranges.regions() { 2128 let mut offset: u64 = 0; 2129 // Here we are manually handling the retry in case we can't the 2130 // whole region at once because we can't use the implementation 2131 // from vm-memory::GuestMemory of read_exact_from() as it is not 2132 // following the correct behavior. For more info about this issue 2133 // see: https://github.com/rust-vmm/vm-memory/issues/174 2134 loop { 2135 let bytes_read = mem 2136 .read_volatile_from( 2137 GuestAddress(range.gpa + offset), 2138 fd, 2139 (range.length - offset) as usize, 2140 ) 2141 .map_err(|e| { 2142 MigratableError::MigrateReceive(anyhow!( 2143 "Error receiving memory from socket: {}", 2144 e 2145 )) 2146 })?; 2147 offset += bytes_read as u64; 2148 2149 if offset == range.length { 2150 break; 2151 } 2152 } 2153 } 2154 2155 Ok(()) 2156 } 2157 } 2158 2159 struct MemoryNotify { 2160 slot_id: usize, 2161 } 2162 2163 impl Aml for MemoryNotify { 2164 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2165 let object = aml::Path::new(&format!("M{:03}", self.slot_id)); 2166 aml::If::new( 2167 &aml::Equal::new(&aml::Arg(0), &self.slot_id), 2168 vec![&aml::Notify::new(&object, &aml::Arg(1))], 2169 ) 2170 .to_aml_bytes(sink) 2171 } 2172 } 2173 2174 struct MemorySlot { 2175 slot_id: usize, 2176 } 2177 2178 impl Aml for MemorySlot { 2179 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2180 aml::Device::new( 2181 format!("M{:03}", self.slot_id).as_str().into(), 2182 vec![ 2183 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C80")), 2184 &aml::Name::new("_UID".into(), &self.slot_id), 2185 /* 2186 _STA return value: 2187 Bit [0] – Set if the device is present. 2188 Bit [1] – Set if the device is enabled and decoding its resources. 2189 Bit [2] – Set if the device should be shown in the UI. 2190 Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics). 2191 Bit [4] – Set if the battery is present. 2192 Bits [31:5] – Reserved (must be cleared). 2193 */ 2194 &aml::Method::new( 2195 "_STA".into(), 2196 0, 2197 false, 2198 // Call into MSTA method which will interrogate device 2199 vec![&aml::Return::new(&aml::MethodCall::new( 2200 "MSTA".into(), 2201 vec![&self.slot_id], 2202 ))], 2203 ), 2204 // Get details of memory 2205 &aml::Method::new( 2206 "_CRS".into(), 2207 0, 2208 false, 2209 // Call into MCRS which provides actual memory details 2210 vec![&aml::Return::new(&aml::MethodCall::new( 2211 "MCRS".into(), 2212 vec![&self.slot_id], 2213 ))], 2214 ), 2215 ], 2216 ) 2217 .to_aml_bytes(sink) 2218 } 2219 } 2220 2221 struct MemorySlots { 2222 slots: usize, 2223 } 2224 2225 impl Aml for MemorySlots { 2226 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2227 for slot_id in 0..self.slots { 2228 MemorySlot { slot_id }.to_aml_bytes(sink); 2229 } 2230 } 2231 } 2232 2233 struct MemoryMethods { 2234 slots: usize, 2235 } 2236 2237 impl Aml for MemoryMethods { 2238 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2239 // Add "MTFY" notification method 2240 let mut memory_notifies = Vec::new(); 2241 for slot_id in 0..self.slots { 2242 memory_notifies.push(MemoryNotify { slot_id }); 2243 } 2244 2245 let mut memory_notifies_refs: Vec<&dyn Aml> = Vec::new(); 2246 for memory_notifier in memory_notifies.iter() { 2247 memory_notifies_refs.push(memory_notifier); 2248 } 2249 2250 aml::Method::new("MTFY".into(), 2, true, memory_notifies_refs).to_aml_bytes(sink); 2251 2252 // MSCN