1 // Copyright © 2019 Intel Corporation 2 // 3 // SPDX-License-Identifier: Apache-2.0 4 // 5 6 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 7 use std::collections::BTreeMap; 8 use std::collections::HashMap; 9 use std::fs::{File, OpenOptions}; 10 use std::io::{self}; 11 use std::ops::{BitAnd, Deref, Not, Sub}; 12 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 13 use std::os::fd::AsFd; 14 use std::os::unix::io::{AsRawFd, FromRawFd, RawFd}; 15 use std::path::PathBuf; 16 use std::sync::atomic::{AtomicU32, Ordering}; 17 use std::sync::{Arc, Barrier, Mutex}; 18 use std::{ffi, result, thread}; 19 20 use acpi_tables::{aml, Aml}; 21 use anyhow::anyhow; 22 #[cfg(target_arch = "x86_64")] 23 use arch::x86_64::{SgxEpcRegion, SgxEpcSection}; 24 use arch::RegionType; 25 #[cfg(target_arch = "x86_64")] 26 use devices::ioapic; 27 #[cfg(target_arch = "aarch64")] 28 use hypervisor::HypervisorVmError; 29 use libc::_SC_NPROCESSORS_ONLN; 30 #[cfg(target_arch = "x86_64")] 31 use libc::{MAP_NORESERVE, MAP_POPULATE, MAP_SHARED, PROT_READ, PROT_WRITE}; 32 use serde::{Deserialize, Serialize}; 33 use tracer::trace_scoped; 34 use virtio_devices::BlocksState; 35 #[cfg(target_arch = "x86_64")] 36 use vm_allocator::GsiApic; 37 use vm_allocator::{AddressAllocator, MemorySlotAllocator, SystemAllocator}; 38 use vm_device::BusDevice; 39 use vm_memory::bitmap::AtomicBitmap; 40 use vm_memory::guest_memory::FileOffset; 41 use vm_memory::mmap::MmapRegionError; 42 use vm_memory::{ 43 Address, Error as MmapError, GuestAddress, GuestAddressSpace, GuestMemory, GuestMemoryAtomic, 44 GuestMemoryError, GuestMemoryRegion, GuestUsize, MmapRegion, ReadVolatile, 45 }; 46 use vm_migration::protocol::{MemoryRange, MemoryRangeTable}; 47 use vm_migration::{ 48 Migratable, MigratableError, Pausable, Snapshot, SnapshotData, Snapshottable, Transportable, 49 }; 50 51 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 52 use crate::coredump::{ 53 CoredumpMemoryRegion, CoredumpMemoryRegions, DumpState, GuestDebuggableError, 54 }; 55 use crate::migration::url_to_path; 56 #[cfg(target_arch = "x86_64")] 57 use crate::vm_config::SgxEpcConfig; 58 use crate::vm_config::{HotplugMethod, MemoryConfig, MemoryZoneConfig}; 59 use crate::{GuestMemoryMmap, GuestRegionMmap, MEMORY_MANAGER_SNAPSHOT_ID}; 60 61 pub const MEMORY_MANAGER_ACPI_SIZE: usize = 0x18; 62 63 const DEFAULT_MEMORY_ZONE: &str = "mem0"; 64 65 const SNAPSHOT_FILENAME: &str = "memory-ranges"; 66 67 #[cfg(target_arch = "x86_64")] 68 const X86_64_IRQ_BASE: u32 = 5; 69 70 #[cfg(target_arch = "x86_64")] 71 const SGX_PAGE_SIZE: u64 = 1 << 12; 72 73 const HOTPLUG_COUNT: usize = 8; 74 75 // Memory policy constants 76 const MPOL_BIND: u32 = 2; 77 const MPOL_MF_STRICT: u32 = 1; 78 const MPOL_MF_MOVE: u32 = 1 << 1; 79 80 // Reserve 1 MiB for platform MMIO devices (e.g. ACPI control devices) 81 const PLATFORM_DEVICE_AREA_SIZE: u64 = 1 << 20; 82 83 const MAX_PREFAULT_THREAD_COUNT: usize = 16; 84 85 #[derive(Clone, Default, Serialize, Deserialize)] 86 struct HotPlugState { 87 base: u64, 88 length: u64, 89 active: bool, 90 inserting: bool, 91 removing: bool, 92 } 93 94 pub struct VirtioMemZone { 95 region: Arc<GuestRegionMmap>, 96 virtio_device: Option<Arc<Mutex<virtio_devices::Mem>>>, 97 hotplugged_size: u64, 98 hugepages: bool, 99 blocks_state: Arc<Mutex<BlocksState>>, 100 } 101 102 impl VirtioMemZone { 103 pub fn region(&self) -> &Arc<GuestRegionMmap> { 104 &self.region 105 } 106 pub fn set_virtio_device(&mut self, virtio_device: Arc<Mutex<virtio_devices::Mem>>) { 107 self.virtio_device = Some(virtio_device); 108 } 109 pub fn hotplugged_size(&self) -> u64 { 110 self.hotplugged_size 111 } 112 pub fn hugepages(&self) -> bool { 113 self.hugepages 114 } 115 pub fn blocks_state(&self) -> &Arc<Mutex<BlocksState>> { 116 &self.blocks_state 117 } 118 pub fn plugged_ranges(&self) -> MemoryRangeTable { 119 self.blocks_state 120 .lock() 121 .unwrap() 122 .memory_ranges(self.region.start_addr().raw_value(), true) 123 } 124 } 125 126 #[derive(Default)] 127 pub struct MemoryZone { 128 regions: Vec<Arc<GuestRegionMmap>>, 129 virtio_mem_zone: Option<VirtioMemZone>, 130 } 131 132 impl MemoryZone { 133 pub fn regions(&self) -> &Vec<Arc<GuestRegionMmap>> { 134 &self.regions 135 } 136 pub fn virtio_mem_zone(&self) -> &Option<VirtioMemZone> { 137 &self.virtio_mem_zone 138 } 139 pub fn virtio_mem_zone_mut(&mut self) -> Option<&mut VirtioMemZone> { 140 self.virtio_mem_zone.as_mut() 141 } 142 } 143 144 pub type MemoryZones = HashMap<String, MemoryZone>; 145 146 #[derive(Clone, Serialize, Deserialize)] 147 struct GuestRamMapping { 148 slot: u32, 149 gpa: u64, 150 size: u64, 151 zone_id: String, 152 virtio_mem: bool, 153 file_offset: u64, 154 } 155 156 #[derive(Clone, Serialize, Deserialize)] 157 struct ArchMemRegion { 158 base: u64, 159 size: usize, 160 r_type: RegionType, 161 } 162 163 pub struct MemoryManager { 164 boot_guest_memory: GuestMemoryMmap, 165 guest_memory: GuestMemoryAtomic<GuestMemoryMmap>, 166 next_memory_slot: Arc<AtomicU32>, 167 memory_slot_free_list: Arc<Mutex<Vec<u32>>>, 168 start_of_device_area: GuestAddress, 169 end_of_device_area: GuestAddress, 170 end_of_ram_area: GuestAddress, 171 pub vm: Arc<dyn hypervisor::Vm>, 172 hotplug_slots: Vec<HotPlugState>, 173 selected_slot: usize, 174 mergeable: bool, 175 allocator: Arc<Mutex<SystemAllocator>>, 176 hotplug_method: HotplugMethod, 177 boot_ram: u64, 178 current_ram: u64, 179 next_hotplug_slot: usize, 180 shared: bool, 181 hugepages: bool, 182 hugepage_size: Option<u64>, 183 prefault: bool, 184 thp: bool, 185 #[cfg(target_arch = "x86_64")] 186 sgx_epc_region: Option<SgxEpcRegion>, 187 user_provided_zones: bool, 188 snapshot_memory_ranges: MemoryRangeTable, 189 memory_zones: MemoryZones, 190 log_dirty: bool, // Enable dirty logging for created RAM regions 191 arch_mem_regions: Vec<ArchMemRegion>, 192 ram_allocator: AddressAllocator, 193 dynamic: bool, 194 195 // Keep track of calls to create_userspace_mapping() for guest RAM. 196 // This is useful for getting the dirty pages as we need to know the 197 // slots that the mapping is created in. 198 guest_ram_mappings: Vec<GuestRamMapping>, 199 200 pub acpi_address: Option<GuestAddress>, 201 #[cfg(target_arch = "aarch64")] 202 uefi_flash: Option<GuestMemoryAtomic<GuestMemoryMmap>>, 203 } 204 205 #[derive(Debug)] 206 pub enum Error { 207 /// Failed to create shared file. 208 SharedFileCreate(io::Error), 209 210 /// Failed to set shared file length. 211 SharedFileSetLen(io::Error), 212 213 /// Mmap backed guest memory error 214 GuestMemory(MmapError), 215 216 /// Failed to allocate a memory range. 217 MemoryRangeAllocation, 218 219 /// Error from region creation 220 GuestMemoryRegion(MmapRegionError), 221 222 /// No ACPI slot available 223 NoSlotAvailable, 224 225 /// Not enough space in the hotplug RAM region 226 InsufficientHotplugRam, 227 228 /// The requested hotplug memory addition is not a valid size 229 InvalidSize, 230 231 /// Failed to create the user memory region. 232 CreateUserMemoryRegion(hypervisor::HypervisorVmError), 233 234 /// Failed to remove the user memory region. 235 RemoveUserMemoryRegion(hypervisor::HypervisorVmError), 236 237 /// Failed to EventFd. 238 EventFdFail(io::Error), 239 240 /// Eventfd write error 241 EventfdError(io::Error), 242 243 /// Failed to virtio-mem resize 244 VirtioMemResizeFail(virtio_devices::mem::Error), 245 246 /// Cannot restore VM 247 Restore(MigratableError), 248 249 /// Cannot restore VM because source URL is missing 250 RestoreMissingSourceUrl, 251 252 /// Cannot create the system allocator 253 CreateSystemAllocator, 254 255 /// Invalid SGX EPC section size 256 #[cfg(target_arch = "x86_64")] 257 EpcSectionSizeInvalid, 258 259 /// Failed allocating SGX EPC region 260 #[cfg(target_arch = "x86_64")] 261 SgxEpcRangeAllocation, 262 263 /// Failed opening SGX virtual EPC device 264 #[cfg(target_arch = "x86_64")] 265 SgxVirtEpcOpen(io::Error), 266 267 /// Failed setting the SGX virtual EPC section size 268 #[cfg(target_arch = "x86_64")] 269 SgxVirtEpcFileSetLen(io::Error), 270 271 /// Failed opening SGX provisioning device 272 #[cfg(target_arch = "x86_64")] 273 SgxProvisionOpen(io::Error), 274 275 /// Failed enabling SGX provisioning 276 #[cfg(target_arch = "x86_64")] 277 SgxEnableProvisioning(hypervisor::HypervisorVmError), 278 279 /// Failed creating a new MmapRegion instance. 280 #[cfg(target_arch = "x86_64")] 281 NewMmapRegion(vm_memory::mmap::MmapRegionError), 282 283 /// No memory zones found. 284 MissingMemoryZones, 285 286 /// Memory configuration is not valid. 287 InvalidMemoryParameters, 288 289 /// Forbidden operation. Impossible to resize guest memory if it is 290 /// backed by user defined memory regions. 291 InvalidResizeWithMemoryZones, 292 293 /// It's invalid to try applying a NUMA policy to a memory zone that is 294 /// memory mapped with MAP_SHARED. 295 InvalidSharedMemoryZoneWithHostNuma, 296 297 /// Failed applying NUMA memory policy. 298 ApplyNumaPolicy(io::Error), 299 300 /// Memory zone identifier is not unique. 301 DuplicateZoneId, 302 303 /// No virtio-mem resizing handler found. 304 MissingVirtioMemHandler, 305 306 /// Unknown memory zone. 307 UnknownMemoryZone, 308 309 /// Invalid size for resizing. Can be anything except 0. 310 InvalidHotplugSize, 311 312 /// Invalid hotplug method associated with memory zones resizing capability. 313 InvalidHotplugMethodWithMemoryZones, 314 315 /// Could not find specified memory zone identifier from hash map. 316 MissingZoneIdentifier, 317 318 /// Resizing the memory zone failed. 319 ResizeZone, 320 321 /// Guest address overflow 322 GuestAddressOverFlow, 323 324 /// Error opening snapshot file 325 SnapshotOpen(io::Error), 326 327 // Error copying snapshot into region 328 SnapshotCopy(GuestMemoryError), 329 330 /// Failed to allocate MMIO address 331 AllocateMmioAddress, 332 333 #[cfg(target_arch = "aarch64")] 334 /// Failed to create UEFI flash 335 CreateUefiFlash(HypervisorVmError), 336 337 /// Using a directory as a backing file for memory is not supported 338 DirectoryAsBackingFileForMemory, 339 340 /// Failed to stat filesystem 341 GetFileSystemBlockSize(io::Error), 342 343 /// Memory size is misaligned with default page size or its hugepage size 344 MisalignedMemorySize, 345 } 346 347 const ENABLE_FLAG: usize = 0; 348 const INSERTING_FLAG: usize = 1; 349 const REMOVING_FLAG: usize = 2; 350 const EJECT_FLAG: usize = 3; 351 352 const BASE_OFFSET_LOW: u64 = 0; 353 const BASE_OFFSET_HIGH: u64 = 0x4; 354 const LENGTH_OFFSET_LOW: u64 = 0x8; 355 const LENGTH_OFFSET_HIGH: u64 = 0xC; 356 const STATUS_OFFSET: u64 = 0x14; 357 const SELECTION_OFFSET: u64 = 0; 358 359 // The MMIO address space size is subtracted with 64k. This is done for the 360 // following reasons: 361 // - Reduce the addressable space size by at least 4k to workaround a Linux 362 // bug when the VMM allocates devices at the end of the addressable space 363 // - Windows requires the addressable space size to be 64k aligned 364 fn mmio_address_space_size(phys_bits: u8) -> u64 { 365 (1 << phys_bits) - (1 << 16) 366 } 367 368 // The `statfs` function can get information of hugetlbfs, and the hugepage size is in the 369 // `f_bsize` field. 