xref: /cloud-hypervisor/virtio-devices/src/vsock/device.rs (revision eeae63b4595fbf0cc69f62b6e9d9a79c543c4ac7)
1 // Copyright 2019 Intel Corporation. All Rights Reserved.
2 // SPDX-License-Identifier: Apache-2.0
3 //
4 // Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 // SPDX-License-Identifier: Apache-2.0
6 //
7 // Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
8 // Use of this source code is governed by a BSD-style license that can be
9 // found in the THIRD-PARTY file.
10 
11 use std::os::unix::io::AsRawFd;
12 use std::path::PathBuf;
13 use std::sync::atomic::AtomicBool;
14 use std::sync::{Arc, Barrier, RwLock};
15 use std::{io, result};
16 
17 use anyhow::anyhow;
18 use byteorder::{ByteOrder, LittleEndian};
19 use seccompiler::SeccompAction;
20 use serde::{Deserialize, Serialize};
21 use virtio_queue::{Queue, QueueOwnedT, QueueT};
22 use vm_memory::{GuestAddressSpace, GuestMemoryAtomic};
23 use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
24 use vm_virtio::AccessPlatform;
25 use vmm_sys_util::eventfd::EventFd;
26 
27 /// This is the `VirtioDevice` implementation for our vsock device. It handles the virtio-level
28 /// device logic: feature negotiation, device configuration, and device activation.
29 /// The run-time device logic (i.e. event-driven data handling) is implemented by
30 /// `super::epoll_handler::EpollHandler`.
31 ///
32 /// We aim to conform to the VirtIO v1.1 spec:
33 /// https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
34 ///
35 /// The vsock device has two input parameters: a CID to identify the device, and a `VsockBackend`
36 /// to use for offloading vsock traffic.
37 ///
38 /// Upon its activation, the vsock device creates its `EpollHandler`, passes it the event-interested
39 /// file descriptors, and registers these descriptors with the VMM `EpollContext`. Going forward,
40 /// the `EpollHandler` will get notified whenever an event occurs on the just-registered FDs:
41 /// - an RX queue FD;
42 /// - a TX queue FD;
43 /// - an event queue FD; and
44 /// - a backend FD.
45 ///
46 use super::{VsockBackend, VsockPacket};
47 use crate::seccomp_filters::Thread;
48 use crate::thread_helper::spawn_virtio_thread;
49 use crate::{
50     ActivateResult, EpollHelper, EpollHelperError, EpollHelperHandler, Error as DeviceError,
51     GuestMemoryMmap, VirtioCommon, VirtioDevice, VirtioDeviceType, VirtioInterrupt,
52     VirtioInterruptType, EPOLL_HELPER_EVENT_LAST, VIRTIO_F_IN_ORDER, VIRTIO_F_IOMMU_PLATFORM,
53     VIRTIO_F_VERSION_1,
54 };
55 
56 const QUEUE_SIZE: u16 = 256;
57 const NUM_QUEUES: usize = 3;
58 const QUEUE_SIZES: &[u16] = &[QUEUE_SIZE; NUM_QUEUES];
59 
60 // New descriptors are pending on the rx queue.
61 pub const RX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 1;
62 // New descriptors are pending on the tx queue.
63 pub const TX_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 2;
64 // New descriptors are pending on the event queue.
65 pub const EVT_QUEUE_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 3;
66 // Notification coming from the backend.
67 pub const BACKEND_EVENT: u16 = EPOLL_HELPER_EVENT_LAST + 4;
68 
69 /// The `VsockEpollHandler` implements the runtime logic of our vsock device:
70 /// 1. Respond to TX queue events by wrapping virtio buffers into `VsockPacket`s, then sending those
71 ///    packets to the `VsockBackend`;
72 /// 2. Forward backend FD event notifications to the `VsockBackend`;
73 /// 3. Fetch incoming packets from the `VsockBackend` and place them into the virtio RX queue;
74 /// 4. Whenever we have processed some virtio buffers (either TX or RX), let the driver know by
75 ///    raising our assigned IRQ.