method 2253 aml::Method::new( 2254 "MSCN".into(), 2255 0, 2256 true, 2257 vec![ 2258 // Take lock defined above 2259 &aml::Acquire::new("MLCK".into(), 0xffff), 2260 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2261 &aml::While::new( 2262 &aml::LessThan::new(&aml::Local(0), &self.slots), 2263 vec![ 2264 // Write slot number (in first argument) to I/O port via field 2265 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Local(0)), 2266 // Check if MINS bit is set (inserting) 2267 &aml::If::new( 2268 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2269 // Notify device if it is 2270 vec![ 2271 &aml::MethodCall::new( 2272 "MTFY".into(), 2273 vec![&aml::Local(0), &aml::ONE], 2274 ), 2275 // Reset MINS bit 2276 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2277 ], 2278 ), 2279 // Check if MRMV bit is set 2280 &aml::If::new( 2281 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2282 // Notify device if it is (with the eject constant 0x3) 2283 vec![ 2284 &aml::MethodCall::new("MTFY".into(), vec![&aml::Local(0), &3u8]), 2285 // Reset MRMV bit 2286 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2287 ], 2288 ), 2289 &aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE), 2290 ], 2291 ), 2292 // Release lock 2293 &aml::Release::new("MLCK".into()), 2294 ], 2295 ) 2296 .to_aml_bytes(sink); 2297 2298 // Memory status method 2299 aml::Method::new( 2300 "MSTA".into(), 2301 1, 2302 true, 2303 vec![ 2304 // Take lock defined above 2305 &aml::Acquire::new("MLCK".into(), 0xffff), 2306 // Write slot number (in first argument) to I/O port via field 2307 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2308 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2309 // Check if MEN_ bit is set, if so make the local variable 0xf (see _STA for details of meaning) 2310 &aml::If::new( 2311 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MEN_"), &aml::ONE), 2312 vec![&aml::Store::new(&aml::Local(0), &0xfu8)], 2313 ), 2314 // Release lock 2315 &aml::Release::new("MLCK".into()), 2316 // Return 0 or 0xf 2317 &aml::Return::new(&aml::Local(0)), 2318 ], 2319 ) 2320 .to_aml_bytes(sink); 2321 2322 // Memory range method 2323 aml::Method::new( 2324 "MCRS".into(), 2325 1, 2326 true, 2327 vec![ 2328 // Take lock defined above 2329 &aml::Acquire::new("MLCK".into(), 0xffff), 2330 // Write slot number (in first argument) to I/O port via field 2331 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2332 &aml::Name::new( 2333 "MR64".into(), 2334 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2335 aml::AddressSpaceCacheable::Cacheable, 2336 true, 2337 0x0000_0000_0000_0000u64, 2338 0xFFFF_FFFF_FFFF_FFFEu64, 2339 None, 2340 )]), 2341 ), 2342 &aml::CreateQWordField::new( 2343 &aml::Path::new("MINL"), 2344 &aml::Path::new("MR64"), 2345 &14usize, 2346 ), 2347 &aml::CreateDWordField::new( 2348 &aml::Path::new("MINH"), 2349 &aml::Path::new("MR64"), 2350 &18usize, 2351 ), 2352 &aml::CreateQWordField::new( 2353 &aml::Path::new("MAXL"), 2354 &aml::Path::new("MR64"), 2355 &22usize, 2356 ), 2357 &aml::CreateDWordField::new( 2358 &aml::Path::new("MAXH"), 2359 &aml::Path::new("MR64"), 2360 &26usize, 2361 ), 2362 &aml::CreateQWordField::new( 2363 &aml::Path::new("LENL"), 2364 &aml::Path::new("MR64"), 2365 &38usize, 2366 ), 2367 &aml::CreateDWordField::new( 2368 &aml::Path::new("LENH"), 2369 &aml::Path::new("MR64"), 2370 &42usize, 2371 ), 