370 // 371 // See: https://github.com/torvalds/linux/blob/v6.3/fs/hugetlbfs/inode.c#L1169 372 fn statfs_get_bsize(path: &str) -> Result<u64, Error> { 373 let path = std::ffi::CString::new(path).map_err(|_| Error::InvalidMemoryParameters)?; 374 let mut buf = std::mem::MaybeUninit::<libc::statfs>::uninit(); 375 376 // SAFETY: FFI call with a valid path and buffer 377 let ret = unsafe { libc::statfs(path.as_ptr(), buf.as_mut_ptr()) }; 378 if ret != 0 { 379 return Err(Error::GetFileSystemBlockSize( 380 std::io::Error::last_os_error(), 381 )); 382 } 383 384 // SAFETY: `buf` is valid at this point 385 // Because this value is always positive, just convert it directly. 386 // Note that the `f_bsize` is `i64` in glibc and `u64` in musl, using `as u64` will be warned 387 // by `clippy` on musl target. To avoid the warning, there should be `as _` instead of 388 // `as u64`. 389 let bsize = unsafe { (*buf.as_ptr()).f_bsize } as _; 390 Ok(bsize) 391 } 392 393 fn memory_zone_get_align_size(zone: &MemoryZoneConfig) -> Result<u64, Error> { 394 // SAFETY: FFI call. Trivially safe. 395 let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }; 396 397 // There is no backend file and the `hugepages` is disabled, just use system page size. 398 if zone.file.is_none() && !zone.hugepages { 399 return Ok(page_size); 400 } 401 402 // The `hugepages` is enabled and the `hugepage_size` is specified, just use it directly. 403 if zone.hugepages && zone.hugepage_size.is_some() { 404 return Ok(zone.hugepage_size.unwrap()); 405 } 406 407 // There are two scenarios here: 408 // - `hugepages` is enabled but `hugepage_size` is not specified: 409 // Call `statfs` for `/dev/hugepages` for getting the default size of hugepage 410 // - The backing file is specified: 411 // Call `statfs` for the file and get its `f_bsize`. If the value is larger than the page 412 // size of normal page, just use the `f_bsize` because the file is in a hugetlbfs. If the 413 // value is less than or equal to the page size, just use the page size. 414 let path = zone.file.as_ref().map_or(Ok("/dev/hugepages"), |pathbuf| { 415 pathbuf.to_str().ok_or(Error::InvalidMemoryParameters) 416 })?; 417 418 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?); 419 420 Ok(align_size) 421 } 422 423 #[inline] 424 fn align_down<T>(val: T, align: T) -> T 425 where 426 T: BitAnd<Output = T> + Not<Output = T> + Sub<Output = T> + From<u8>, 427 { 428 val & !(align - 1u8.into()) 429 } 430 431 #[inline] 432 fn is_aligned<T>(val: T, align: T) -> bool 433 where 434 T: BitAnd<Output = T> + Sub<Output = T> + From<u8> + PartialEq, 435 { 436 (val & (align - 1u8.into())) == 0u8.into() 437 } 438 439 impl BusDevice for MemoryManager { 440 fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) { 441 if self.selected_slot < self.hotplug_slots.len() { 442 let state = &self.hotplug_slots[self.selected_slot]; 443 match offset { 444 BASE_OFFSET_LOW => { 445 data.copy_from_slice(&state.base.to_le_bytes()[..4]); 446 } 447 BASE_OFFSET_HIGH => { 448 data.copy_from_slice(&state.base.to_le_bytes()[4..]); 449 } 450 LENGTH_OFFSET_LOW => { 451 data.copy_from_slice(&state.length.to_le_bytes()[..4]); 452 } 453 LENGTH_OFFSET_HIGH => { 454 data.copy_from_slice(&state.length.to_le_bytes()[4..]); 455 } 456 STATUS_OFFSET => { 457 // The Linux kernel, quite reasonably, doesn't zero the memory it gives us. 458 data.fill(0); 459 if state.active { 460 data[0] |= 1 << ENABLE_FLAG; 461 } 462 if state.inserting { 463 data[0] |= 1 << INSERTING_FLAG; 464 } 465 if state.removing { 466 data[0] |= 1 << REMOVING_FLAG; 467 } 468 } 469 _ => { 470 warn!( 471 "Unexpected offset for accessing memory manager device: {:#}", 472 offset 473 ); 474 } 475 } 476 } else { 477 warn!("Out of range memory slot: {}", self.selected_slot); 478 } 479 } 480 481 fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> { 482 match offset { 483 SELECTION_OFFSET => { 484 self.selected_slot = usize::from(data[0]); 485 } 486 STATUS_OFFSET => { 487 if self.selected_slot < self.hotplug_slots.len() { 488 let state = &mut self.hotplug_slots[self.selected_slot]; 489 // The ACPI code writes back a 1 to acknowledge the insertion 490 if (data[0] & (1 << INSERTING_FLAG) == 1 << INSERTING_FLAG) && state.inserting { 491 state.inserting = false; 492 } 493 // Ditto for removal 494 if (data[0] & (1 << REMOVING_FLAG) == 1 << REMOVING_FLAG) && state.removing { 495 state.removing = false; 496 } 497 // Trigger removal of "DIMM" 498 if data[0] & (1 << EJECT_FLAG) == 1 << EJECT_FLAG { 499 warn!("Ejection of memory not currently supported"); 500 } 501 } else { 502 warn!("Out of range memory slot: {}", self.selected_slot); 503 } 504 } 505 _ => { 506 warn!( 507 "Unexpected offset for accessing memory manager device: {:#}", 508 offset 509 ); 510 } 511 }; 512 None 513 } 514 } 515 516 impl MemoryManager { 517 /// Creates all memory regions based on the available RAM ranges defined 518 /// by `ram_regions`, and based on the description of the memory zones. 519 /// In practice, this function can perform multiple memory mappings of the 520 /// same backing file if there's a hole in the address space between two 521 /// RAM ranges. 522 /// 523 /// One example might be ram_regions containing 2 regions (0-3G and 4G-6G) 524 /// and zones containing two zones (size 1G and size 4G). 525 /// 526 /// This function will create 3 resulting memory regions: 527 /// - First one mapping entirely the first memory zone on 0-1G range 528 /// - Second one mapping partially the second memory zone on 1G-3G range 529 /// - Third one mapping partially the second memory zone on 4G-6G range 530 /// 531 /// Also, all memory regions are page-size aligned (e.g. their sizes must 532 /// be multiple of page-size), which may leave an additional hole in the 533 /// address space when hugepage is used. 534 fn create_memory_regions_from_zones( 535 ram_regions: &[(GuestAddress, usize)], 536 zones: &[MemoryZoneConfig], 537 prefault: Option<bool>, 538 thp: bool, 539 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 540 let mut zone_iter = zones.iter(); 541 let mut mem_regions = Vec::new(); 542 let mut zone = zone_iter.next().ok_or(Error::MissingMemoryZones)?; 543 let mut zone_align_size = memory_zone_get_align_size(zone)?; 544 let mut zone_offset = 0u64; 545 let mut memory_zones = HashMap::new(); 546 547 if !is_aligned(zone.size, zone_align_size) { 548 return Err(Error::MisalignedMemorySize); 549 } 550 551 // Add zone id to the list of memory zones. 552 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 553 554 for ram_region in ram_regions.iter() { 555 let mut ram_region_offset = 0; 556 let mut exit = false; 557 558 loop { 559 let mut ram_region_consumed = false; 560 let mut pull_next_zone = false; 561 562 let ram_region_available_size = 563 align_down(ram_region.1 as u64 - ram_region_offset, zone_align_size); 564 if ram_region_available_size == 0 { 565 break; 566 } 567 let zone_sub_size = zone.size - zone_offset; 568 569 let file_offset = zone_offset; 570 let region_start = ram_region 571 .0 572 .checked_add(ram_region_offset) 573 .ok_or(Error::GuestAddressOverFlow)?; 574 let region_size = if zone_sub_size <= ram_region_available_size { 575 if zone_sub_size == ram_region_available_size { 576 ram_region_consumed = true; 577 } 578 579 ram_region_offset += zone_sub_size; 580 pull_next_zone = true; 581 582 zone_sub_size 583 } else { 584 zone_offset += ram_region_available_size; 585 ram_region_consumed = true; 586 587 ram_region_available_size 588 }; 589 590 info!( 591 "create ram region for zone {}, region_start: {:#x}, region_size: {:#x}", 592 zone.id, 593 region_start.raw_value(), 594 region_size 595 ); 596 let region = MemoryManager::create_ram_region( 597 &zone.file, 598 file_offset, 599 region_start, 600 region_size as usize, 601 prefault.unwrap_or(zone.prefault), 602 zone.shared, 603 zone.hugepages, 604 zone.hugepage_size, 605 zone.host_numa_node, 606 None, 607 thp, 608 )?; 609 610 // Add region to the list of regions associated with the 611 // current memory zone. 612 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 613 memory_zone.regions.push(region.clone()); 614 } 615 616 mem_regions.push(region); 617 618 if pull_next_zone { 619 // Get the next zone and reset the offset. 620 zone_offset = 0; 621 if let Some(z) = zone_iter.next() { 622 zone = z; 623 } else { 624 exit = true; 625 break; 626 } 627 zone_align_size = memory_zone_get_align_size(zone)?; 628 if !is_aligned(zone.size, zone_align_size) { 629 return Err(Error::MisalignedMemorySize); 630 } 631 632 // Check if zone id already exist. In case it does, throw 633 // an error as we need unique identifiers. Otherwise, add 634 // the new zone id to the list of memory zones. 635 if memory_zones.contains_key(&zone.id) { 636 error!( 637 "Memory zone identifier '{}' found more than once. \ 638 It must be unique", 639 zone.id, 640 ); 641 return Err(Error::DuplicateZoneId); 642 } 643 memory_zones.insert(zone.id.clone(), MemoryZone::default()); 644 } 645 646 if ram_region_consumed { 647 break; 648 } 649 } 650 651 if exit { 652 break; 653 } 654 } 655 656 Ok((mem_regions, memory_zones)) 657 } 658 659 // Restore both GuestMemory regions along with MemoryZone zones. 