1 // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. 2 // SPDX-License-Identifier: Apache-2.0 3 4 #![deny(missing_docs)] 5 //! # Rate Limiter 6 //! 7 //! Provides a rate limiter written in Rust useful for IO operations that need to 8 //! be throttled. 9 //! 10 //! ## Behavior 11 //! 12 //! The rate limiter starts off as 'unblocked' with two token buckets configured 13 //! with the values passed in the `RateLimiter::new()` constructor. 14 //! All subsequent accounting is done independently for each token bucket based 15 //! on the `TokenType` used. If any of the buckets runs out of budget, the limiter 16 //! goes in the 'blocked' state. At this point an internal timer is set up which 17 //! will later 'wake up' the user in order to retry sending data. The 'wake up' 18 //! notification will be dispatched as an event on the FD provided by the `AsRawFD` 19 //! trait implementation. 20 //! 21 //! The contract is that the user shall also call the `event_handler()` method on 22 //! receipt of such an event. 23 //! 24 //! The token buckets are replenished every time a `consume()` is called, before 25 //! actually trying to consume the requested amount of tokens. The amount of tokens 26 //! replenished is automatically calculated to respect the `complete_refill_time` 27 //! configuration parameter provided by the user. The token buckets will never 28 //! replenish above their respective `size`. 29 //! 30 //! Each token bucket can start off with a `one_time_burst` initial extra capacity 31 //! on top of their `size`. This initial extra credit does not replenish and 32 //! can be used for an initial burst of data. 33 //! 34 //! The granularity for 'wake up' events when the rate limiter is blocked is 35 //! currently hardcoded to `100 milliseconds`. 36 //! 37 //! ## Limitations 38 //! 39 //! This rate limiter implementation relies on the *Linux kernel's timerfd* so its 40 //! usage is limited to Linux systems. 41 //! 42 //! Another particularity of this implementation is that it is not self-driving. 43 //! It is meant to be used in an external event loop and thus implements the `AsRawFd` 44 //! trait and provides an *event-handler* as part of its API. This *event-handler* 45 //! needs to be called by the user on every event on the rate limiter's `AsRawFd` FD. 46 #[macro_use] 47 extern crate log; 48 49 use std::os::unix::io::{AsRawFd, RawFd}; 50 use std::time::{Duration, Instant}; 51 use std::{fmt, io}; 52 use vmm_sys_util::timerfd::TimerFd; 53 54 #[derive(Debug)] 55 /// Describes the errors that may occur while handling rate limiter events. 56 pub enum Error { 57 /// The event handler was called spuriously. 58 SpuriousRateLimiterEvent(&'static str), 59 /// The event handler encounters while TimerFd::wait() 60 TimerFdWaitError(std::io::Error), 61 } 62 63 // Interval at which the refill timer will run when limiter is at capacity. 64 const REFILL_TIMER_INTERVAL_MS: u64 = 100; 65 const TIMER_REFILL_DUR: Duration = Duration::from_millis(REFILL_TIMER_INTERVAL_MS); 66 67 const NANOSEC_IN_ONE_MILLISEC: u64 = 1_000_000; 68 69 // Euclid's two-thousand-year-old algorithm for finding the greatest common divisor. 70 fn gcd(x: u64, y: u64) -> u64 { 71 let mut x = x; 72 let mut y = y; 73 while y != 0 { 74 let t = y; 75 y = x % y; 76 x = t; 77 } 78 x 79 } 80 81 /// Enum describing the outcomes of a `reduce()` call on a `TokenBucket`. 82 #[derive(Clone, Debug, PartialEq)] 83 pub enum BucketReduction { 84 /// There are not enough tokens to complete the operation. 85 Failure, 86 /// A part of the available tokens have been consumed. 87 Success, 88 /// A number of tokens `inner` times larger than the bucket size have been consumed. 89 OverConsumption(f64), 90 } 91 92 /// TokenBucket provides a lower level interface to rate limiting with a 93 /// configurable capacity, refill-rate and initial burst. 