2372 &aml::Store::new(&aml::Path::new("MINL"), &aml::Path::new("\\_SB_.MHPC.MHBL")), 2373 &aml::Store::new(&aml::Path::new("MINH"), &aml::Path::new("\\_SB_.MHPC.MHBH")), 2374 &aml::Store::new(&aml::Path::new("LENL"), &aml::Path::new("\\_SB_.MHPC.MHLL")), 2375 &aml::Store::new(&aml::Path::new("LENH"), &aml::Path::new("\\_SB_.MHPC.MHLH")), 2376 &aml::Add::new( 2377 &aml::Path::new("MAXL"), 2378 &aml::Path::new("MINL"), 2379 &aml::Path::new("LENL"), 2380 ), 2381 &aml::Add::new( 2382 &aml::Path::new("MAXH"), 2383 &aml::Path::new("MINH"), 2384 &aml::Path::new("LENH"), 2385 ), 2386 &aml::If::new( 2387 &aml::LessThan::new(&aml::Path::new("MAXL"), &aml::Path::new("MINL")), 2388 vec![&aml::Add::new( 2389 &aml::Path::new("MAXH"), 2390 &aml::ONE, 2391 &aml::Path::new("MAXH"), 2392 )], 2393 ), 2394 &aml::Subtract::new(&aml::Path::new("MAXL"), &aml::Path::new("MAXL"), &aml::ONE), 2395 // Release lock 2396 &aml::Release::new("MLCK".into()), 2397 &aml::Return::new(&aml::Path::new("MR64")), 2398 ], 2399 ) 2400 .to_aml_bytes(sink) 2401 } 2402 } 2403 2404 impl Aml for MemoryManager { 2405 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2406 if let Some(acpi_address) = self.acpi_address { 2407 // Memory Hotplug Controller 2408 aml::Device::new( 2409 "_SB_.MHPC".into(), 2410 vec![ 2411 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2412 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2413 // Mutex to protect concurrent access as we write to choose slot and then read back status 2414 &aml::Mutex::new("MLCK".into(), 0), 2415 &aml::Name::new( 2416 "_CRS".into(), 2417 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2418 aml::AddressSpaceCacheable::NotCacheable, 2419 true, 2420 acpi_address.0, 2421 acpi_address.0 + MEMORY_MANAGER_ACPI_SIZE as u64 - 1, 2422 None, 2423 )]), 2424 ), 2425 // OpRegion and Fields map MMIO range into individual field values 2426 &aml::OpRegion::new( 2427 "MHPR".into(), 2428 aml::OpRegionSpace::SystemMemory, 2429 &(acpi_address.0 as usize), 2430 &MEMORY_MANAGER_ACPI_SIZE, 2431 ), 2432 &aml::Field::new( 2433 "MHPR".into(), 2434 aml::FieldAccessType::DWord, 2435 aml::FieldLockRule::NoLock, 2436 aml::FieldUpdateRule::Preserve, 2437 vec![ 2438 aml::FieldEntry::Named(*b"MHBL", 32), // Base (low 4 bytes) 2439 aml::FieldEntry::Named(*b"MHBH", 32), // Base (high 4 bytes) 2440 aml::FieldEntry::Named(*b"MHLL", 32), // Length (low 4 bytes) 2441 aml::FieldEntry::Named(*b"MHLH", 32), // Length (high 4 bytes) 2442 ], 2443 ), 2444 &aml::Field::new( 2445 "MHPR".into(), 2446 aml::FieldAccessType::DWord, 2447 aml::FieldLockRule::NoLock, 2448 aml::FieldUpdateRule::Preserve, 2449 vec![ 2450 aml::FieldEntry::Reserved(128), 2451 aml::FieldEntry::Named(*b"MHPX", 32), // PXM 2452 ], 2453 ), 2454 &aml::Field::new( 2455 "MHPR".into(), 2456 aml::FieldAccessType::Byte, 2457 aml::FieldLockRule::NoLock, 2458 aml::FieldUpdateRule::WriteAsZeroes, 2459 vec![ 2460 aml::FieldEntry::Reserved(160), 2461 aml::FieldEntry::Named(*b"MEN_", 1), // Enabled 2462 aml::FieldEntry::Named(*b"MINS", 1), // Inserting 2463 aml::FieldEntry::Named(*b"MRMV", 1), // Removing 2464 aml::FieldEntry::Named(*b"MEJ0", 1), // Ejecting 2465 ], 2466 ), 2467 &aml::Field::new( 2468 "MHPR".into(), 2469 aml::FieldAccessType::DWord, 2470 aml::FieldLockRule::NoLock, 2471 aml::FieldUpdateRule::Preserve, 2472 vec![ 2473 aml::FieldEntry::Named(*b"MSEL", 32), // Selector 2474 