660 fn restore_memory_regions_and_zones( 661 guest_ram_mappings: &[GuestRamMapping], 662 zones_config: &[MemoryZoneConfig], 663 prefault: Option<bool>, 664 mut existing_memory_files: HashMap<u32, File>, 665 thp: bool, 666 ) -> Result<(Vec<Arc<GuestRegionMmap>>, MemoryZones), Error> { 667 let mut memory_regions = Vec::new(); 668 let mut memory_zones = HashMap::new(); 669 670 for zone_config in zones_config { 671 memory_zones.insert(zone_config.id.clone(), MemoryZone::default()); 672 } 673 674 for guest_ram_mapping in guest_ram_mappings { 675 for zone_config in zones_config { 676 if guest_ram_mapping.zone_id == zone_config.id { 677 let region = MemoryManager::create_ram_region( 678 if guest_ram_mapping.virtio_mem { 679 &None 680 } else { 681 &zone_config.file 682 }, 683 guest_ram_mapping.file_offset, 684 GuestAddress(guest_ram_mapping.gpa), 685 guest_ram_mapping.size as usize, 686 prefault.unwrap_or(zone_config.prefault), 687 zone_config.shared, 688 zone_config.hugepages, 689 zone_config.hugepage_size, 690 zone_config.host_numa_node, 691 existing_memory_files.remove(&guest_ram_mapping.slot), 692 thp, 693 )?; 694 memory_regions.push(Arc::clone(®ion)); 695 if let Some(memory_zone) = memory_zones.get_mut(&guest_ram_mapping.zone_id) { 696 if guest_ram_mapping.virtio_mem { 697 let hotplugged_size = zone_config.hotplugged_size.unwrap_or(0); 698 let region_size = region.len(); 699 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 700 region, 701 virtio_device: None, 702 hotplugged_size, 703 hugepages: zone_config.hugepages, 704 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 705 }); 706 } else { 707 memory_zone.regions.push(region); 708 } 709 } 710 } 711 } 712 } 713 714 memory_regions.sort_by_key(|x| x.start_addr()); 715 716 Ok((memory_regions, memory_zones)) 717 } 718 719 fn fill_saved_regions( 720 &mut self, 721 file_path: PathBuf, 722 saved_regions: MemoryRangeTable, 723 ) -> Result<(), Error> { 724 if saved_regions.is_empty() { 725 return Ok(()); 726 } 727 728 // Open (read only) the snapshot file. 729 let mut memory_file = OpenOptions::new() 730 .read(true) 731 .open(file_path) 732 .map_err(Error::SnapshotOpen)?; 733 734 let guest_memory = self.guest_memory.memory(); 735 for range in saved_regions.regions() { 736 let mut offset: u64 = 0; 737 // Here we are manually handling the retry in case we can't write 738 // the whole region at once because we can't use the implementation 739 // from vm-memory::GuestMemory of read_exact_from() as it is not 740 // following the correct behavior. For more info about this issue 741 // see: https://github.com/rust-vmm/vm-memory/issues/174 742 loop { 743 let bytes_read = guest_memory 744 .read_volatile_from( 745 GuestAddress(range.gpa + offset), 746 &mut memory_file, 747 (range.length - offset) as usize, 748 ) 749 .map_err(Error::SnapshotCopy)?; 750 offset += bytes_read as u64; 751 752 if offset == range.length { 753 break; 754 } 755 } 756 } 757 758 Ok(()) 759 } 760 761 fn validate_memory_config( 762 config: &MemoryConfig, 763 user_provided_zones: bool, 764 ) -> Result<(u64, Vec<MemoryZoneConfig>, bool), Error> { 765 let mut allow_mem_hotplug = false; 766 767 if !user_provided_zones { 768 if config.zones.is_some() { 769 error!( 770 "User defined memory regions can't be provided if the \ 771 memory size is not 0" 772 ); 773 return Err(Error::InvalidMemoryParameters); 774 } 775 776 if config.hotplug_size.is_some() { 777 allow_mem_hotplug = true; 778 } 779 780 if let Some(hotplugged_size) = config.hotplugged_size { 781 if let Some(hotplug_size) = config.hotplug_size { 782 if hotplugged_size > hotplug_size { 783 error!( 784 "'hotplugged_size' {} can't be bigger than \ 785 'hotplug_size' {}", 786 hotplugged_size, hotplug_size, 787 ); 788 return Err(Error::InvalidMemoryParameters); 789 } 790 } else { 791 error!( 792 "Invalid to define 'hotplugged_size' when there is\ 793 no 'hotplug_size'" 794 ); 795 return Err(Error::InvalidMemoryParameters); 796 } 797 if config.hotplug_method == HotplugMethod::Acpi { 798 error!( 799 "Invalid to define 'hotplugged_size' with hotplug \ 800 method 'acpi'" 801 ); 802 return Err(Error::InvalidMemoryParameters); 803 } 804 } 805 806 // Create a single zone from the global memory config. This lets 807 // us reuse the codepath for user defined memory zones. 808 let zones = vec![MemoryZoneConfig { 809 id: String::from(DEFAULT_MEMORY_ZONE), 810 size: config.size, 811 file: None, 812 shared: config.shared, 813 hugepages: config.hugepages, 814 hugepage_size: config.hugepage_size, 815 host_numa_node: None, 816 hotplug_size: config.hotplug_size, 817 hotplugged_size: config.hotplugged_size, 818 prefault: config.prefault, 819 }]; 820 821 Ok((config.size, zones, allow_mem_hotplug)) 822 } else { 823 if config.zones.is_none() { 824 error!( 825 "User defined memory regions must be provided if the \ 826 memory size is 0" 827 ); 828 return Err(Error::MissingMemoryZones); 829 } 830 831 // Safe to unwrap as we checked right above there were some 832 // regions. 833 let zones = config.zones.clone().unwrap(); 834 if zones.is_empty() { 835 return Err(Error::MissingMemoryZones); 836 } 837 838 let mut total_ram_size: u64 = 0; 839 for zone in zones.iter() { 840 total_ram_size += zone.size; 841 842 if zone.shared && zone.file.is_some() && zone.host_numa_node.is_some() { 843 error!( 844 "Invalid to set host NUMA policy for a memory zone \ 845 backed by a regular file and mapped as 'shared'" 846 ); 847 return Err(Error::InvalidSharedMemoryZoneWithHostNuma); 848 } 849 850 if zone.hotplug_size.is_some() && config.hotplug_method == HotplugMethod::Acpi { 851 error!("Invalid to set ACPI hotplug method for memory zones"); 852 return Err(Error::InvalidHotplugMethodWithMemoryZones); 853 } 854 855 if let Some(hotplugged_size) = zone.hotplugged_size { 856 if let Some(hotplug_size) = zone.hotplug_size { 857 if hotplugged_size > hotplug_size { 858 error!( 859 "'hotplugged_size' {} can't be bigger than \ 860 'hotplug_size' {}", 861 hotplugged_size, hotplug_size, 862 ); 863 return Err(Error::InvalidMemoryParameters); 864 } 865 } else { 866 error!( 867 "Invalid to define 'hotplugged_size' when there is\ 868 no 'hotplug_size' for a memory zone" 869 ); 870 return Err(Error::InvalidMemoryParameters); 871 } 872 if config.hotplug_method == HotplugMethod::Acpi { 873 error!( 874 "Invalid to define 'hotplugged_size' with hotplug \ 875 method 'acpi'" 876 ); 877 return Err(Error::InvalidMemoryParameters); 878 } 879 } 880 } 881 882 Ok((total_ram_size, zones, allow_mem_hotplug)) 883 } 884 } 885 886 pub fn allocate_address_space(&mut self) -> Result<(), Error> { 887 let mut list = Vec::new(); 888 889 for (zone_id, memory_zone) in self.memory_zones.iter() { 890 let mut regions: Vec<(Arc<vm_memory::GuestRegionMmap<AtomicBitmap>>, bool)> = 891 memory_zone 892 .regions() 893 .iter() 894 .map(|r| (r.clone(), false)) 895 .collect(); 896 897 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 898 regions.push((virtio_mem_zone.region().clone(), true)); 899 } 900 901 list.push((zone_id.clone(), regions)); 902 } 903 904 for (zone_id, regions) in list { 905 for (region, virtio_mem) in regions { 906 let slot = self.create_userspace_mapping( 907 region.start_addr().raw_value(), 908 region.len(), 909 region.as_ptr() as u64, 910 self.mergeable, 911 false, 912 self.log_dirty, 913 )?; 914 915 let file_offset = if let Some(file_offset) = region.file_offset() { 916 file_offset.start() 917 } else { 918 0 919 }; 920 921 self.guest_ram_mappings.push(GuestRamMapping { 922 gpa: region.start_addr().raw_value(), 923 size: region.len(), 924 slot, 925 zone_id: zone_id.clone(), 926 virtio_mem, 927 file_offset, 928 }); 929 self.ram_allocator 930 .allocate(Some(region.start_addr()), region.len(), None) 931 .ok_or(Error::MemoryRangeAllocation)?; 932 } 933 } 934 935 // Allocate SubRegion and Reserved address ranges. 936 for region in self.arch_mem_regions.iter() { 937 if region.r_type == RegionType::Ram { 938 // Ignore the RAM type since ranges have already been allocated 939 // based on the GuestMemory regions. 940 continue; 941 } 942 self.ram_allocator 943 .allocate( 944 Some(GuestAddress(region.base)), 945 region.size as GuestUsize, 946 None, 947 ) 948 .ok_or(Error::MemoryRangeAllocation)?; 949 } 950 951 Ok(()) 952 } 953 954 #[cfg(target_arch = "aarch64")] 955 fn add_uefi_flash(&mut self) -> Result<(), Error> { 956 // On AArch64, the UEFI binary requires a flash device at address 0. 957 // 4 MiB memory is mapped to simulate the flash. 958 let uefi_mem_slot = self.allocate_memory_slot(); 959 let uefi_region = GuestRegionMmap::new( 960 MmapRegion::new(arch::layout::UEFI_SIZE as usize).unwrap(), 961 arch::layout::UEFI_START, 962 ) 963 .unwrap(); 964 let uefi_mem_region = self.vm.make_user_memory_region( 965 uefi_mem_slot, 966 uefi_region.start_addr().raw_value(), 967 uefi_region.len(), 968 uefi_region.as_ptr() as u64, 969 false, 970 false, 971 ); 972 self.vm 973 .create_user_memory_region(uefi_mem_region) 974 .map_err(Error::CreateUefiFlash)?; 975 976 let uefi_flash = 977 GuestMemoryAtomic::new(GuestMemoryMmap::from_regions(vec![uefi_region]).unwrap()); 978 979 self.uefi_flash = Some(uefi_flash); 980 981 Ok(()) 982 } 983 984 #[allow(clippy::too_many_arguments)] 985 pub fn new( 986 vm: Arc<dyn hypervisor::Vm>, 987 config: &MemoryConfig, 988 prefault: Option<bool>, 989 phys_bits: u8, 990 #[cfg(feature = "tdx")] tdx_enabled: bool, 991 restore_data: Option<&MemoryManagerSnapshotData>, 992 existing_memory_files: Option<HashMap<u32, File>>, 993 #[cfg(target_arch = "x86_64")] sgx_epc_config: Option<Vec<SgxEpcConfig>>, 994 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 995 trace_scoped!("MemoryManager::new"); 996 997 let user_provided_zones = config.size == 0; 998 999 let mmio_address_space_size = mmio_address_space_size(phys_bits); 1000 debug_assert_eq!( 1001 (((mmio_address_space_size) >> 16) << 16), 1002 mmio_address_space_size 1003 ); 1004 let start_of_platform_device_area = 1005 GuestAddress(mmio_address_space_size - PLATFORM_DEVICE_AREA_SIZE); 1006 let end_of_device_area = start_of_platform_device_area.unchecked_sub(1); 1007 1008 let (ram_size, zones, allow_mem_hotplug) = 1009 Self::validate_memory_config(config, user_provided_zones)?; 1010 1011 let ( 1012 start_of_device_area, 1013 boot_ram, 1014 current_ram, 1015 arch_mem_regions, 1016 memory_zones, 1017 guest_memory, 1018 boot_guest_memory, 1019 hotplug_slots, 1020 next_memory_slot, 1021 selected_slot, 1022 next_hotplug_slot, 1023 ) = if let Some(data) = restore_data { 1024 let (regions, memory_zones) = Self::restore_memory_regions_and_zones( 1025 &data.guest_ram_mappings, 1026 &zones, 1027 prefault, 1028 existing_memory_files.unwrap_or_default(), 1029 config.thp, 1030 )?; 1031 let guest_memory = 1032 GuestMemoryMmap::from_arc_regions(regions).map_err(Error::GuestMemory)?; 1033 let boot_guest_memory = guest_memory.clone(); 1034 ( 1035 GuestAddress(data.start_of_device_area), 1036 data.boot_ram, 1037 data.current_ram, 1038 data.arch_mem_regions.clone(), 1039 memory_zones, 1040 guest_memory, 1041 boot_guest_memory, 1042 data.hotplug_slots.clone(), 1043 data.next_memory_slot, 1044 data.selected_slot, 1045 data.next_hotplug_slot, 1046 ) 1047 } else { 1048 // Init guest memory 1049 let arch_mem_regions = arch::arch_memory_regions(); 1050 1051 let ram_regions: Vec<(GuestAddress, usize)> = arch_mem_regions 1052 .iter() 1053 .filter(|r| r.2 == RegionType::Ram) 1054 .map(|r| (r.0, r.1)) 1055 .collect(); 1056 1057 let arch_mem_regions: Vec<ArchMemRegion> = arch_mem_regions 1058 .iter() 1059 .map(|(a, b, c)| ArchMemRegion { 1060 base: a.0, 1061 size: *b, 1062 r_type: *c, 1063 }) 1064 .collect(); 1065 1066 let (mem_regions, mut memory_zones) = 1067 Self::create_memory_regions_from_zones(&ram_regions, &zones, prefault, config.thp)?; 1068 1069 let mut guest_memory = 1070 GuestMemoryMmap::from_arc_regions(mem_regions).map_err(Error::GuestMemory)?; 1071 1072 let boot_guest_memory = guest_memory.clone(); 1073 1074 let mut start_of_device_area = 1075 MemoryManager::start_addr(guest_memory.last_addr(), allow_mem_hotplug)?; 1076 1077 // Update list of memory zones for resize. 