76 ///
77 /// In a nutshell, the `VsockEpollHandler` logic looks like this:
78 /// - on TX queue event:
79 ///   - fetch all packets from the TX queue and send them to the backend; then
80 ///   - if the backend has queued up any incoming packets, fetch them into any available RX buffers.
81 /// - on RX queue event:
82 ///   - fetch any incoming packets, queued up by the backend, into newly available RX buffers.
83 /// - on backend event:
84 ///   - forward the event to the backend; then
85 ///   - again, attempt to fetch any incoming packets queued by the backend into virtio RX buffers.
86 ///
87 pub struct VsockEpollHandler<B: VsockBackend> {
88     pub mem: GuestMemoryAtomic<GuestMemoryMmap>,
89     pub queues: Vec<Queue>,
90     pub queue_evts: Vec<EventFd>,
91     pub kill_evt: EventFd,
92     pub pause_evt: EventFd,
93     pub interrupt_cb: Arc<dyn VirtioInterrupt>,
94     pub backend: Arc<RwLock<B>>,
95     pub access_platform: Option<Arc<dyn AccessPlatform>>,
96 }
97 
98 impl<B> VsockEpollHandler<B>
99 where
100     B: VsockBackend,
101 {
102     /// Signal the guest driver that we've used some virtio buffers that it had previously made
103     /// available.
104     ///
105     fn signal_used_queue(&self, queue_index: u16) -> result::Result<(), DeviceError> {
106         debug!("vsock: raising IRQ");
107 
108         self.interrupt_cb
109             .trigger(VirtioInterruptType::Queue(queue_index))
110             .map_err(|e| {
111                 error!("Failed to signal used queue: {:?}", e);
112                 DeviceError::FailedSignalingUsedQueue(e)
113             })
114     }
115 
116     /// Walk the driver-provided RX queue buffers and attempt to fill them up with any data that we
117     /// have pending.
118     ///
119     fn process_rx(&mut self) -> result::Result<(), DeviceError> {
120         debug!("vsock: epoll_handler::process_rx()");
121 
122         let mut used_descs = false;
123 
124         while let Some(mut desc_chain) = self.queues[0].pop_descriptor_chain(self.mem.memory()) {
125             let used_len = match VsockPacket::from_rx_virtq_head(
126                 &mut desc_chain,
127                 self.access_platform.as_ref(),
128             ) {
129                 Ok(mut pkt) => {
130                     if self.backend.write().unwrap().recv_pkt(&mut pkt).is_ok() {
131                         pkt.hdr().len() as u32 + pkt.len()
132                     } else {
133                         // We are using a consuming iterator over the virtio buffers, so, if we can't
134                         // fill in this buffer, we'll need to undo the last iterator step.
135                         self.queues[0].go_to_previous_position();
136                         break;
137                     }
138                 }
139                 Err(e) => {
140                     warn!("vsock: RX queue error: {:?}", e);
141                     0
142                 }
143             };
144 
145             self.queues[0]
146                 .add_used(desc_chain.memory(), desc_chain.head_index(), used_len)
147                 .map_err(DeviceError::QueueAddUsed)?;
148             used_descs = true;
149         }
150 
151         if used_descs {
152             self.signal_used_queue(0)
153         } else {
154             Ok(())
155         }
156     }
157 
158     /// Walk the driver-provided TX queue buffers, package them up as vsock packets, and send them to
159     /// the backend for processing.