aml::FieldEntry::Named(*b"MOEV", 32), // Event 2475 aml::FieldEntry::Named(*b"MOSC", 32), // OSC 2476 ], 2477 ), 2478 &MemoryMethods { 2479 slots: self.hotplug_slots.len(), 2480 }, 2481 &MemorySlots { 2482 slots: self.hotplug_slots.len(), 2483 }, 2484 ], 2485 ) 2486 .to_aml_bytes(sink); 2487 } else { 2488 aml::Device::new( 2489 "_SB_.MHPC".into(), 2490 vec![ 2491 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2492 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2493 // Empty MSCN for GED 2494 &aml::Method::new("MSCN".into(), 0, true, vec![]), 2495 ], 2496 ) 2497 .to_aml_bytes(sink); 2498 } 2499 2500 #[cfg(target_arch = "x86_64")] 2501 { 2502 if let Some(sgx_epc_region) = &self.sgx_epc_region { 2503 let min = sgx_epc_region.start().raw_value(); 2504 let max = min + sgx_epc_region.size() - 1; 2505 // SGX EPC region 2506 aml::Device::new( 2507 "_SB_.EPC_".into(), 2508 vec![ 2509 &aml::Name::new("_HID".into(), &aml::EISAName::new("INT0E0C")), 2510 // QWORD describing the EPC region start and size 2511 &aml::Name::new( 2512 "_CRS".into(), 2513 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2514 aml::AddressSpaceCacheable::NotCacheable, 2515 true, 2516 min, 2517 max, 2518 None, 2519 )]), 2520 ), 2521 &aml::Method::new("_STA".into(), 0, false, vec![&aml::Return::new(&0xfu8)]), 2522 ], 2523 ) 2524 .to_aml_bytes(sink); 2525 } 2526 } 2527 } 2528 } 2529 2530 impl Pausable for MemoryManager {} 2531 2532 #[derive(Clone, Serialize, Deserialize, Versionize)] 2533 pub struct MemoryManagerSnapshotData { 2534 memory_ranges: MemoryRangeTable, 2535 guest_ram_mappings: Vec<GuestRamMapping>, 2536 start_of_device_area: u64, 2537 boot_ram: u64, 2538 current_ram: u64, 2539 arch_mem_regions: Vec<ArchMemRegion>, 2540 hotplug_slots: Vec<HotPlugState>, 2541 next_memory_slot: u32, 2542 selected_slot: usize, 2543 next_hotplug_slot: usize, 2544 } 2545 2546 impl VersionMapped for MemoryManagerSnapshotData {} 2547 2548 impl Snapshottable for MemoryManager { 2549 fn id(&self) -> String { 2550 MEMORY_MANAGER_SNAPSHOT_ID.to_string() 2551 } 2552 2553 fn snapshot(&mut self) -> result::Result<Snapshot, MigratableError> { 2554 let memory_ranges = self.memory_range_table(true)?; 2555 2556 // Store locally this list of ranges as it will be used through the 2557 // Transportable::send() implementation. The point is to avoid the 2558 // duplication of code regarding the creation of the path for each 2559 // region. The 'snapshot' step creates the list of memory regions, 2560 // including information about the need to copy a memory region or 2561 // not. This saves the 'send' step having to go through the same 2562 // process, and instead it can directly proceed with storing the 2563 // memory range content for the ranges requiring it. 2564 self.snapshot_memory_ranges = memory_ranges; 2565 2566 Ok(Snapshot::from_data(SnapshotData::new_from_versioned_state( 2567 &self.snapshot_data(), 2568 )?)) 