1078 for zone in zones.iter() { 1079 if let Some(memory_zone) = memory_zones.get_mut(&zone.id) { 1080 if let Some(hotplug_size) = zone.hotplug_size { 1081 if hotplug_size == 0 { 1082 error!("'hotplug_size' can't be 0"); 1083 return Err(Error::InvalidHotplugSize); 1084 } 1085 1086 if !user_provided_zones && config.hotplug_method == HotplugMethod::Acpi { 1087 start_of_device_area = start_of_device_area 1088 .checked_add(hotplug_size) 1089 .ok_or(Error::GuestAddressOverFlow)?; 1090 } else { 1091 // Alignment must be "natural" i.e. same as size of block 1092 let start_addr = GuestAddress( 1093 start_of_device_area 1094 .0 1095 .div_ceil(virtio_devices::VIRTIO_MEM_ALIGN_SIZE) 1096 * virtio_devices::VIRTIO_MEM_ALIGN_SIZE, 1097 ); 1098 1099 // When `prefault` is set by vm_restore, memory manager 1100 // will create ram region with `prefault` option in 1101 // restore config rather than same option in zone 1102 let region = MemoryManager::create_ram_region( 1103 &None, 1104 0, 1105 start_addr, 1106 hotplug_size as usize, 1107 prefault.unwrap_or(zone.prefault), 1108 zone.shared, 1109 zone.hugepages, 1110 zone.hugepage_size, 1111 zone.host_numa_node, 1112 None, 1113 config.thp, 1114 )?; 1115 1116 guest_memory = guest_memory 1117 .insert_region(Arc::clone(®ion)) 1118 .map_err(Error::GuestMemory)?; 1119 1120 let hotplugged_size = zone.hotplugged_size.unwrap_or(0); 1121 let region_size = region.len(); 1122 memory_zone.virtio_mem_zone = Some(VirtioMemZone { 1123 region, 1124 virtio_device: None, 1125 hotplugged_size, 1126 hugepages: zone.hugepages, 1127 blocks_state: Arc::new(Mutex::new(BlocksState::new(region_size))), 1128 }); 1129 1130 start_of_device_area = start_addr 1131 .checked_add(hotplug_size) 1132 .ok_or(Error::GuestAddressOverFlow)?; 1133 } 1134 } 1135 } else { 1136 return Err(Error::MissingZoneIdentifier); 1137 } 1138 } 1139 1140 let mut hotplug_slots = Vec::with_capacity(HOTPLUG_COUNT); 1141 hotplug_slots.resize_with(HOTPLUG_COUNT, HotPlugState::default); 1142 1143 ( 1144 start_of_device_area, 1145 ram_size, 1146 ram_size, 1147 arch_mem_regions, 1148 memory_zones, 1149 guest_memory, 1150 boot_guest_memory, 1151 hotplug_slots, 1152 0, 1153 0, 1154 0, 1155 ) 1156 }; 1157 1158 let guest_memory = GuestMemoryAtomic::new(guest_memory); 1159 1160 let allocator = Arc::new(Mutex::new( 1161 SystemAllocator::new( 1162 GuestAddress(0), 1163 1 << 16, 1164 start_of_platform_device_area, 1165 PLATFORM_DEVICE_AREA_SIZE, 1166 #[cfg(target_arch = "x86_64")] 1167 vec![GsiApic::new( 1168 X86_64_IRQ_BASE, 1169 ioapic::NUM_IOAPIC_PINS as u32 - X86_64_IRQ_BASE, 1170 )], 1171 ) 1172 .ok_or(Error::CreateSystemAllocator)?, 1173 )); 1174 1175 #[cfg(not(feature = "tdx"))] 1176 let dynamic = true; 1177 #[cfg(feature = "tdx")] 1178 let dynamic = !tdx_enabled; 1179 1180 let acpi_address = if dynamic 1181 && config.hotplug_method == HotplugMethod::Acpi 1182 && (config.hotplug_size.unwrap_or_default() > 0) 1183 { 1184 Some( 1185 allocator 1186 .lock() 1187 .unwrap() 1188 .allocate_platform_mmio_addresses(None, MEMORY_MANAGER_ACPI_SIZE as u64, None) 1189 .ok_or(Error::AllocateMmioAddress)?, 1190 ) 1191 } else { 1192 None 1193 }; 1194 1195 // If running on SGX the start of device area and RAM area may diverge but 1196 // at this point they are next to each other. 1197 let end_of_ram_area = start_of_device_area.unchecked_sub(1); 1198 let ram_allocator = AddressAllocator::new(GuestAddress(0), start_of_device_area.0).unwrap(); 1199 1200 let mut memory_manager = MemoryManager { 1201 boot_guest_memory, 1202 guest_memory, 1203 next_memory_slot: Arc::new(AtomicU32::new(next_memory_slot)), 1204 memory_slot_free_list: Arc::new(Mutex::new(Vec::new())), 1205 start_of_device_area, 1206 end_of_device_area, 1207 end_of_ram_area, 1208 vm, 1209 hotplug_slots, 1210 selected_slot, 1211 mergeable: config.mergeable, 1212 allocator, 1213 hotplug_method: config.hotplug_method, 1214 boot_ram, 1215 current_ram, 1216 next_hotplug_slot, 1217 shared: config.shared, 1218 hugepages: config.hugepages, 1219 hugepage_size: config.hugepage_size, 1220 prefault: config.prefault, 1221 #[cfg(target_arch = "x86_64")] 1222 sgx_epc_region: None, 1223 user_provided_zones, 1224 snapshot_memory_ranges: MemoryRangeTable::default(), 1225 memory_zones, 1226 guest_ram_mappings: Vec::new(), 1227 acpi_address, 1228 log_dirty: dynamic, // Cannot log dirty pages on a TD 1229 arch_mem_regions, 1230 ram_allocator, 1231 dynamic, 1232 #[cfg(target_arch = "aarch64")] 1233 uefi_flash: None, 1234 thp: config.thp, 1235 }; 1236 1237 #[cfg(target_arch = "aarch64")] 1238 { 1239 // For Aarch64 we cannot lazily allocate the address space like we 1240 // do for x86, because while restoring a VM from snapshot we would 1241 // need the address space to be allocated to properly restore VGIC. 1242 // And the restore of VGIC happens before we attempt to run the vCPUs 1243 // for the first time, thus we need to allocate the address space 1244 // beforehand. 1245 memory_manager.allocate_address_space()?; 1246 memory_manager.add_uefi_flash()?; 1247 } 1248 1249 #[cfg(target_arch = "riscv64")] 1250 { 1251 memory_manager.allocate_address_space()?; 1252 } 1253 1254 #[cfg(target_arch = "x86_64")] 1255 if let Some(sgx_epc_config) = sgx_epc_config { 1256 memory_manager.setup_sgx(sgx_epc_config)?; 1257 } 1258 1259 Ok(Arc::new(Mutex::new(memory_manager))) 1260 } 1261 1262 pub fn new_from_snapshot( 1263 snapshot: &Snapshot, 1264 vm: Arc<dyn hypervisor::Vm>, 1265 config: &MemoryConfig, 1266 source_url: Option<&str>, 1267 prefault: bool, 1268 phys_bits: u8, 1269 ) -> Result<Arc<Mutex<MemoryManager>>, Error> { 1270 if let Some(source_url) = source_url { 1271 let mut memory_file_path = url_to_path(source_url).map_err(Error::Restore)?; 1272 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 1273 1274 let mem_snapshot: MemoryManagerSnapshotData = 1275 snapshot.to_state().map_err(Error::Restore)?; 1276 1277 let mm = MemoryManager::new( 1278 vm, 1279 config, 1280 Some(prefault), 1281 phys_bits, 1282 #[cfg(feature = "tdx")] 1283 false, 1284 Some(&mem_snapshot), 1285 None, 1286 #[cfg(target_arch = "x86_64")] 1287 None, 1288 )?; 1289 1290 mm.lock() 1291 .unwrap() 1292 .fill_saved_regions(memory_file_path, mem_snapshot.memory_ranges)?; 1293 1294 Ok(mm) 1295 } else { 1296 Err(Error::RestoreMissingSourceUrl) 1297 } 1298 } 1299 1300 fn memfd_create(name: &ffi::CStr, flags: u32) -> Result<RawFd, io::Error> { 1301 // SAFETY: FFI call with correct arguments 1302 let res = unsafe { libc::syscall(libc::SYS_memfd_create, name.as_ptr(), flags) }; 1303 1304 if res < 0 { 1305 Err(io::Error::last_os_error()) 1306 } else { 1307 Ok(res as RawFd) 1308 } 1309 } 1310 1311 fn mbind( 1312 addr: *mut u8, 1313 len: u64, 1314 mode: u32, 1315 nodemask: Vec<u64>, 1316 maxnode: u64, 1317 flags: u32, 1318 ) -> Result<(), io::Error> { 1319 // SAFETY: FFI call with correct arguments 1320 let res = unsafe { 1321 libc::syscall( 1322 libc::SYS_mbind, 1323 addr as *mut libc::c_void, 1324 len, 1325 mode, 1326 nodemask.as_ptr(), 1327 maxnode, 1328 flags, 1329 ) 1330 }; 1331 1332 if res < 0 { 1333 Err(io::Error::last_os_error()) 1334 } else { 1335 Ok(()) 1336 } 1337 } 1338 1339 fn create_anonymous_file( 1340 size: usize, 1341 hugepages: bool, 1342 hugepage_size: Option<u64>, 1343 ) -> Result<FileOffset, Error> { 1344 let fd = Self::memfd_create( 1345 &ffi::CString::new("ch_ram").unwrap(), 1346 libc::MFD_CLOEXEC 1347 | if hugepages { 1348 libc::MFD_HUGETLB 1349 | if let Some(hugepage_size) = hugepage_size { 1350 /* 1351 * From the Linux kernel: 1352 * Several system calls take a flag to request "hugetlb" huge pages. 1353 * Without further specification, these system calls will use the 1354 * system's default huge page size. If a system supports multiple 1355 * huge page sizes, the desired huge page size can be specified in 1356 * bits [26:31] of the flag arguments. The value in these 6 bits 1357 * will encode the log2 of the huge page size. 1358 */ 1359 1360 hugepage_size.trailing_zeros() << 26 1361 } else { 1362 // Use the system default huge page size 1363 0 1364 } 1365 } else { 1366 0 1367 }, 1368 ) 1369 .map_err(Error::SharedFileCreate)?; 1370 1371 // SAFETY: fd is valid 1372 let f = unsafe { File::from_raw_fd(fd) }; 1373 f.set_len(size as u64).map_err(Error::SharedFileSetLen)?; 1374 1375 Ok(FileOffset::new(f, 0)) 1376 } 1377 1378 fn open_backing_file(backing_file: &PathBuf, file_offset: u64) -> Result<FileOffset, Error> { 1379 if backing_file.is_dir() { 1380 Err(Error::DirectoryAsBackingFileForMemory) 1381 } else { 1382 let f = OpenOptions::new() 1383 .read(true) 1384 .write(true) 1385 .open(backing_file) 1386 .map_err(Error::SharedFileCreate)?; 1387 1388 Ok(FileOffset::new(f, file_offset)) 1389 } 1390 } 1391 1392 #[allow(clippy::too_many_arguments)] 1393 pub fn create_ram_region( 1394 backing_file: &Option<PathBuf>, 1395 file_offset: u64, 1396 start_addr: GuestAddress, 1397 size: usize, 1398 prefault: bool, 1399 shared: bool, 1400 hugepages: bool, 1401 hugepage_size: Option<u64>, 1402 host_numa_node: Option<u32>, 1403 existing_memory_file: Option<File>, 1404 thp: bool, 1405 ) -> Result<Arc<GuestRegionMmap>, Error> { 1406 let mut mmap_flags = libc::MAP_NORESERVE; 1407 1408 // The duplication of mmap_flags ORing here is unfortunate but it also makes 1409 // the complexity of the handling clear. 1410 let fo = if let Some(f) = existing_memory_file { 1411 // It must be MAP_SHARED as we wouldn't already have an FD 1412 mmap_flags |= libc::MAP_SHARED; 1413 Some(FileOffset::new(f, file_offset)) 1414 } else if let Some(backing_file) = backing_file { 1415 if shared { 1416 mmap_flags |= libc::MAP_SHARED; 1417 } else { 1418 mmap_flags |= libc::MAP_PRIVATE; 1419 } 1420 Some(Self::open_backing_file(backing_file, file_offset)?) 