160     ///
161     fn process_tx(&mut self) -> result::Result<(), DeviceError> {
162         debug!("vsock: epoll_handler::process_tx()");
163 
164         let mut used_descs = false;
165 
166         while let Some(mut desc_chain) = self.queues[1].pop_descriptor_chain(self.mem.memory()) {
167             let pkt = match VsockPacket::from_tx_virtq_head(
168                 &mut desc_chain,
169                 self.access_platform.as_ref(),
170             ) {
171                 Ok(pkt) => pkt,
172                 Err(e) => {
173                     error!("vsock: error reading TX packet: {:?}", e);
174                     self.queues[1]
175                         .add_used(desc_chain.memory(), desc_chain.head_index(), 0)
176                         .map_err(DeviceError::QueueAddUsed)?;
177                     used_descs = true;
178                     continue;
179                 }
180             };
181 
182             if self.backend.write().unwrap().send_pkt(&pkt).is_err() {
183                 self.queues[1].go_to_previous_position();
184                 break;
185             }
186 
187             self.queues[1]
188                 .add_used(desc_chain.memory(), desc_chain.head_index(), 0)
189                 .map_err(DeviceError::QueueAddUsed)?;
190             used_descs = true;
191         }
192 
193         if used_descs {
194             self.signal_used_queue(1)
195         } else {
196             Ok(())
197         }
198     }
199 
200     fn run(
201         &mut self,
202         paused: Arc<AtomicBool>,
203         paused_sync: Arc<Barrier>,
204     ) -> result::Result<(), EpollHelperError> {
205         let mut helper = EpollHelper::new(&self.kill_evt, &self.pause_evt)?;
206         helper.add_event(self.queue_evts[0].as_raw_fd(), RX_QUEUE_EVENT)?;
207         helper.add_event(self.queue_evts[1].as_raw_fd(), TX_QUEUE_EVENT)?;
208         helper.add_event(self.queue_evts[2].as_raw_fd(), EVT_QUEUE_EVENT)?;
209         helper.add_event(self.backend.read().unwrap().get_polled_fd(), BACKEND_EVENT)?;
210         helper.run(paused, paused_sync, self)?;
211 
212         Ok(())
213     }
214 }
215 
216 impl<B> EpollHelperHandler for VsockEpollHandler<B>
217 where
218     B: VsockBackend,
219 {
220     fn handle_event(
221         &mut self,
222         _helper: &mut EpollHelper,
223         event: &epoll::Event,
224     ) -> result::Result<(), EpollHelperError> {
225         let evset = match epoll::Events::from_bits(event.events) {
226             Some(evset) => evset,
227             None => {
228                 let evbits = event.events;
229                 warn!("epoll: ignoring unknown event set: 0x{:x}", evbits);
230                 return Ok(());
231             }
232         };
233 
234         let ev_type = event.data as u16;
235         match ev_type {
236             RX_QUEUE_EVENT => {
237                 debug!("vsock: RX queue event");
238                 self.queue_evts[0].read().map_err(|e| {
239                     EpollHelperError::HandleEvent(anyhow!("Failed to get RX queue event: {:?}", e))
240                 })?;
241                 if self.backend.read().unwrap().has_pending_rx() {
242                     self.process_rx().map_err(|e| {
243                         EpollHelperError::HandleEvent(anyhow!(
244                             "Failed to process RX queue: {:?}",
245                             e
246                         ))
247                     })?;
248                 }
249             }
250             TX_QUEUE_EVENT => {
251                 debug!("vsock: TX queue event");
252                 self.queue_evts[1].read().map_err(|e| {
253                     EpollHelperError::HandleEvent(anyhow!("Failed to get TX queue event: {:?}", e))
254                 })?;
255 
256                 self.process_tx().map_err(|e| {
257                     EpollHelperError::HandleEvent(anyhow!("Failed to process TX queue: {:?}", e))
258                 })?;
259 
260                 // The backend may have queued up responses to the packets we sent during TX queue
261                 // processing. If that happened, we need to fetch those responses and place them
262                 // into RX buffers.
263                 if self.backend.read().unwrap().has_pending_rx() {
264                     self.process_rx().map_err(|e| {
265                         EpollHelperError::HandleEvent(anyhow!(
266                             "Failed to process RX queue: {:?}",
267                             e
268                         ))
269                     })?;
270                 }
271             }
272             EVT_QUEUE_EVENT => {
273                 debug!("vsock: EVT queue event");
274                 self.queue_evts[2].read().map_err(|e| {
275                     EpollHelperError::HandleEvent(anyhow!("Failed to get EVT queue event: {:?}", e))
276                 })?;
277             }
278             BACKEND_EVENT => {
279                 debug!("vsock: backend event");
280                 self.backend.write().unwrap().notify(evset);
281                 // After the backend has been kicked, it might've freed up some resources, so we
282                 // can attempt to send it more data to process.