94 #[derive(Clone, Debug, PartialEq)] 95 pub struct TokenBucket { 96 // Bucket defining traits. 97 size: u64, 98 // Initial burst size (number of free initial tokens, that can be consumed at no cost) 99 one_time_burst: u64, 100 // Complete refill time in milliseconds. 101 refill_time: u64, 102 103 // Internal state descriptors. 104 budget: u64, 105 last_update: Instant, 106 107 // Fields used for pre-processing optimizations. 108 processed_capacity: u64, 109 processed_refill_time: u64, 110 } 111 112 impl TokenBucket { 113 /// Creates a `TokenBucket` wrapped in an `Option`. 114 /// 115 /// TokenBucket created is of `size` total capacity and takes `complete_refill_time_ms` 116 /// milliseconds to go from zero tokens to total capacity. The `one_time_burst` is initial 117 /// extra credit on top of total capacity, that does not replenish and which can be used 118 /// for an initial burst of data. 119 /// 120 /// If the `size` or the `complete refill time` are zero, then `None` is returned. 121 pub fn new(size: u64, one_time_burst: u64, complete_refill_time_ms: u64) -> Option<Self> { 122 // If either token bucket capacity or refill time is 0, disable limiting. 123 if size == 0 || complete_refill_time_ms == 0 { 124 return None; 125 } 126 // Formula for computing current refill amount: 127 // refill_token_count = (delta_time * size) / (complete_refill_time_ms * 1_000_000) 128 // In order to avoid overflows, simplify the fractions by computing greatest common divisor. 129 130 let complete_refill_time_ns = complete_refill_time_ms * NANOSEC_IN_ONE_MILLISEC; 131 // Get the greatest common factor between `size` and `complete_refill_time_ns`. 132 let common_factor = gcd(size, complete_refill_time_ns); 133 // The division will be exact since `common_factor` is a factor of `size`. 134 let processed_capacity: u64 = size / common_factor; 135 // The division will be exact since `common_factor` is a factor of `complete_refill_time_ns`. 136 let processed_refill_time: u64 = complete_refill_time_ns / common_factor; 137 138 Some(TokenBucket { 139 size, 140 one_time_burst, 141 refill_time: complete_refill_time_ms, 142 // Start off full. 143 budget: size, 144 // Last updated is now. 145 last_update: Instant::now(), 146 processed_capacity, 147 processed_refill_time, 148 }) 149 } 150 151 /// Attempts to consume `tokens` from the bucket and returns whether the action succeeded. 152 // TODO (Issue #259): handle cases where a single request is larger than the full capacity 153 // for such cases we need to support partial fulfilment of requests 154 pub fn reduce(&mut self, mut tokens: u64) -> BucketReduction { 155 // First things first: consume the one-time-burst budget. 156 if self.one_time_burst > 0 { 157 // We still have burst budget for *all* tokens requests. 158 if self.one_time_burst >= tokens { 159 self.one_time_burst -= tokens; 160 self.last_update = Instant::now(); 161 // No need to continue to the refill process, we still have burst budget to consume from. 162 return BucketReduction::Success; 163 } else { 164 // We still have burst budget for *some* of the tokens requests. 165 // The tokens left unfulfilled will be consumed from current `self.budget`. 166 tokens -= self.one_time_burst; 167 self.one_time_burst = 0; 168 } 169 } 170 171 // Compute time passed since last refill/update. 172 let time_delta = self.last_update.elapsed().as_nanos() as u64; 173 self.last_update = Instant::now(); 174 175 // At each 'time_delta' nanoseconds the bucket should refill with: 176 // refill_amount = (time_delta * size) / (complete_refill_time_ms * 1_000_000) 177 // `processed_capacity` and `processed_refill_time` are the result of simplifying above 178 // fraction formula with their greatest-common-factor. 