2569 } 2570 } 2571 2572 impl Transportable for MemoryManager { 2573 fn send( 2574 &self, 2575 _snapshot: &Snapshot, 2576 destination_url: &str, 2577 ) -> result::Result<(), MigratableError> { 2578 if self.snapshot_memory_ranges.is_empty() { 2579 return Ok(()); 2580 } 2581 2582 let mut memory_file_path = url_to_path(destination_url)?; 2583 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 2584 2585 // Create the snapshot file for the entire memory 2586 let mut memory_file = OpenOptions::new() 2587 .read(true) 2588 .write(true) 2589 .create_new(true) 2590 .open(memory_file_path) 2591 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2592 2593 let guest_memory = self.guest_memory.memory(); 2594 2595 for range in self.snapshot_memory_ranges.regions() { 2596 let mut offset: u64 = 0; 2597 // Here we are manually handling the retry in case we can't read 2598 // the whole region at once because we can't use the implementation 2599 // from vm-memory::GuestMemory of write_all_to() as it is not 2600 // following the correct behavior. For more info about this issue 2601 // see: https://github.com/rust-vmm/vm-memory/issues/174 2602 loop { 2603 let bytes_written = guest_memory 2604 .write_volatile_to( 2605 GuestAddress(range.gpa + offset), 2606 &mut memory_file, 2607 (range.length - offset) as usize, 2608 ) 2609 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2610 offset += bytes_written as u64; 2611 2612 if offset == range.length { 2613 break; 2614 } 2615 } 2616 } 2617 Ok(()) 2618 } 2619 } 2620 2621 impl Migratable for MemoryManager { 2622 // Start the dirty log in the hypervisor (kvm/mshv). 2623 // Also, reset the dirty bitmap logged by the vmm. 2624 // Just before we do a bulk copy we want to start/clear the dirty log so that 2625 // pages touched during our bulk copy are tracked. 2626 fn start_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2627 self.vm.start_dirty_log().map_err(|e| { 2628 MigratableError::MigrateSend(anyhow!("Error starting VM dirty log {}", e)) 2629 })?; 2630 2631 for r in self.guest_memory.memory().iter() { 2632 r.bitmap().reset(); 2633 } 2634 2635 Ok(()) 2636 } 2637 2638 fn stop_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2639 self.vm.stop_dirty_log().map_err(|e| { 2640 MigratableError::MigrateSend(anyhow!("Error stopping VM dirty log {}", e)) 2641 })?; 2642 2643 Ok(()) 2644 } 2645 2646 // Generate a table for the pages that are dirty. The dirty pages are collapsed 2647 // together in the table if they are contiguous. 2648 fn dirty_log(&mut self) -> std::result::Result<MemoryRangeTable, MigratableError> { 2649 let mut table = MemoryRangeTable::default(); 2650 for r in &self.guest_ram_mappings { 2651 let vm_dirty_bitmap = self.vm.get_dirty_log(r.slot, r.gpa, r.size).map_err(|e| { 2652 MigratableError::MigrateSend(anyhow!("Error getting VM dirty log {}", e)) 2653 })?; 2654 let vmm_dirty_bitmap = match self.guest_memory.memory().find_region(GuestAddress(r.gpa)) 2655 { 2656 Some(region) => { 2657 assert!(region.start_addr().raw_value() == r.gpa); 2658 assert!(region.len() == r.size); 2659 region.bitmap().get_and_reset() 2660 } 2661 None => { 2662 return Err(MigratableError::MigrateSend(anyhow!( 2663 "Error finding 'guest memory region' with address {:x}", 2664 r.gpa 2665 ))) 2666 } 2667 }; 2668 2669 let dirty_bitmap: Vec<u64> = vm_dirty_bitmap 2670 .iter() 2671 .zip(vmm_dirty_bitmap.iter()) 2672 .map(|(x, y)| x | y) 2673 .collect(); 2674 2675 let sub_table = MemoryRangeTable::from_bitmap(dirty_bitmap, r.gpa, 4096); 2676 2677 if sub_table.regions().is_empty() { 2678 info!("Dirty Memory Range Table is empty"); 2679 } else { 2680 info!("Dirty Memory Range Table:"); 2681 for range in sub_table.regions() { 2682 info!("GPA: {:x} size: {} (KiB)", range.gpa, range.length / 1024); 2683 } 2684 } 2685 2686 table.extend(sub_table); 2687 } 2688 Ok(table) 2689 } 2690 } 2691