283                 // In particular, if `self.backend.send_pkt()` halted the TX queue processing (by
284                 // returning an error) at some point in the past, now is the time to try walking the
285                 // TX queue again.
286                 self.process_tx().map_err(|e| {
287                     EpollHelperError::HandleEvent(anyhow!("Failed to process TX queue: {:?}", e))
288                 })?;
289                 if self.backend.read().unwrap().has_pending_rx() {
290                     self.process_rx().map_err(|e| {
291                         EpollHelperError::HandleEvent(anyhow!(
292                             "Failed to process RX queue: {:?}",
293                             e
294                         ))
295                     })?;
296                 }
297             }
298             _ => {
299                 return Err(EpollHelperError::HandleEvent(anyhow!(
300                     "Unknown event for virtio-vsock"
301                 )));
302             }
303         }
304 
305         Ok(())
306     }
307 }
308 
309 /// Virtio device exposing virtual socket to the guest.
310 pub struct Vsock<B: VsockBackend> {
311     common: VirtioCommon,
312     id: String,
313     cid: u64,
314     backend: Arc<RwLock<B>>,
315     path: PathBuf,
316     seccomp_action: SeccompAction,
317     exit_evt: EventFd,
318 }
319 
320 #[derive(Serialize, Deserialize)]
321 pub struct VsockState {
322     pub avail_features: u64,
323     pub acked_features: u64,
324 }
325 
326 impl<B> Vsock<B>
327 where
328     B: VsockBackend + Sync,
329 {
330     /// Create a new virtio-vsock device with the given VM CID and vsock
331     /// backend.
332     #[allow(clippy::too_many_arguments)]
333     pub fn new(
334         id: String,
335         cid: u32,
336         path: PathBuf,
337         backend: B,
338         iommu: bool,
339         seccomp_action: SeccompAction,
340         exit_evt: EventFd,
341         state: Option<VsockState>,
342     ) -> io::Result<Vsock<B>> {
343         let (avail_features, acked_features, paused) = if let Some(state) = state {
344             info!("Restoring virtio-vsock {}", id);
345             (state.avail_features, state.acked_features, true)
346         } else {
347             let mut avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
348 
349             if iommu {
350                 avail_features |= 1u64 << VIRTIO_F_IOMMU_PLATFORM;
351             }
352             (avail_features, 0, false)
353         };
354 
355         Ok(Vsock {
356             common: VirtioCommon {
357                 device_type: VirtioDeviceType::Vsock as u32,
358                 avail_features,
359                 acked_features,
360                 paused_sync: Some(Arc::new(Barrier::new(2))),
361                 queue_sizes: QUEUE_SIZES.to_vec(),
362                 min_queues: NUM_QUEUES as u16,
363                 paused: Arc::new(AtomicBool::new(paused)),
364                 ..Default::default()
365             },
366             id,
367             cid: cid.into(),
368             backend: Arc::new(RwLock::new(backend)),
369             path,
370             seccomp_action,
371             exit_evt,
372         })
373     }
374 
375     fn state(&self) -> VsockState {
376         VsockState {
377             avail_features: self.common.avail_features,
378             acked_features: self.common.acked_features,
379         }
380     }
381 }
382 
383 impl<B> Drop for Vsock<B>
384 where
385     B: VsockBackend,
386 {
387     fn drop(&mut self) {
388         if let Some(kill_evt) = self.common.kill_evt.take() {
389             // Ignore the result because there is nothing we can do about it.