179 self.budget += (time_delta * self.processed_capacity) / self.processed_refill_time; 180 181 if self.budget >= self.size { 182 self.budget = self.size; 183 } 184 185 if tokens > self.budget { 186 // This operation requests a bandwidth higher than the bucket size 187 if tokens > self.size { 188 error!( 189 "Consumed {} tokens from bucket of size {}", 190 tokens, self.size 191 ); 192 // Empty the bucket and report an overconsumption of 193 // (remaining tokens / size) times larger than the bucket size 194 tokens -= self.budget; 195 self.budget = 0; 196 return BucketReduction::OverConsumption(tokens as f64 / self.size as f64); 197 } 198 // If not enough tokens consume() fails, return false. 199 return BucketReduction::Failure; 200 } 201 202 self.budget -= tokens; 203 BucketReduction::Success 204 } 205 206 /// "Manually" adds tokens to bucket. 207 pub fn replenish(&mut self, tokens: u64) { 208 // This means we are still during the burst interval. 209 // Of course there is a very small chance that the last reduce() also used up burst 210 // budget which should now be replenished, but for performance and code-complexity 211 // reasons we're just gonna let that slide since it's practically inconsequential. 212 if self.one_time_burst > 0 { 213 self.one_time_burst += tokens; 214 return; 215 } 216 self.budget = std::cmp::min(self.budget + tokens, self.size); 217 } 218 219 /// Returns the capacity of the token bucket. 220 pub fn capacity(&self) -> u64 { 221 self.size 222 } 223 224 /// Returns the remaining one time burst budget. 225 pub fn one_time_burst(&self) -> u64 { 226 self.one_time_burst 227 } 228 229 /// Returns the time in milliseconds required to to completely fill the bucket. 230 pub fn refill_time_ms(&self) -> u64 { 231 self.refill_time 232 } 233 234 /// Returns the current budget (one time burst allowance notwithstanding). 235 pub fn budget(&self) -> u64 { 236 self.budget 237 } 238 } 239 240 /// Enum that describes the type of token used. 241 pub enum TokenType { 242 /// Token type used for bandwidth limiting. 243 Bytes, 244 /// Token type used for operations/second limiting. 245 Ops, 246 } 247 248 /// Enum that describes the type of token bucket update. 249 pub enum BucketUpdate { 250 /// No Update - same as before. 251 None, 252 /// Rate Limiting is disabled on this bucket. 253 Disabled, 254 /// Rate Limiting enabled with updated bucket. 255 Update(TokenBucket), 256 } 257 258 /// Rate Limiter that works on both bandwidth and ops/s limiting. 259 /// 260 /// Bandwidth (bytes/s) and ops/s limiting can be used at the same time or individually. 261 /// 262 /// Implementation uses a single timer through TimerFd to refresh either or 263 /// both token buckets. 264 /// 265 /// Its internal buckets are 'passively' replenished as they're being used (as 266 /// part of `consume()` operations). 267 /// A timer is enabled and used to 'actively' replenish the token buckets when 268 /// limiting is in effect and `consume()` operations are disabled. 269 /// 270 /// RateLimiters will generate events on the FDs provided by their `AsRawFd` trait 271 /// implementation. These events are meant to be consumed by the user of this struct. 272 /// On each such event, the user must call the `event_handler()` method. 273 pub struct RateLimiter { 274 bandwidth: Option<TokenBucket>, 275 ops: Option<TokenBucket>, 276 277 timer_fd: TimerFd, 278 // Internal flag that quickly determines timer state. 279 timer_active: bool, 280 } 281 282 impl PartialEq for RateLimiter { 283 fn eq(&self, other: &RateLimiter) -> bool { 284 self.bandwidth == other.bandwidth && self.ops == other.ops 285 } 286 } 287 288 impl fmt::Debug for RateLimiter { 289 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 290 write!( 291 f, 292 "RateLimiter {{ bandwidth: {:?}, ops: {:?} }}", 293 self.bandwidth, self.ops 294 ) 295 } 296 } 297 298 impl RateLimiter { 299 /// Creates a new Rate Limiter that can limit on both bytes/s and ops/s. 300 /// 301 /// # Arguments 302 /// 303 /// * `bytes_total_capacity` - the total capacity of the `TokenType::Bytes` token bucket. 