1421 } else if shared || hugepages { 1422 // For hugepages we must also MAP_SHARED otherwise we will trigger #4805 1423 // because the MAP_PRIVATE will trigger CoW against the backing file with 1424 // the VFIO pinning 1425 mmap_flags |= libc::MAP_SHARED; 1426 Some(Self::create_anonymous_file(size, hugepages, hugepage_size)?) 1427 } else { 1428 mmap_flags |= libc::MAP_PRIVATE | libc::MAP_ANONYMOUS; 1429 None 1430 }; 1431 1432 let region = GuestRegionMmap::new( 1433 MmapRegion::build(fo, size, libc::PROT_READ | libc::PROT_WRITE, mmap_flags) 1434 .map_err(Error::GuestMemoryRegion)?, 1435 start_addr, 1436 ) 1437 .map_err(Error::GuestMemory)?; 1438 1439 // Apply NUMA policy if needed. 1440 if let Some(node) = host_numa_node { 1441 let addr = region.deref().as_ptr(); 1442 let len = region.deref().size() as u64; 1443 let mode = MPOL_BIND; 1444 let mut nodemask: Vec<u64> = Vec::new(); 1445 let flags = MPOL_MF_STRICT | MPOL_MF_MOVE; 1446 1447 // Linux is kind of buggy in the way it interprets maxnode as it 1448 // will cut off the last node. That's why we have to add 1 to what 1449 // we would consider as the proper maxnode value. 1450 let maxnode = node as u64 + 1 + 1; 1451 1452 // Allocate the right size for the vector. 1453 nodemask.resize((node as usize / 64) + 1, 0); 1454 1455 // Fill the global bitmask through the nodemask vector. 1456 let idx = (node / 64) as usize; 1457 let shift = node % 64; 1458 nodemask[idx] |= 1u64 << shift; 1459 1460 // Policies are enforced by using MPOL_MF_MOVE flag as it will 1461 // force the kernel to move all pages that might have been already 1462 // allocated to the proper set of NUMA nodes. MPOL_MF_STRICT is 1463 // used to throw an error if MPOL_MF_MOVE didn't succeed. 1464 // MPOL_BIND is the selected mode as it specifies a strict policy 1465 // that restricts memory allocation to the nodes specified in the 1466 // nodemask. 1467 Self::mbind(addr, len, mode, nodemask, maxnode, flags) 1468 .map_err(Error::ApplyNumaPolicy)?; 1469 } 1470 1471 // Prefault the region if needed, in parallel. 1472 if prefault { 1473 let page_size = 1474 Self::get_prefault_align_size(backing_file, hugepages, hugepage_size)? as usize; 1475 1476 if !is_aligned(size, page_size) { 1477 warn!( 1478 "Prefaulting memory size {} misaligned with page size {}", 1479 size, page_size 1480 ); 1481 } 1482 1483 let num_pages = size / page_size; 1484 1485 let num_threads = Self::get_prefault_num_threads(page_size, num_pages); 1486 1487 let pages_per_thread = num_pages / num_threads; 1488 let remainder = num_pages % num_threads; 1489 1490 let barrier = Arc::new(Barrier::new(num_threads)); 1491 thread::scope(|s| { 1492 let r = ®ion; 1493 for i in 0..num_threads { 1494 let barrier = Arc::clone(&barrier); 1495 s.spawn(move || { 1496 // Wait until all threads have been spawned to avoid contention 1497 // over mmap_sem between thread stack allocation and page faulting. 1498 barrier.wait(); 1499 let pages = pages_per_thread + if i < remainder { 1 } else { 0 }; 1500 let offset = 1501 page_size * ((i * pages_per_thread) + std::cmp::min(i, remainder)); 1502 // SAFETY: FFI call with correct arguments 1503 let ret = unsafe { 1504 let addr = r.as_ptr().add(offset); 1505 libc::madvise(addr as _, pages * page_size, libc::MADV_POPULATE_WRITE) 1506 }; 1507 if ret != 0 { 1508 let e = io::Error::last_os_error(); 1509 warn!("Failed to prefault pages: {}", e); 1510 } 1511 }); 1512 } 1513 }); 1514 } 1515 1516 if region.file_offset().is_none() && thp { 1517 info!( 1518 "Anonymous mapping at 0x{:x} (size = 0x{:x})", 1519 region.as_ptr() as u64, 1520 size 1521 ); 1522 // SAFETY: FFI call with correct arguments 1523 let ret = unsafe { libc::madvise(region.as_ptr() as _, size, libc::MADV_HUGEPAGE) }; 1524 if ret != 0 { 1525 let e = io::Error::last_os_error(); 1526 warn!("Failed to mark pages as THP eligible: {}", e); 1527 } 1528 } 1529 1530 Ok(Arc::new(region)) 1531 } 1532 1533 // Duplicate of `memory_zone_get_align_size` that does not require a `zone` 1534 fn get_prefault_align_size( 1535 backing_file: &Option<PathBuf>, 1536 hugepages: bool, 1537 hugepage_size: Option<u64>, 1538 ) -> Result<u64, Error> { 1539 // SAFETY: FFI call. Trivially safe. 1540 let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }; 1541 match (hugepages, hugepage_size, backing_file) { 1542 (false, _, _) => Ok(page_size), 1543 (true, Some(hugepage_size), _) => Ok(hugepage_size), 1544 (true, None, _) => { 1545 // There are two scenarios here: 1546 // - `hugepages` is enabled but `hugepage_size` is not specified: 1547 // Call `statfs` for `/dev/hugepages` for getting the default size of hugepage 1548 // - The backing file is specified: 1549 // Call `statfs` for the file and get its `f_bsize`. If the value is larger than the page 1550 // size of normal page, just use the `f_bsize` because the file is in a hugetlbfs. If the 1551 // value is less than or equal to the page size, just use the page size. 1552 let path = backing_file 1553 .as_ref() 1554 .map_or(Ok("/dev/hugepages"), |pathbuf| { 1555 pathbuf.to_str().ok_or(Error::InvalidMemoryParameters) 1556 })?; 1557 let align_size = std::cmp::max(page_size, statfs_get_bsize(path)?); 1558 Ok(align_size) 1559 } 1560 } 1561 } 1562 1563 fn get_prefault_num_threads(page_size: usize, num_pages: usize) -> usize { 1564 let mut n: usize = 1; 1565 1566 // Do not create more threads than processors available. 1567 // SAFETY: FFI call. Trivially safe. 1568 let procs = unsafe { libc::sysconf(_SC_NPROCESSORS_ONLN) }; 1569 if procs > 0 { 1570 n = std::cmp::min(procs as usize, MAX_PREFAULT_THREAD_COUNT); 1571 } 1572 1573 // Do not create more threads than pages being allocated. 1574 n = std::cmp::min(n, num_pages); 1575 1576 // Do not create threads to allocate less than 64 MiB of memory. 1577 n = std::cmp::min( 1578 n, 1579 std::cmp::max(1, page_size * num_pages / (64 * (1 << 26))), 1580 ); 1581 1582 n 1583 } 1584 1585 // Update the GuestMemoryMmap with the new range 1586 fn add_region(&mut self, region: Arc<GuestRegionMmap>) -> Result<(), Error> { 1587 let guest_memory = self 1588 .guest_memory 1589 .memory() 1590 .insert_region(region) 1591 .map_err(Error::GuestMemory)?; 1592 self.guest_memory.lock().unwrap().replace(guest_memory); 1593 1594 Ok(()) 1595 } 1596 1597 // 1598 // Calculate the start address of an area next to RAM. 1599 // 1600 // If memory hotplug is allowed, the start address needs to be aligned 1601 // (rounded-up) to 128MiB boundary. 1602 // If memory hotplug is not allowed, there is no alignment required. 1603 // And it must also start at the 64bit start. 1604 fn start_addr(mem_end: GuestAddress, allow_mem_hotplug: bool) -> Result<GuestAddress, Error> { 1605 let mut start_addr = if allow_mem_hotplug { 1606 GuestAddress(mem_end.0 | ((128 << 20) - 1)) 1607 } else { 1608 mem_end 1609 }; 1610 1611 start_addr = start_addr 1612 .checked_add(1) 1613 .ok_or(Error::GuestAddressOverFlow)?; 1614 1615 #[cfg(not(target_arch = "riscv64"))] 1616 if mem_end < arch::layout::MEM_32BIT_RESERVED_START { 1617 return Ok(arch::layout::RAM_64BIT_START); 1618 } 1619 1620 Ok(start_addr) 1621 } 1622 1623 pub fn add_ram_region( 1624 &mut self, 1625 start_addr: GuestAddress, 1626 size: usize, 1627 ) -> Result<Arc<GuestRegionMmap>, Error> { 1628 // Allocate memory for the region 1629 let region = MemoryManager::create_ram_region( 1630 &None, 1631 0, 1632 start_addr, 1633 size, 1634 self.prefault, 1635 self.shared, 1636 self.hugepages, 1637 self.hugepage_size, 1638 None, 1639 None, 1640 self.thp, 1641 )?; 1642 1643 // Map it into the guest 1644 let slot = self.create_userspace_mapping( 1645 region.start_addr().0, 1646 region.len(), 1647 region.as_ptr() as u64, 1648 self.mergeable, 1649 false, 1650 self.log_dirty, 1651 )?; 1652 self.guest_ram_mappings.push(GuestRamMapping { 1653 gpa: region.start_addr().raw_value(), 1654 size: region.len(), 1655 slot, 1656 zone_id: DEFAULT_MEMORY_ZONE.to_string(), 1657 virtio_mem: false, 1658 file_offset: 0, 1659 }); 1660 1661 self.add_region(Arc::clone(®ion))?; 1662 1663 Ok(region) 1664 } 1665 1666 fn hotplug_ram_region(&mut self, size: usize) -> Result<Arc<GuestRegionMmap>, Error> { 1667 info!("Hotplugging new RAM: {}", size); 1668 1669 // Check that there is a free slot 1670 if self.next_hotplug_slot >= HOTPLUG_COUNT { 1671 return Err(Error::NoSlotAvailable); 1672 } 1673 1674 // "Inserted" DIMM must have a size that is a multiple of 128MiB 1675 if size % (128 << 20) != 0 { 1676 return Err(Error::InvalidSize); 1677 } 1678 1679 let start_addr = MemoryManager::start_addr(self.guest_memory.memory().last_addr(), true)?; 1680 1681 if start_addr 1682 .checked_add((size - 1).try_into().unwrap()) 1683 .unwrap() 1684 > self.end_of_ram_area 1685 { 1686 return Err(Error::InsufficientHotplugRam); 1687 } 1688 1689 let region = self.add_ram_region(start_addr, size)?; 1690 1691 // Add region to the list of regions associated with the default 1692 // memory zone. 1693 if let Some(memory_zone) = self.memory_zones.get_mut(DEFAULT_MEMORY_ZONE) { 1694 memory_zone.regions.push(Arc::clone(®ion)); 1695 } 1696 1697 // Tell the allocator 1698 self.ram_allocator 1699 .allocate(Some(start_addr), size as GuestUsize, None) 1700 .ok_or(Error::MemoryRangeAllocation)?; 1701 1702 // Update the slot so that it can be queried via the I/O port 1703 let slot = &mut self.hotplug_slots[self.next_hotplug_slot]; 1704 slot.active = true; 1705 slot.inserting = true; 1706 slot.base = region.start_addr().0; 1707 slot.length = region.len(); 1708 1709 self.next_hotplug_slot += 1; 1710 1711 Ok(region) 1712 } 1713 1714 pub fn guest_memory(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 1715 self.guest_memory.clone() 1716 } 1717 1718 pub fn boot_guest_memory(&self) -> GuestMemoryMmap { 1719 self.boot_guest_memory.clone() 1720 } 1721 1722 pub fn allocator(&self) -> Arc<Mutex<SystemAllocator>> { 1723 self.allocator.clone() 1724 } 1725 1726 pub fn start_of_device_area(&self) -> GuestAddress { 1727 self.start_of_device_area 1728 } 1729 1730 pub fn end_of_device_area(&self) -> GuestAddress { 1731 self.end_of_device_area 1732 } 1733 1734 pub fn memory_slot_allocator(&mut self) -> MemorySlotAllocator { 1735 let memory_slot_free_list = Arc::clone(&self.memory_slot_free_list); 1736 let next_memory_slot = Arc::clone(&self.next_memory_slot); 1737 MemorySlotAllocator::new(next_memory_slot, memory_slot_free_list) 1738 } 1739 1740 pub fn allocate_memory_slot(&mut self) -> u32 { 1741 self.memory_slot_allocator().next_memory_slot() 1742 } 1743 1744 pub fn create_userspace_mapping( 1745 &mut self, 1746 guest_phys_addr: u64, 1747 memory_size: u64, 1748 userspace_addr: u64, 1749 mergeable: bool, 1750 readonly: bool, 1751 log_dirty: bool, 1752 ) -> Result<u32, Error> { 1753 let slot = self.allocate_memory_slot(); 1754 let mem_region = self.vm.make_user_memory_region( 1755 slot, 1756 guest_phys_addr, 1757 memory_size, 1758 userspace_addr, 1759 readonly, 1760 log_dirty, 1761 ); 1762 1763 info!