390             let _ = kill_evt.write(1);
391         }
392         self.common.wait_for_epoll_threads();
393     }
394 }
395 
396 impl<B> VirtioDevice for Vsock<B>
397 where
398     B: VsockBackend + Sync + 'static,
399 {
400     fn device_type(&self) -> u32 {
401         self.common.device_type
402     }
403 
404     fn queue_max_sizes(&self) -> &[u16] {
405         &self.common.queue_sizes
406     }
407 
408     fn features(&self) -> u64 {
409         self.common.avail_features
410     }
411 
412     fn ack_features(&mut self, value: u64) {
413         self.common.ack_features(value)
414     }
415 
416     fn read_config(&self, offset: u64, data: &mut [u8]) {
417         match offset {
418             0 if data.len() == 8 => LittleEndian::write_u64(data, self.cid),
419             0 if data.len() == 4 => LittleEndian::write_u32(data, (self.cid & 0xffff_ffff) as u32),
420             4 if data.len() == 4 => {
421                 LittleEndian::write_u32(data, ((self.cid >> 32) & 0xffff_ffff) as u32)
422             }
423             _ => warn!(
424                 "vsock: virtio-vsock received invalid read request of {} bytes at offset {}",
425                 data.len(),
426                 offset
427             ),
428         }
429     }
430 
431     fn activate(
432         &mut self,
433         mem: GuestMemoryAtomic<GuestMemoryMmap>,
434         interrupt_cb: Arc<dyn VirtioInterrupt>,
435         queues: Vec<(usize, Queue, EventFd)>,
436     ) -> ActivateResult {
437         self.common.activate(&queues, &interrupt_cb)?;
438         let (kill_evt, pause_evt) = self.common.dup_eventfds();
439 
440         let mut virtqueues = Vec::new();
441         let mut queue_evts = Vec::new();
442         for (_, queue, queue_evt) in queues {
443             virtqueues.push(queue);
444             queue_evts.push(queue_evt);
445         }
446 
447         let mut handler = VsockEpollHandler {
448             mem,
449             queues: virtqueues,
450             queue_evts,
451             kill_evt,
452             pause_evt,
453             interrupt_cb,
454             backend: self.backend.clone(),
455             access_platform: self.common.access_platform.clone(),
456         };
457 
458         let paused = self.common.paused.clone();
459         let paused_sync = self.common.paused_sync.clone();
460         let mut epoll_threads = Vec::new();
461 
462         spawn_virtio_thread(
463             &self.id,
464             &self.seccomp_action,
465             Thread::VirtioVsock,
466             &mut epoll_threads,
467             &self.exit_evt,
468             move || handler.run(paused, paused_sync.unwrap()),
469         )?;
470 
471         self.common.epoll_threads = Some(epoll_threads);
472 
473         event!("virtio-device", "activated", "id", &self.id);
474         Ok(())
475     }
476 
477     fn reset(&mut self) -> Option<Arc<dyn VirtioInterrupt>> {
478         let result = self.common.reset();
479         event!("virtio-device", "reset", "id", &self.id);
480         result
481     }
482 
483     fn shutdown(&mut self) {
484         std::fs::remove_file(&self.path).ok();
485     }
486 
487     fn set_access_platform(&mut self, access_platform: Arc<dyn AccessPlatform>) {
488         self.common.set_access_platform(access_platform)
489     }
490 }
491 
492 impl<B> Pausable for Vsock<B>
493 where
494     B: VsockBackend + Sync + 'static,
495 {
496     fn pause(&mut self) -> result::Result<(), MigratableError> {
497         self.common.pause()
498     }
499 
500     fn resume(&mut self) -> result::Result<(), MigratableError> {
501         self.common.resume()
502     }
503 }
504 
505 impl<B> Snapshottable for Vsock<B>
506 where
507     B: VsockBackend + Sync + 'static,
508 {
509     fn id(&self) -> String {
510         self.id.clone()
511     }
512 
513     fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
514         Snapshot::new_from_state(&self.state())
515     }
516 }
517 impl<B> Transportable for Vsock<B> where B: VsockBackend + Sync + 'static {}
518 impl<B> Migratable for Vsock<B> where B: VsockBackend + Sync + 'static {}
519 
520 #[cfg(test)]
521 mod tests {
522     use libc::EFD_NONBLOCK;
523 
524     use super::super::tests::{NoopVirtioInterrupt, TestContext};
525     use super::super::*;
526     use super::*;
527     use crate::ActivateError;
528 
529     #[test]
530     fn test_virtio_device() {
531         let mut ctx = TestContext::new();
532         let avail_features = 1u64 << VIRTIO_F_VERSION_1 | 1u64 << VIRTIO_F_IN_ORDER;
533         let device_features = avail_features;
534         let driver_features: u64 = avail_features | 1 | (1 << 32);
535         let device_pages = [
536             (device_features & 0xffff_ffff) as u32,
537             (device_features >> 32) as u32,
538         ];
539         let driver_pages = [
540             (driver_features & 0xffff_ffff) as u32,
541             (driver_features >> 32) as u32,
542         ];
543         assert_eq!(ctx.device.device_type(), VirtioDeviceType::Vsock as u32);
544         assert_eq!(ctx.device.queue_max_sizes(), QUEUE_SIZES);
545         assert_eq!(ctx.device.features() as u32, device_pages[0]);
546         assert_eq!((ctx.device.features() >> 32) as u32, device_pages[1]);
547 
548         // Ack device features, page 0.