304 /// * `bytes_one_time_burst` - initial extra credit on top of `bytes_total_capacity`, 305 /// that does not replenish and which can be used for an initial burst of data. 306 /// * `bytes_complete_refill_time_ms` - number of milliseconds for the `TokenType::Bytes` 307 /// token bucket to go from zero Bytes to `bytes_total_capacity` Bytes. 308 /// * `ops_total_capacity` - the total capacity of the `TokenType::Ops` token bucket. 309 /// * `ops_one_time_burst` - initial extra credit on top of `ops_total_capacity`, 310 /// that does not replenish and which can be used for an initial burst of data. 311 /// * `ops_complete_refill_time_ms` - number of milliseconds for the `TokenType::Ops` token 312 /// bucket to go from zero Ops to `ops_total_capacity` Ops. 313 /// 314 /// If either bytes/ops *size* or *refill_time* are **zero**, the limiter 315 /// is **disabled** for that respective token type. 316 /// 317 /// # Errors 318 /// 319 /// If the timerfd creation fails, an error is returned. 320 pub fn new( 321 bytes_total_capacity: u64, 322 bytes_one_time_burst: u64, 323 bytes_complete_refill_time_ms: u64, 324 ops_total_capacity: u64, 325 ops_one_time_burst: u64, 326 ops_complete_refill_time_ms: u64, 327 ) -> io::Result<Self> { 328 let bytes_token_bucket = TokenBucket::new( 329 bytes_total_capacity, 330 bytes_one_time_burst, 331 bytes_complete_refill_time_ms, 332 ); 333 334 let ops_token_bucket = TokenBucket::new( 335 ops_total_capacity, 336 ops_one_time_burst, 337 ops_complete_refill_time_ms, 338 ); 339 340 // We'll need a timer_fd, even if our current config effectively disables rate limiting, 341 // because `Self::update_buckets()` might re-enable it later, and we might be 342 // seccomp-blocked from creating the timer_fd at that time. 343 let timer_fd = TimerFd::new()?; 344 // Note: vmm_sys_util::TimerFd::new() open the fd w/o O_NONBLOCK. We manually add this flag 345 // so that `Self::event_handler` won't be blocked with `vmm_sys_util::TimerFd::wait()`. 346 let ret = unsafe { 347 let fd = timer_fd.as_raw_fd(); 348 let mut flags = libc::fcntl(fd, libc::F_GETFL); 349 flags |= libc::O_NONBLOCK; 350 libc::fcntl(fd, libc::F_SETFL, flags) 351 }; 352 if ret < 0 { 353 return Err(std::io::Error::last_os_error()); 354 } 355 356 Ok(RateLimiter { 357 bandwidth: bytes_token_bucket, 358 ops: ops_token_bucket, 359 timer_fd, 360 timer_active: false, 361 }) 362 } 363 364 // Arm the timer of the rate limiter with the provided `Duration` (which will fire only once). 365 fn activate_timer(&mut self, dur: Duration) { 366 // Panic when failing to arm the timer (same handling in crate TimerFd::set_state()) 367 self.timer_fd 368 .reset(dur, None) 369 .expect("Can't arm the timer (unexpected 'timerfd_settime' failure)."); 370 self.timer_active = true; 371 } 372 373 /// Attempts to consume tokens and returns whether that is possible. 374 /// 375 /// If rate limiting is disabled on provided `token_type`, this function will always succeed. 376 pub fn consume(&mut self, tokens: u64, token_type: TokenType) -> bool { 377 // If the timer is active, we can't consume tokens from any bucket and the function fails. 378 if self.timer_active { 379 return false; 380 } 381 382 // Identify the required token bucket. 383 let token_bucket = match token_type { 384 TokenType::Bytes => self.bandwidth.as_mut(), 385 TokenType::Ops => self.ops.as_mut(), 386 }; 387 // Try to consume from the token bucket. 388 if let Some(bucket) = token_bucket { 389 let refill_time = bucket.refill_time_ms(); 390 match bucket.reduce(tokens) { 391 // When we report budget is over, there will be no further calls here, 392 // register a timer to replenish the bucket and resume processing; 393 // make sure there is only one running timer for this limiter. 