( 1764 "Creating userspace mapping: {:x} -> {:x} {:x}, slot {}", 1765 guest_phys_addr, userspace_addr, memory_size, slot 1766 ); 1767 1768 self.vm 1769 .create_user_memory_region(mem_region) 1770 .map_err(Error::CreateUserMemoryRegion)?; 1771 1772 // SAFETY: the address and size are valid since the 1773 // mmap succeeded. 1774 let ret = unsafe { 1775 libc::madvise( 1776 userspace_addr as *mut libc::c_void, 1777 memory_size as libc::size_t, 1778 libc::MADV_DONTDUMP, 1779 ) 1780 }; 1781 if ret != 0 { 1782 let e = io::Error::last_os_error(); 1783 warn!("Failed to mark mapping as MADV_DONTDUMP: {}", e); 1784 } 1785 1786 // Mark the pages as mergeable if explicitly asked for. 1787 if mergeable { 1788 // SAFETY: the address and size are valid since the 1789 // mmap succeeded. 1790 let ret = unsafe { 1791 libc::madvise( 1792 userspace_addr as *mut libc::c_void, 1793 memory_size as libc::size_t, 1794 libc::MADV_MERGEABLE, 1795 ) 1796 }; 1797 if ret != 0 { 1798 let err = io::Error::last_os_error(); 1799 // Safe to unwrap because the error is constructed with 1800 // last_os_error(), which ensures the output will be Some(). 1801 let errno = err.raw_os_error().unwrap(); 1802 if errno == libc::EINVAL { 1803 warn!("kernel not configured with CONFIG_KSM"); 1804 } else { 1805 warn!("madvise error: {}", err); 1806 } 1807 warn!("failed to mark pages as mergeable"); 1808 } 1809 } 1810 1811 info!( 1812 "Created userspace mapping: {:x} -> {:x} {:x}", 1813 guest_phys_addr, userspace_addr, memory_size 1814 ); 1815 1816 Ok(slot) 1817 } 1818 1819 pub fn remove_userspace_mapping( 1820 &mut self, 1821 guest_phys_addr: u64, 1822 memory_size: u64, 1823 userspace_addr: u64, 1824 mergeable: bool, 1825 slot: u32, 1826 ) -> Result<(), Error> { 1827 let mem_region = self.vm.make_user_memory_region( 1828 slot, 1829 guest_phys_addr, 1830 memory_size, 1831 userspace_addr, 1832 false, /* readonly -- don't care */ 1833 false, /* log dirty */ 1834 ); 1835 1836 self.vm 1837 .remove_user_memory_region(mem_region) 1838 .map_err(Error::RemoveUserMemoryRegion)?; 1839 1840 // Mark the pages as unmergeable if there were previously marked as 1841 // mergeable. 1842 if mergeable { 1843 // SAFETY: the address and size are valid as the region was 1844 // previously advised. 1845 let ret = unsafe { 1846 libc::madvise( 1847 userspace_addr as *mut libc::c_void, 1848 memory_size as libc::size_t, 1849 libc::MADV_UNMERGEABLE, 1850 ) 1851 }; 1852 if ret != 0 { 1853 let err = io::Error::last_os_error(); 1854 // Safe to unwrap because the error is constructed with 1855 // last_os_error(), which ensures the output will be Some(). 1856 let errno = err.raw_os_error().unwrap(); 1857 if errno == libc::EINVAL { 1858 warn!("kernel not configured with CONFIG_KSM"); 1859 } else { 1860 warn!("madvise error: {}", err); 1861 } 1862 warn!("failed to mark pages as unmergeable"); 1863 } 1864 } 1865 1866 info!( 1867 "Removed userspace mapping: {:x} -> {:x} {:x}", 1868 guest_phys_addr, userspace_addr, memory_size 1869 ); 1870 1871 Ok(()) 1872 } 1873 1874 pub fn virtio_mem_resize(&mut self, id: &str, size: u64) -> Result<(), Error> { 1875 if let Some(memory_zone) = self.memory_zones.get_mut(id) { 1876 if let Some(virtio_mem_zone) = &mut memory_zone.virtio_mem_zone { 1877 if let Some(virtio_mem_device) = virtio_mem_zone.virtio_device.as_ref() { 1878 virtio_mem_device 1879 .lock() 1880 .unwrap() 1881 .resize(size) 1882 .map_err(Error::VirtioMemResizeFail)?; 1883 } 1884 1885 // Keep the hotplugged_size up to date. 1886 virtio_mem_zone.hotplugged_size = size; 1887 } else { 1888 error!("Failed resizing virtio-mem region: No virtio-mem handler"); 1889 return Err(Error::MissingVirtioMemHandler); 1890 } 1891 1892 return Ok(()); 1893 } 1894 1895 error!("Failed resizing virtio-mem region: Unknown memory zone"); 1896 Err(Error::UnknownMemoryZone) 1897 } 1898 1899 /// In case this function resulted in adding a new memory region to the 1900 /// guest memory, the new region is returned to the caller. The virtio-mem 1901 /// use case never adds a new region as the whole hotpluggable memory has 1902 /// already been allocated at boot time. 1903 pub fn resize(&mut self, desired_ram: u64) -> Result<Option<Arc<GuestRegionMmap>>, Error> { 1904 if self.user_provided_zones { 1905 error!( 1906 "Not allowed to resize guest memory when backed with user \ 1907 defined memory zones." 1908 ); 1909 return Err(Error::InvalidResizeWithMemoryZones); 1910 } 1911 1912 let mut region: Option<Arc<GuestRegionMmap>> = None; 1913 match self.hotplug_method { 1914 HotplugMethod::VirtioMem => { 1915 if desired_ram >= self.boot_ram { 1916 if !self.dynamic { 1917 return Ok(region); 1918 } 1919 1920 self.virtio_mem_resize(DEFAULT_MEMORY_ZONE, desired_ram - self.boot_ram)?; 1921 self.current_ram = desired_ram; 1922 } 1923 } 1924 HotplugMethod::Acpi => { 1925 if desired_ram > self.current_ram { 1926 if !self.dynamic { 1927 return Ok(region); 1928 } 1929 1930 region = 1931 Some(self.hotplug_ram_region((desired_ram - self.current_ram) as usize)?); 1932 self.current_ram = desired_ram; 1933 } 1934 } 1935 } 1936 Ok(region) 1937 } 1938 1939 pub fn resize_zone(&mut self, id: &str, virtio_mem_size: u64) -> Result<(), Error> { 1940 if !self.user_provided_zones { 1941 error!( 1942 "Not allowed to resize guest memory zone when no zone is \ 1943 defined." 1944 ); 1945 return Err(Error::ResizeZone); 1946 } 1947 1948 self.virtio_mem_resize(id, virtio_mem_size) 1949 } 1950 1951 #[cfg(target_arch = "x86_64")] 1952 pub fn setup_sgx(&mut self, sgx_epc_config: Vec<SgxEpcConfig>) -> Result<(), Error> { 1953 let file = OpenOptions::new() 1954 .read(true) 1955 .open("/dev/sgx_provision") 1956 .map_err(Error::SgxProvisionOpen)?; 1957 self.vm 1958 .enable_sgx_attribute(file) 1959 .map_err(Error::SgxEnableProvisioning)?; 1960 1961 // Go over each EPC section and verify its size is a 4k multiple. At 1962 // the same time, calculate the total size needed for the contiguous 1963 // EPC region. 1964 let mut epc_region_size = 0; 1965 for epc_section in sgx_epc_config.iter() { 1966 if epc_section.size == 0 { 1967 return Err(Error::EpcSectionSizeInvalid); 1968 } 1969 if epc_section.size & (SGX_PAGE_SIZE - 1) != 0 { 1970 return Err(Error::EpcSectionSizeInvalid); 1971 } 1972 1973 epc_region_size += epc_section.size; 1974 } 1975 1976 // Place the SGX EPC region on a 4k boundary between the RAM and the device area 1977 let epc_region_start = 1978 GuestAddress(self.start_of_device_area.0.div_ceil(SGX_PAGE_SIZE) * SGX_PAGE_SIZE); 1979 1980 self.start_of_device_area = epc_region_start 1981 .checked_add(epc_region_size) 1982 .ok_or(Error::GuestAddressOverFlow)?; 1983 1984 let mut sgx_epc_region = SgxEpcRegion::new(epc_region_start, epc_region_size as GuestUsize); 1985 info!( 1986 "SGX EPC region: 0x{:x} (0x{:x})", 1987 epc_region_start.0, epc_region_size 1988 ); 1989 1990 // Each section can be memory mapped into the allocated region. 1991 let mut epc_section_start = epc_region_start.raw_value(); 1992 for epc_section in sgx_epc_config.iter() { 1993 let file = OpenOptions::new() 1994 .read(true) 1995 .write(true) 1996 .open("/dev/sgx_vepc") 1997 .map_err(Error::SgxVirtEpcOpen)?; 1998 1999 let prot = PROT_READ | PROT_WRITE; 2000 let mut flags = MAP_NORESERVE | MAP_SHARED; 2001 if epc_section.prefault { 2002 flags |= MAP_POPULATE; 2003 } 2004 2005 // We can't use the vm-memory crate to perform the memory mapping 2006 // here as it would try to ensure the size of the backing file is 2007 // matching the size of the expected mapping. The /dev/sgx_vepc 2008 // device does not work that way, it provides a file descriptor 2009 // which is not matching the mapping size, as it's a just a way to 2010 // let KVM know that an EPC section is being created for the guest. 2011 // SAFETY: FFI call with correct arguments 2012 let host_addr = unsafe { 2013 libc::mmap( 2014 std::ptr::null_mut(), 2015 epc_section.size as usize, 2016 prot, 2017 flags, 2018 file.as_raw_fd(), 2019 0, 2020 ) 2021 } as u64; 2022 2023 info!( 2024 "Adding SGX EPC section: 0x{:x} (0x{:x})", 2025 epc_section_start, epc_section.size 2026 ); 2027 2028 let _mem_slot = self.create_userspace_mapping( 2029 epc_section_start, 2030 epc_section.size, 2031 host_addr, 2032 false, 2033 false, 2034 false, 2035 )?; 2036 2037 sgx_epc_region.insert( 2038 epc_section.id.clone(), 2039 SgxEpcSection::new( 2040 GuestAddress(epc_section_start), 2041 epc_section.size as GuestUsize, 2042 ), 2043 ); 2044 2045 epc_section_start += epc_section.size; 2046 } 2047 2048 self.sgx_epc_region = Some(sgx_epc_region); 2049 2050 Ok(()) 2051 } 2052 2053 #[cfg(target_arch = "x86_64")] 2054 pub fn sgx_epc_region(&self) -> &Option<SgxEpcRegion> { 2055 &self.sgx_epc_region 2056 } 2057 2058 pub fn is_hardlink(f: &File) -> bool { 2059 let mut stat = std::mem::MaybeUninit::<libc::stat>::uninit(); 2060 // SAFETY: FFI call with correct arguments 2061 let ret = unsafe { libc::fstat(f.as_raw_fd(), stat.as_mut_ptr()) }; 2062 if ret != 0 { 2063 error!("Couldn't fstat the backing file"); 2064 return false; 2065 } 2066 2067 // SAFETY: stat is valid 2068 unsafe { (*stat.as_ptr()).st_nlink as usize > 0 } 2069 } 2070 2071 pub fn memory_zones(&self) -> &MemoryZones { 2072 &self.memory_zones 2073 } 2074 2075 pub fn memory_zones_mut(&mut self) -> &mut MemoryZones { 2076 &mut self.memory_zones 2077 } 2078 2079 pub fn memory_range_table( 2080 &self, 2081 snapshot: bool, 2082 ) -> std::result::Result<MemoryRangeTable, MigratableError> { 2083 let mut table = MemoryRangeTable::default(); 2084 2085 for memory_zone in self.memory_zones.values() { 2086 if let Some(virtio_mem_zone) = memory_zone.virtio_mem_zone() { 2087 table.extend(virtio_mem_zone.plugged_ranges()); 2088 } 2089 2090 for region in memory_zone.regions() { 2091 if snapshot { 2092 if let Some(file_offset) = region.file_offset() { 2093 if (region.flags() & libc::MAP_SHARED == libc::MAP_SHARED) 2094 && Self::is_hardlink(file_offset.file()) 2095 { 2096 // In this very specific case, we know the memory 2097 // region is backed by a file on the host filesystem 2098 // that can be accessed by the user, and additionally 2099 // the mapping is shared, which means that modifications 2100 // to the content are written to the actual file. 2101 // When meeting these conditions, we can skip the 2102 // copy of the memory content for this specific region, 2103 // as we can assume the user will have it saved through 2104 // the backing file already. 