549         ctx.device.ack_features(u64::from(driver_pages[0]));
550         // Ack device features, page 1.
551         ctx.device.ack_features(u64::from(driver_pages[1]) << 32);
552         // Check that no side effect are present, and that the acked features are exactly the same
553         // as the device features.
554         assert_eq!(
555             ctx.device.common.acked_features,
556             device_features & driver_features
557         );
558 
559         // Test reading 32-bit chunks.
560         let mut data = [0u8; 8];
561         ctx.device.read_config(0, &mut data[..4]);
562         assert_eq!(
563             u64::from(LittleEndian::read_u32(&data)),
564             ctx.cid & 0xffff_ffff
565         );
566         ctx.device.read_config(4, &mut data[4..]);
567         assert_eq!(
568             u64::from(LittleEndian::read_u32(&data[4..])),
569             (ctx.cid >> 32) & 0xffff_ffff
570         );
571 
572         // Test reading 64-bit.
573         let mut data = [0u8; 8];
574         ctx.device.read_config(0, &mut data);
575         assert_eq!(LittleEndian::read_u64(&data), ctx.cid);
576 
577         // Check that out-of-bounds reading doesn't mutate the destination buffer.
578         let mut data = [0u8, 1, 2, 3, 4, 5, 6, 7];
579         ctx.device.read_config(2, &mut data);
580         assert_eq!(data, [0u8, 1, 2, 3, 4, 5, 6, 7]);
581 
582         // Just covering lines here, since the vsock device has no writable config.
583         // A warning is, however, logged, if the guest driver attempts to write any config data.
584         ctx.device.write_config(0, &data[..4]);
585 
586         let memory = GuestMemoryAtomic::new(ctx.mem.clone());
587 
588         // Test a bad activation.
589         let bad_activate =
590             ctx.device
591                 .activate(memory.clone(), Arc::new(NoopVirtioInterrupt {}), Vec::new());
592         match bad_activate {
593             Err(ActivateError::BadActivate) => (),
594             other => panic!("{other:?}"),
595         }
596 
597         // Test a correct activation.
598         ctx.device
599             .activate(
600                 memory,
601                 Arc::new(NoopVirtioInterrupt {}),
602                 vec![
603                     (
604                         0,
605                         Queue::new(256).unwrap(),
606                         EventFd::new(EFD_NONBLOCK).unwrap(),
607                     ),
608                     (
609                         1,
610                         Queue::new(256).unwrap(),
611                         EventFd::new(EFD_NONBLOCK).unwrap(),
612                     ),
613                     (
614                         2,
615                         Queue::new(256).unwrap(),
616                         EventFd::new(EFD_NONBLOCK).unwrap(),
617                     ),
618                 ],
619             )
620             .unwrap();
621     }
622 
623     #[test]
624     fn test_irq() {
625         // Test case: successful IRQ signaling.
626         {
627             let test_ctx = TestContext::new();
628             let ctx = test_ctx.create_epoll_handler_context();
629 
630             let _queue: Queue = Queue::new(256).unwrap();
631             ctx.handler.signal_used_queue(0).unwrap();
632         }
633     }
634 
635     #[test]
636     fn test_txq_event() {
637         // Test case:
638         // - the driver has something to send (there's data in the TX queue); and
639         // - the backend has no pending RX data.
640         {
641             let test_ctx = TestContext::new();
642             let mut ctx = test_ctx.create_epoll_handler_context();
643 
644             ctx.handler.backend.write().unwrap().set_pending_rx(false);
645             ctx.signal_txq_event();
646 
647             // The available TX descriptor should have been used.