394 BucketReduction::Failure => { 395 if !self.timer_active { 396 self.activate_timer(TIMER_REFILL_DUR); 397 } 398 false 399 } 400 // The operation succeeded and further calls can be made. 401 BucketReduction::Success => true, 402 // The operation succeeded as the tokens have been consumed 403 // but the timer still needs to be armed. 404 BucketReduction::OverConsumption(ratio) => { 405 // The operation "borrowed" a number of tokens `ratio` times 406 // greater than the size of the bucket, and since it takes 407 // `refill_time` milliseconds to fill an empty bucket, in 408 // order to enforce the bandwidth limit we need to prevent 409 // further calls to the rate limiter for 410 // `ratio * refill_time` milliseconds. 411 self.activate_timer(Duration::from_millis((ratio * refill_time as f64) as u64)); 412 true 413 } 414 } 415 } else { 416 // If bucket is not present rate limiting is disabled on token type, 417 // consume() will always succeed. 418 true 419 } 420 } 421 422 /// Adds tokens of `token_type` to their respective bucket. 423 /// 424 /// Can be used to *manually* add tokens to a bucket. Useful for reverting a 425 /// `consume()` if needed. 426 pub fn manual_replenish(&mut self, tokens: u64, token_type: TokenType) { 427 // Identify the required token bucket. 428 let token_bucket = match token_type { 429 TokenType::Bytes => self.bandwidth.as_mut(), 430 TokenType::Ops => self.ops.as_mut(), 431 }; 432 // Add tokens to the token bucket. 433 if let Some(bucket) = token_bucket { 434 bucket.replenish(tokens); 435 } 436 } 437 438 /// Returns whether this rate limiter is blocked. 439 /// 440 /// The limiter 'blocks' when a `consume()` operation fails because there was not enough 441 /// budget for it. 442 /// An event will be generated on the exported FD when the limiter 'unblocks'. 443 pub fn is_blocked(&self) -> bool { 444 self.timer_active 445 } 446 447 /// This function needs to be called every time there is an event on the 448 /// FD provided by this object's `AsRawFd` trait implementation. 449 /// 450 /// # Errors 451 /// 452 /// If the rate limiter is disabled or is not blocked, an error is returned. 453 pub fn event_handler(&mut self) -> Result<(), Error> { 454 loop { 455 // Note: As we manually added the `O_NONBLOCK` flag to the FD, the following 456 // `timer_fd::wait()` won't block (which is different from its default behavior.) 457 match self.timer_fd.wait() { 458 Err(e) => { 459 let err: std::io::Error = e.into(); 460 match err.kind() { 461 std::io::ErrorKind::Interrupted => (), 462 std::io::ErrorKind::WouldBlock => { 463 return Err(Error::SpuriousRateLimiterEvent( 464 "Rate limiter event handler called without a present timer", 465 )) 466 } 467 _ => return Err(Error::TimerFdWaitError(err)), 468 } 469 } 470 _ => { 471 self.timer_active = false; 472 return Ok(()); 473 } 474 } 475 } 476 } 477 478 /// Updates the parameters of the token buckets associated with this RateLimiter. 479 // TODO: Please note that, right now, the buckets become full after being updated. 480 pub fn update_buckets(&mut self, bytes: BucketUpdate, ops: BucketUpdate) { 481 match bytes { 482 BucketUpdate::Disabled => self.bandwidth = None, 483 BucketUpdate::Update(tb) => self.bandwidth = Some(tb), 484 BucketUpdate::None => (), 485 }; 486 match ops { 487 BucketUpdate::Disabled => self.ops = None, 488 BucketUpdate::Update(tb) => self.ops = Some(tb), 489 BucketUpdate::None => (), 490 }; 491 } 492 493 /// Returns an immutable view of the inner bandwidth token bucket. 494 pub fn bandwidth(&self) -> Option<&TokenBucket> { 495 self.bandwidth.as_ref() 496 } 497 498 /// Returns an immutable view of the inner ops token bucket. 499 pub fn ops(&self) -> Option<&TokenBucket> { 500 self.ops.as_ref() 501 } 502 } 503 504 impl AsRawFd for RateLimiter { 505 /// Provides a FD which needs to be monitored for POLLIN events. 