2105 continue; 2106 } 2107 } 2108 } 2109 2110 table.push(MemoryRange { 2111 gpa: region.start_addr().raw_value(), 2112 length: region.len(), 2113 }); 2114 } 2115 } 2116 2117 Ok(table) 2118 } 2119 2120 pub fn snapshot_data(&self) -> MemoryManagerSnapshotData { 2121 MemoryManagerSnapshotData { 2122 memory_ranges: self.snapshot_memory_ranges.clone(), 2123 guest_ram_mappings: self.guest_ram_mappings.clone(), 2124 start_of_device_area: self.start_of_device_area.0, 2125 boot_ram: self.boot_ram, 2126 current_ram: self.current_ram, 2127 arch_mem_regions: self.arch_mem_regions.clone(), 2128 hotplug_slots: self.hotplug_slots.clone(), 2129 next_memory_slot: self.next_memory_slot.load(Ordering::SeqCst), 2130 selected_slot: self.selected_slot, 2131 next_hotplug_slot: self.next_hotplug_slot, 2132 } 2133 } 2134 2135 pub fn memory_slot_fds(&self) -> HashMap<u32, RawFd> { 2136 let mut memory_slot_fds = HashMap::new(); 2137 for guest_ram_mapping in &self.guest_ram_mappings { 2138 let slot = guest_ram_mapping.slot; 2139 let guest_memory = self.guest_memory.memory(); 2140 let file = guest_memory 2141 .find_region(GuestAddress(guest_ram_mapping.gpa)) 2142 .unwrap() 2143 .file_offset() 2144 .unwrap() 2145 .file(); 2146 memory_slot_fds.insert(slot, file.as_raw_fd()); 2147 } 2148 memory_slot_fds 2149 } 2150 2151 pub fn acpi_address(&self) -> Option<GuestAddress> { 2152 self.acpi_address 2153 } 2154 2155 pub fn num_guest_ram_mappings(&self) -> u32 { 2156 self.guest_ram_mappings.len() as u32 2157 } 2158 2159 #[cfg(target_arch = "aarch64")] 2160 pub fn uefi_flash(&self) -> GuestMemoryAtomic<GuestMemoryMmap> { 2161 self.uefi_flash.as_ref().unwrap().clone() 2162 } 2163 2164 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2165 pub fn coredump_memory_regions(&self, mem_offset: u64) -> CoredumpMemoryRegions { 2166 let mut mapping_sorted_by_gpa = self.guest_ram_mappings.clone(); 2167 mapping_sorted_by_gpa.sort_by_key(|m| m.gpa); 2168 2169 let mut mem_offset_in_elf = mem_offset; 2170 let mut ram_maps = BTreeMap::new(); 2171 for mapping in mapping_sorted_by_gpa.iter() { 2172 ram_maps.insert( 2173 mapping.gpa, 2174 CoredumpMemoryRegion { 2175 mem_offset_in_elf, 2176 mem_size: mapping.size, 2177 }, 2178 ); 2179 mem_offset_in_elf += mapping.size; 2180 } 2181 2182 CoredumpMemoryRegions { ram_maps } 2183 } 2184 2185 #[cfg(all(target_arch = "x86_64", feature = "guest_debug"))] 2186 pub fn coredump_iterate_save_mem( 2187 &mut self, 2188 dump_state: &DumpState, 2189 ) -> std::result::Result<(), GuestDebuggableError> { 2190 let snapshot_memory_ranges = self 2191 .memory_range_table(false) 2192 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2193 2194 if snapshot_memory_ranges.is_empty() { 2195 return Ok(()); 2196 } 2197 2198 let coredump_file = dump_state.file.as_ref().unwrap(); 2199 2200 let guest_memory = self.guest_memory.memory(); 2201 let mut total_bytes: u64 = 0; 2202 2203 for range in snapshot_memory_ranges.regions() { 2204 let mut offset: u64 = 0; 2205 loop { 2206 let bytes_written = guest_memory 2207 .write_volatile_to( 2208 GuestAddress(range.gpa + offset), 2209 &mut coredump_file.as_fd(), 2210 (range.length - offset) as usize, 2211 ) 2212 .map_err(|e| GuestDebuggableError::Coredump(e.into()))?; 2213 offset += bytes_written as u64; 2214 total_bytes += bytes_written as u64; 2215 2216 if offset == range.length { 2217 break; 2218 } 2219 } 2220 } 2221 2222 debug!("coredump total bytes {}", total_bytes); 2223 Ok(()) 2224 } 2225 2226 pub fn receive_memory_regions<F>( 2227 &mut self, 2228 ranges: &MemoryRangeTable, 2229 fd: &mut F, 2230 ) -> std::result::Result<(), MigratableError> 2231 where 2232 F: ReadVolatile, 2233 { 2234 let guest_memory = self.guest_memory(); 2235 let mem = guest_memory.memory(); 2236 2237 for range in ranges.regions() { 2238 let mut offset: u64 = 0; 2239 // Here we are manually handling the retry in case we can't the 2240 // whole region at once because we can't use the implementation 2241 // from vm-memory::GuestMemory of read_exact_from() as it is not 2242 // following the correct behavior. For more info about this issue 2243 // see: https://github.com/rust-vmm/vm-memory/issues/174 2244 loop { 2245 let bytes_read = mem 2246 .read_volatile_from( 2247 GuestAddress(range.gpa + offset), 2248 fd, 2249 (range.length - offset) as usize, 2250 ) 2251 .map_err(|e| { 2252 MigratableError::MigrateReceive(anyhow!( 2253 "Error receiving memory from socket: {}", 2254 e 2255 )) 2256 })?; 2257 offset += bytes_read as u64; 2258 2259 if offset == range.length { 2260 break; 2261 } 2262 } 2263 } 2264 2265 Ok(()) 2266 } 2267 } 2268 2269 struct MemoryNotify { 2270 slot_id: usize, 2271 } 2272 2273 impl Aml for MemoryNotify { 2274 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2275 let object = aml::Path::new(&format!("M{:03}", self.slot_id)); 2276 aml::If::new( 2277 &aml::Equal::new(&aml::Arg(0), &self.slot_id), 2278 vec![&aml::Notify::new(&object, &aml::Arg(1))], 2279 ) 2280 .to_aml_bytes(sink) 2281 } 2282 } 2283 2284 struct MemorySlot { 2285 slot_id: usize, 2286 } 2287 2288 impl Aml for MemorySlot { 2289 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2290 aml::Device::new( 2291 format!("M{:03}", self.slot_id).as_str().into(), 2292 vec![ 2293 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0C80")), 2294 &aml::Name::new("_UID".into(), &self.slot_id), 2295 /* 2296 _STA return value: 2297 Bit [0] – Set if the device is present. 2298 Bit [1] – Set if the device is enabled and decoding its resources. 2299 Bit [2] – Set if the device should be shown in the UI. 2300 Bit [3] – Set if the device is functioning properly (cleared if device failed its diagnostics). 2301 Bit [4] – Set if the battery is present. 2302 Bits [31:5] – Reserved (must be cleared). 2303 */ 2304 &aml::Method::new( 2305 "_STA".into(), 2306 0, 2307 false, 2308 // Call into MSTA method which will interrogate device 2309 vec![&aml::Return::new(&aml::MethodCall::new( 2310 "MSTA".into(), 2311 vec![&self.slot_id], 2312 ))], 2313 ), 2314 // Get details of memory 2315 &aml::Method::new( 2316 "_CRS".into(), 2317 0, 2318 false, 2319 // Call into MCRS which provides actual memory details 2320 vec![&aml::Return::new(&aml::MethodCall::new( 2321 "MCRS".into(), 2322 vec![&self.slot_id], 2323 ))], 2324 ), 2325 ], 2326 ) 2327 .to_aml_bytes(sink) 2328 } 2329 } 2330 2331 struct MemorySlots { 2332 slots: usize, 2333 } 2334 2335 impl Aml for MemorySlots { 2336 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2337 for slot_id in 0..self.slots { 2338 MemorySlot { slot_id }.to_aml_bytes(sink); 2339 } 2340 } 2341 } 2342 2343 struct MemoryMethods { 2344 slots: usize, 2345 } 2346 2347 impl Aml for MemoryMethods { 2348 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2349 // Add "MTFY" notification method 2350 let mut memory_notifies = Vec::new(); 2351 for slot_id in 0..self.slots { 2352 memory_notifies.push(MemoryNotify { slot_id }); 2353 } 2354 2355 let mut memory_notifies_refs: Vec<&dyn Aml> = Vec::new(); 2356 for memory_notifier in memory_notifies.iter() { 2357 memory_notifies_refs.push(memory_notifier); 2358 } 2359 2360 aml::Method::new("MTFY".into(), 2, true, memory_notifies_refs).to_aml_bytes(sink); 2361 2362 // MSCN method 2363 aml::Method::new( 2364 "MSCN".into(), 2365 0, 2366 true, 2367 vec![ 2368 // Take lock defined above 2369 &aml::Acquire::new("MLCK".into(), 0xffff), 2370 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2371 &aml::While::new( 2372 &aml::LessThan::new(&aml::Local(0), &self.slots), 2373 vec![ 2374 // Write slot number (in first argument) to I/O port via field 2375 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Local(0)), 2376 // Check if MINS bit is set (inserting) 2377 &aml::If::new( 2378 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2379 // Notify device if it is 2380 vec![ 2381 &aml::MethodCall::new( 2382 "MTFY".into(), 2383 vec![&aml::Local(0), &aml::ONE], 2384 ), 2385 // Reset MINS bit 2386 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MINS"), &aml::ONE), 2387 ], 2388 ), 2389 // Check if MRMV bit is set 2390 &aml::If::new( 2391 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2392 // Notify device if it is (with the eject constant 0x3) 2393 vec![ 2394 &aml::MethodCall::new("MTFY".into(), vec![&aml::Local(0), &3u8]), 2395 // Reset MRMV bit 2396 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MRMV"), &aml::ONE), 2397 ], 2398 ), 2399 &aml::Add::new(&aml::Local(0), &aml::Local(0), &aml::ONE), 2400 ], 2401 ), 2402 // Release lock 2403 &aml::Release::new("MLCK".into()), 2404 ], 2405 ) 2406 .to_aml_bytes(sink); 2407 2408 // Memory status method 2409 aml::Method::new( 2410 "MSTA".into(), 2411 1, 2412 true, 2413 vec![ 2414 // Take lock defined above 2415 &aml::Acquire::new("MLCK".into(), 0xffff), 2416 // Write slot number (in first argument) to I/O port via field 2417 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2418 &aml::Store::new(&aml::Local(0), &aml::ZERO), 2419 // Check if MEN_ bit is set, if so make the local variable 0xf (see _STA for details of meaning) 2420 &aml::If::new( 2421 &aml::Equal::new(&aml::Path::new("\\_SB_.MHPC.MEN_"), &aml::ONE), 2422 vec![&aml::Store::new(&aml::Local(0), &0xfu8)], 2423 ), 2424 // Release lock 2425 &aml::Release::new("MLCK".into()), 2426 // Return 0 or 0xf 2427 &aml::Return::new(&aml::Local(0)), 2428 ], 2429 ) 2430 .to_aml_bytes(sink); 2431 2432 // Memory range method 2433 aml::Method::new( 2434 "MCRS".into(), 2435 1, 2436 true, 2437 vec![ 2438 // Take lock defined above 2439 &aml::Acquire::new("MLCK".into(), 0xffff), 2440 // Write slot number (in first argument) to I/O port via field 2441 &aml::Store::new(&aml::Path::new("\\_SB_.MHPC.MSEL"), &aml::Arg(0)), 2442 &aml::Name::new( 2443 "MR64".into(), 2444 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2445 aml::AddressSpaceCacheable::Cacheable, 2446 true, 2447 0x0000_0000_0000_0000u64, 2448 0xFFFF_FFFF_FFFF_FFFEu64, 2449 None, 2450 )]), 2451 ), 2452 &aml::CreateQWordField::new( 2453 &aml::Path::new("MINL"), 2454 &aml::Path::new("MR64"), 2455 &14usize, 2456 ), 2457 &aml::CreateDWordField::new( 2458 &aml::Path::new("MINH"), 2459 &aml::Path::new("MR64"), 2460 &18usize, 2461 ), 2462 &aml::CreateQWordField::new( 2463 &aml::Path::new("MAXL"), 