648             assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
649             // The available RX descriptor should be untouched.
650             assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
651         }
652 
653         // Test case:
654         // - the driver has something to send (there's data in the TX queue); and
655         // - the backend also has some pending RX data.
656         {
657             let test_ctx = TestContext::new();
658             let mut ctx = test_ctx.create_epoll_handler_context();
659 
660             ctx.handler.backend.write().unwrap().set_pending_rx(true);
661             ctx.signal_txq_event();
662 
663             // Both available RX and TX descriptors should have been used.
664             assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
665             assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
666         }
667 
668         // Test case:
669         // - the driver has something to send (there's data in the TX queue); and
670         // - the backend errors out and cannot process the TX queue.
671         {
672             let test_ctx = TestContext::new();
673             let mut ctx = test_ctx.create_epoll_handler_context();
674 
675             ctx.handler.backend.write().unwrap().set_pending_rx(false);
676             ctx.handler
677                 .backend
678                 .write()
679                 .unwrap()
680                 .set_tx_err(Some(VsockError::NoData));
681             ctx.signal_txq_event();
682 
683             // Both RX and TX queues should be untouched.
684             assert_eq!(ctx.guest_txvq.used.idx.get(), 0);
685             assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
686         }
687 
688         // Test case:
689         // - the driver supplied a malformed TX buffer.
690         {
691             let test_ctx = TestContext::new();
692             let mut ctx = test_ctx.create_epoll_handler_context();
693 
694             // Invalidate the packet header descriptor, by setting its length to 0.
695             ctx.guest_txvq.dtable[0].len.set(0);
696             ctx.signal_txq_event();
697 
698             // The available descriptor should have been consumed, but no packet should have
699             // reached the backend.
700             assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
701             assert_eq!(ctx.handler.backend.read().unwrap().tx_ok_cnt, 0);
702         }
703 
704         // Test case: spurious TXQ_EVENT.
705         {
706             let test_ctx = TestContext::new();
707             let mut ctx = test_ctx.create_epoll_handler_context();
708 
709             let events = epoll::Events::EPOLLIN;
710             let event = epoll::Event::new(events, TX_QUEUE_EVENT as u64);
711             let mut epoll_helper =
712                 EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
713 
714             ctx.handler
715                 .handle_event(&mut epoll_helper, &event)
716                 .expect_err("handle_event() should have failed");
717         }
718     }
719 
720     #[test]
721     fn test_rxq_event() {
722         // Test case:
723         // - there is pending RX data in the backend; and
724         // - the driver makes RX buffers available; and
725         // - the backend successfully places its RX data into the queue.
726         {
727             let test_ctx = TestContext::new();
728             let mut ctx = test_ctx.create_epoll_handler_context();
729 
730             ctx.handler.backend.write().unwrap().set_pending_rx(true);
731             ctx.handler
732                 .backend
733                 .write()
734                 .unwrap()
735                 .set_rx_err(Some(VsockError::NoData));
736             ctx.signal_rxq_event();
737 
738             // The available RX buffer should've been left untouched.
739             assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
740         }
741 
742         // Test case:
743         // - there is pending RX data in the backend; and
744         // - the driver makes RX buffers available; and
745         // - the backend errors out, when attempting to receive data.
746         {
747             let test_ctx = TestContext::new();
748             let mut ctx = test_ctx.create_epoll_handler_context();
749 
750             ctx.handler.backend.write().unwrap().set_pending_rx(true);
751             ctx.signal_rxq_event();
752 
753             // The available RX buffer should have been used.
754             assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
755         }
756 
757         // Test case: the driver provided a malformed RX descriptor chain.
758         {
759             let test_ctx = TestContext::new();
760             let mut ctx = test_ctx.create_epoll_handler_context();
761 
762             // Invalidate the packet header descriptor, by setting its length to 0.
763             ctx.guest_rxvq.dtable[0].len.set(0);
764 
765             // The chain should've been processed, without employing the backend.