2464 &aml::Path::new("MR64"), 2465 &22usize, 2466 ), 2467 &aml::CreateDWordField::new( 2468 &aml::Path::new("MAXH"), 2469 &aml::Path::new("MR64"), 2470 &26usize, 2471 ), 2472 &aml::CreateQWordField::new( 2473 &aml::Path::new("LENL"), 2474 &aml::Path::new("MR64"), 2475 &38usize, 2476 ), 2477 &aml::CreateDWordField::new( 2478 &aml::Path::new("LENH"), 2479 &aml::Path::new("MR64"), 2480 &42usize, 2481 ), 2482 &aml::Store::new(&aml::Path::new("MINL"), &aml::Path::new("\\_SB_.MHPC.MHBL")), 2483 &aml::Store::new(&aml::Path::new("MINH"), &aml::Path::new("\\_SB_.MHPC.MHBH")), 2484 &aml::Store::new(&aml::Path::new("LENL"), &aml::Path::new("\\_SB_.MHPC.MHLL")), 2485 &aml::Store::new(&aml::Path::new("LENH"), &aml::Path::new("\\_SB_.MHPC.MHLH")), 2486 &aml::Add::new( 2487 &aml::Path::new("MAXL"), 2488 &aml::Path::new("MINL"), 2489 &aml::Path::new("LENL"), 2490 ), 2491 &aml::Add::new( 2492 &aml::Path::new("MAXH"), 2493 &aml::Path::new("MINH"), 2494 &aml::Path::new("LENH"), 2495 ), 2496 &aml::If::new( 2497 &aml::LessThan::new(&aml::Path::new("MAXL"), &aml::Path::new("MINL")), 2498 vec![&aml::Add::new( 2499 &aml::Path::new("MAXH"), 2500 &aml::ONE, 2501 &aml::Path::new("MAXH"), 2502 )], 2503 ), 2504 &aml::Subtract::new(&aml::Path::new("MAXL"), &aml::Path::new("MAXL"), &aml::ONE), 2505 // Release lock 2506 &aml::Release::new("MLCK".into()), 2507 &aml::Return::new(&aml::Path::new("MR64")), 2508 ], 2509 ) 2510 .to_aml_bytes(sink) 2511 } 2512 } 2513 2514 impl Aml for MemoryManager { 2515 fn to_aml_bytes(&self, sink: &mut dyn acpi_tables::AmlSink) { 2516 if let Some(acpi_address) = self.acpi_address { 2517 // Memory Hotplug Controller 2518 aml::Device::new( 2519 "_SB_.MHPC".into(), 2520 vec![ 2521 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2522 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2523 // Mutex to protect concurrent access as we write to choose slot and then read back status 2524 &aml::Mutex::new("MLCK".into(), 0), 2525 &aml::Name::new( 2526 "_CRS".into(), 2527 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2528 aml::AddressSpaceCacheable::NotCacheable, 2529 true, 2530 acpi_address.0, 2531 acpi_address.0 + MEMORY_MANAGER_ACPI_SIZE as u64 - 1, 2532 None, 2533 )]), 2534 ), 2535 // OpRegion and Fields map MMIO range into individual field values 2536 &aml::OpRegion::new( 2537 "MHPR".into(), 2538 aml::OpRegionSpace::SystemMemory, 2539 &(acpi_address.0 as usize), 2540 &MEMORY_MANAGER_ACPI_SIZE, 2541 ), 2542 &aml::Field::new( 2543 "MHPR".into(), 2544 aml::FieldAccessType::DWord, 2545 aml::FieldLockRule::NoLock, 2546 aml::FieldUpdateRule::Preserve, 2547 vec![ 2548 aml::FieldEntry::Named(*b"MHBL", 32), // Base (low 4 bytes) 2549 aml::FieldEntry::Named(*b"MHBH", 32), // Base (high 4 bytes) 2550 aml::FieldEntry::Named(*b"MHLL", 32), // Length (low 4 bytes) 2551 aml::FieldEntry::Named(*b"MHLH", 32), // Length (high 4 bytes) 2552 ], 2553 ), 2554 &aml::Field::new( 2555 "MHPR".into(), 2556 aml::FieldAccessType::DWord, 2557 aml::FieldLockRule::NoLock, 2558 aml::FieldUpdateRule::Preserve, 2559 vec![ 2560 aml::FieldEntry::Reserved(128), 2561 aml::FieldEntry::Named(*b"MHPX", 32), // PXM 2562 ], 2563 ), 2564 &aml::Field::new( 2565 "MHPR".into(), 2566 aml::FieldAccessType::Byte, 2567 aml::FieldLockRule::NoLock, 2568 aml::FieldUpdateRule::WriteAsZeroes, 2569 vec![ 2570 aml::FieldEntry::Reserved(160), 2571 aml::FieldEntry::Named(*b"MEN_", 1), // Enabled 2572 aml::FieldEntry::Named(*b"MINS", 1), // Inserting 2573 aml::FieldEntry::Named(*b"MRMV", 1), // Removing 2574 aml::FieldEntry::Named(*b"MEJ0", 1), // Ejecting 2575 ], 2576 ), 2577 &aml::Field::new( 2578 "MHPR".into(), 2579 aml::FieldAccessType::DWord, 2580 aml::FieldLockRule::NoLock, 2581 aml::FieldUpdateRule::Preserve, 2582 vec![ 2583 aml::FieldEntry::Named(*b"MSEL", 32), // Selector 2584 aml::FieldEntry::Named(*b"MOEV", 32), // Event 2585 aml::FieldEntry::Named(*b"MOSC", 32), // OSC 2586 ], 2587 ), 2588 &MemoryMethods { 2589 slots: self.hotplug_slots.len(), 2590 }, 2591 &MemorySlots { 2592 slots: self.hotplug_slots.len(), 2593 }, 2594 ], 2595 ) 2596 .to_aml_bytes(sink); 2597 } else { 2598 aml::Device::new( 2599 "_SB_.MHPC".into(), 2600 vec![ 2601 &aml::Name::new("_HID".into(), &aml::EISAName::new("PNP0A06")), 2602 &aml::Name::new("_UID".into(), &"Memory Hotplug Controller"), 2603 // Empty MSCN for GED 2604 &aml::Method::new("MSCN".into(), 0, true, vec![]), 2605 ], 2606 ) 2607 .to_aml_bytes(sink); 2608 } 2609 2610 #[cfg(target_arch = "x86_64")] 2611 { 2612 if let Some(sgx_epc_region) = &self.sgx_epc_region { 2613 let min = sgx_epc_region.start().raw_value(); 2614 let max = min + sgx_epc_region.size() - 1; 2615 // SGX EPC region 2616 aml::Device::new( 2617 "_SB_.EPC_".into(), 2618 vec![ 2619 &aml::Name::new("_HID".into(), &aml::EISAName::new("INT0E0C")), 2620 // QWORD describing the EPC region start and size 2621 &aml::Name::new( 2622 "_CRS".into(), 2623 &aml::ResourceTemplate::new(vec![&aml::AddressSpace::new_memory( 2624 aml::AddressSpaceCacheable::NotCacheable, 2625 true, 2626 min, 2627 max, 2628 None, 2629 )]), 2630 ), 2631 &aml::Method::new("_STA".into(), 0, false, vec![&aml::Return::new(&0xfu8)]), 2632 ], 2633 ) 2634 .to_aml_bytes(sink); 2635 } 2636 } 2637 } 2638 } 2639 2640 impl Pausable for MemoryManager {} 2641 2642 #[derive(Clone, Serialize, Deserialize)] 2643 pub struct MemoryManagerSnapshotData { 2644 memory_ranges: MemoryRangeTable, 2645 guest_ram_mappings: Vec<GuestRamMapping>, 2646 start_of_device_area: u64, 2647 boot_ram: u64, 2648 current_ram: u64, 2649 arch_mem_regions: Vec<ArchMemRegion>, 2650 hotplug_slots: Vec<HotPlugState>, 2651 next_memory_slot: u32, 2652 selected_slot: usize, 2653 next_hotplug_slot: usize, 2654 } 2655 2656 impl Snapshottable for MemoryManager { 2657 fn id(&self) -> String { 2658 MEMORY_MANAGER_SNAPSHOT_ID.to_string() 2659 } 2660 2661 fn snapshot(&mut self) -> result::Result<Snapshot, MigratableError> { 2662 let memory_ranges = self.memory_range_table(true)?; 2663 2664 // Store locally this list of ranges as it will be used through the 2665 // Transportable::send() implementation. The point is to avoid the 2666 // duplication of code regarding the creation of the path for each 2667 // region. The 'snapshot' step creates the list of memory regions, 2668 // including information about the need to copy a memory region or 2669 // not. This saves the 'send' step having to go through the same 2670 // process, and instead it can directly proceed with storing the 2671 // memory range content for the ranges requiring it. 2672 self.snapshot_memory_ranges = memory_ranges; 2673 2674 Ok(Snapshot::from_data(SnapshotData::new_from_state( 2675 &self.snapshot_data(), 2676 )?)) 2677 } 2678 } 2679 2680 impl Transportable for MemoryManager { 2681 fn send( 2682 &self, 2683 _snapshot: &Snapshot, 2684 destination_url: &str, 2685 ) -> result::Result<(), MigratableError> { 2686 if self.snapshot_memory_ranges.is_empty() { 2687 return Ok(()); 2688 } 2689 2690 let mut memory_file_path = url_to_path(destination_url)?; 2691 memory_file_path.push(String::from(SNAPSHOT_FILENAME)); 2692 2693 // Create the snapshot file for the entire memory 2694 let mut memory_file = OpenOptions::new() 2695 .read(true) 2696 .write(true) 2697 .create_new(true) 2698 .open(memory_file_path) 2699 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2700 2701 let guest_memory = self.guest_memory.memory(); 2702 2703 for range in self.snapshot_memory_ranges.regions() { 2704 let mut offset: u64 = 0; 2705 // Here we are manually handling the retry in case we can't read 2706 // the whole region at once because we can't use the implementation 2707 // from vm-memory::GuestMemory of write_all_to() as it is not 2708 // following the correct behavior. For more info about this issue 2709 // see: https://github.com/rust-vmm/vm-memory/issues/174 2710 loop { 2711 let bytes_written = guest_memory 2712 .write_volatile_to( 2713 GuestAddress(range.gpa + offset), 2714 &mut memory_file, 2715 (range.length - offset) as usize, 2716 ) 2717 .map_err(|e| MigratableError::MigrateSend(e.into()))?; 2718 offset += bytes_written as u64; 2719 2720 if offset == range.length { 2721 break; 2722 } 2723 } 2724 } 2725 Ok(()) 2726 } 2727 } 2728 2729 impl Migratable for MemoryManager { 2730 // Start the dirty log in the hypervisor (kvm/mshv). 2731 // Also, reset the dirty bitmap logged by the vmm. 2732 // Just before we do a bulk copy we want to start/clear the dirty log so that 2733 // pages touched during our bulk copy are tracked. 2734 fn start_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2735 self.vm.start_dirty_log().map_err(|e| { 2736 MigratableError::MigrateSend(anyhow!("Error starting VM dirty log {}", e)) 2737 })?; 2738 2739 for r in self.guest_memory.memory().iter() { 2740 r.bitmap().reset(); 2741 } 2742 2743 Ok(()) 2744 } 2745 2746 fn stop_dirty_log(&mut self) -> std::result::Result<(), MigratableError> { 2747 self.vm.stop_dirty_log().map_err(|e| { 2748 MigratableError::MigrateSend(anyhow!("Error stopping VM dirty log {}", e)) 2749 })?; 2750 2751 Ok(()) 2752 } 2753 2754 // Generate a table for the pages that are dirty. The dirty pages are collapsed 2755 // together in the table if they are contiguous. 2756 fn dirty_log(&mut self) -> std::result::Result<MemoryRangeTable, MigratableError> { 2757 let mut table = MemoryRangeTable::default(); 2758 for r in &self.guest_ram_mappings { 2759 let vm_dirty_bitmap = self.vm.get_dirty_log(r.slot, r.gpa, r.size).map_err(|e| { 2760 MigratableError::MigrateSend(anyhow!("Error getting VM dirty log {}", e)) 2761 })?; 2762 let vmm_dirty_bitmap = match self.guest_memory.memory().find_region(GuestAddress(r.gpa)) 2763 { 2764 Some(region) => { 2765 assert!(region.start_addr().raw_value() == r.gpa); 2766 assert!(region.len() == r.size); 2767 region.bitmap().get_and_reset() 2768 } 2769 None => { 2770 return Err(MigratableError::MigrateSend(anyhow!( 2771 "Error finding 'guest memory region' with address {:x}", 2772 r.gpa 2773 ))) 2774 } 2775 }; 2776 2777 let dirty_bitmap: Vec<u64> = vm_dirty_bitmap 2778 .iter() 2779 .zip(vmm_dirty_bitmap.iter()) 2780 .map(|(x, y)| x | y) 2781 .collect(); 2782 2783 let sub_table = MemoryRangeTable::from_bitmap(dirty_bitmap, r.gpa, 4096); 2784 2785 if sub_table.regions().is_empty() { 2786 info!("Dirty Memory Range Table is empty"); 2787 } else { 2788 info!("Dirty Memory Range Table:"); 2789 for range in sub_table.regions() { 2790 info!("GPA: {:x} size: {} (KiB)", range.gpa, range.length / 1024); 2791 } 2792 } 2793 2794 table.extend(sub_table); 2795 } 2796 Ok(table) 2797 } 2798 } 2799