766             ctx.handler.process_rx().unwrap();
767             assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
768             assert_eq!(ctx.handler.backend.read().unwrap().rx_ok_cnt, 0);
769         }
770 
771         // Test case: spurious RXQ_EVENT.
772         {
773             let test_ctx = TestContext::new();
774             let mut ctx = test_ctx.create_epoll_handler_context();
775             ctx.handler.backend.write().unwrap().set_pending_rx(false);
776 
777             let events = epoll::Events::EPOLLIN;
778             let event = epoll::Event::new(events, RX_QUEUE_EVENT as u64);
779             let mut epoll_helper =
780                 EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
781 
782             assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
783             ctx.handler
784                 .handle_event(&mut epoll_helper, &event)
785                 .expect_err("handle_event() should have failed");
786         }
787     }
788 
789     #[test]
790     fn test_evq_event() {
791         // Test case: spurious EVQ_EVENT.
792         {
793             let test_ctx = TestContext::new();
794             let mut ctx = test_ctx.create_epoll_handler_context();
795             ctx.handler.backend.write().unwrap().set_pending_rx(false);
796 
797             let events = epoll::Events::EPOLLIN;
798             let event = epoll::Event::new(events, EVT_QUEUE_EVENT as u64);
799             let mut epoll_helper =
800                 EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
801 
802             assert_eq!(ctx.guest_evvq.used.idx.get(), 0);
803 
804             ctx.handler
805                 .handle_event(&mut epoll_helper, &event)
806                 .expect_err("handle_event() should have failed");
807         }
808     }
809 
810     #[test]
811     fn test_backend_event() {
812         // Test case:
813         // - a backend event is received; and
814         // - the backend has pending RX data.
815         {
816             let test_ctx = TestContext::new();
817             let mut ctx = test_ctx.create_epoll_handler_context();
818 
819             ctx.handler.backend.write().unwrap().set_pending_rx(true);
820 
821             let events = epoll::Events::EPOLLIN;
822             let event = epoll::Event::new(events, BACKEND_EVENT as u64);
823             let mut epoll_helper =
824                 EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
825             ctx.handler.handle_event(&mut epoll_helper, &event).unwrap();
826 
827             // The backend should've received this event.
828             assert_eq!(
829                 ctx.handler.backend.read().unwrap().evset,
830                 Some(epoll::Events::EPOLLIN)
831             );
832             // TX queue processing should've been triggered.
833             assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
834             // RX queue processing should've been triggered.
835             assert_eq!(ctx.guest_rxvq.used.idx.get(), 1);
836         }
837 
838         // Test case:
839         // - a backend event is received; and
840         // - the backend doesn't have any pending RX data.
841         {
842             let test_ctx = TestContext::new();
843             let mut ctx = test_ctx.create_epoll_handler_context();
844 
845             ctx.handler.backend.write().unwrap().set_pending_rx(false);
846 
847             let events = epoll::Events::EPOLLIN;
848             let event = epoll::Event::new(events, BACKEND_EVENT as u64);
849             let mut epoll_helper =
850                 EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
851             ctx.handler.handle_event(&mut epoll_helper, &event).unwrap();
852 
853             // The backend should've received this event.
854             assert_eq!(
855                 ctx.handler.backend.read().unwrap().evset,
856                 Some(epoll::Events::EPOLLIN)
857             );
858             // TX queue processing should've been triggered.
859             assert_eq!(ctx.guest_txvq.used.idx.get(), 1);
860             // The RX queue should've been left untouched.
861             assert_eq!(ctx.guest_rxvq.used.idx.get(), 0);
862         }
863     }
864 
865     #[test]
866     fn test_unknown_event() {
867         let test_ctx = TestContext::new();
868         let mut ctx = test_ctx.create_epoll_handler_context();
869 
870         let events = epoll::Events::EPOLLIN;
871         let event = epoll::Event::new(events, 0xff);
872         let mut epoll_helper =
873             EpollHelper::new(&ctx.handler.kill_evt, &ctx.handler.pause_evt).unwrap();
874 
875         ctx.handler
876             .handle_event(&mut epoll_helper, &event)
877             .expect_err("handle_event() should have failed");
878     }
879 }
880