506 /// 507 /// This object's `event_handler()` method must be called on such events. 508 /// 509 /// Will return a negative value if rate limiting is disabled on both 510 /// token types. 511 fn as_raw_fd(&self) -> RawFd { 512 self.timer_fd.as_raw_fd() 513 } 514 } 515 516 impl Default for RateLimiter { 517 /// Default RateLimiter is a no-op limiter with infinite budget. 518 fn default() -> Self { 519 // Safe to unwrap since this will not attempt to create timer_fd. 520 RateLimiter::new(0, 0, 0, 0, 0, 0).expect("Failed to build default RateLimiter") 521 } 522 } 523 524 #[cfg(test)] 525 pub(crate) mod tests { 526 use super::*; 527 use std::thread; 528 use std::time::Duration; 529 530 impl TokenBucket { 531 // Resets the token bucket: budget set to max capacity and last-updated set to now. 532 fn reset(&mut self) { 533 self.budget = self.size; 534 self.last_update = Instant::now(); 535 } 536 537 fn get_last_update(&self) -> &Instant { 538 &self.last_update 539 } 540 541 fn get_processed_capacity(&self) -> u64 { 542 self.processed_capacity 543 } 544 545 fn get_processed_refill_time(&self) -> u64 { 546 self.processed_refill_time 547 } 548 549 // After a restore, we cannot be certain that the last_update field has the same value. 550 pub fn partial_eq(&self, other: &TokenBucket) -> bool { 551 (other.capacity() == self.capacity()) 552 && (other.one_time_burst() == self.one_time_burst()) 553 && (other.refill_time_ms() == self.refill_time_ms()) 554 && (other.budget() == self.budget()) 555 } 556 } 557 558 impl RateLimiter { 559 fn get_token_bucket(&self, token_type: TokenType) -> Option<&TokenBucket> { 560 match token_type { 561 TokenType::Bytes => self.bandwidth.as_ref(), 562 TokenType::Ops => self.ops.as_ref(), 563 } 564 } 565 } 566 567 #[test] 568 fn test_token_bucket_create() { 569 let before = Instant::now(); 570 let tb = TokenBucket::new(1000, 0, 1000).unwrap(); 571 assert_eq!(tb.capacity(), 1000); 572 assert_eq!(tb.budget(), 1000); 573 assert!(*tb.get_last_update() >= before); 574 let after = Instant::now(); 575 assert!(*tb.get_last_update() <= after); 576 assert_eq!(tb.get_processed_capacity(), 1); 577 assert_eq!(tb.get_processed_refill_time(), 1_000_000); 578 579 // Verify invalid bucket configurations result in `None`. 580 assert!(TokenBucket::new(0, 1234, 1000).is_none()); 581 assert!(TokenBucket::new(100, 1234, 0).is_none()); 582 assert!(TokenBucket::new(0, 1234, 0).is_none()); 583 } 584 585 #[test] 586 fn test_token_bucket_preprocess() { 587 let tb = TokenBucket::new(1000, 0, 1000).unwrap(); 588 assert_eq!(tb.get_processed_capacity(), 1); 589 assert_eq!(tb.get_processed_refill_time(), NANOSEC_IN_ONE_MILLISEC); 590 591 let thousand = 1000; 592 let tb = TokenBucket::new(3 * 7 * 11 * 19 * thousand, 0, 7 * 11 * 13 * 17).unwrap(); 593 assert_eq!(tb.get_processed_capacity(), 3 * 19); 594 assert_eq!( 595 tb.get_processed_refill_time(), 596 13 * 17 * (NANOSEC_IN_ONE_MILLISEC / thousand) 597 ); 598 } 599 600 #[test] 601 fn test_token_bucket_reduce() { 602 // token bucket with capacity 1000 and refill time of 1000 milliseconds 603 // allowing rate of 1 token/ms. 604 let capacity = 1000; 605 let refill_ms = 1000; 606 let mut tb = TokenBucket::new(capacity, 0, refill_ms as u64).unwrap(); 607 608 assert_eq!(tb.reduce(123), BucketReduction::Success); 609 assert_eq!(tb.budget(), capacity - 123); 610 611 thread::sleep(Duration::from_millis(123)); 612 assert_eq!(tb.reduce(1), BucketReduction::Success); 613 assert_eq!(tb.budget(), capacity - 1); 614 assert_eq!(tb.reduce(100), BucketReduction::Success); 615 assert_eq!(tb.reduce(capacity), BucketReduction::Failure); 616 617 // token bucket with capacity 1000 and refill time of 1000 milliseconds 618 let mut tb = TokenBucket::new(1000, 1100, 1000).unwrap(); 619 // safely assuming the thread can run these 3 commands in less than 500ms 620 assert_eq!(tb.reduce(1000), BucketReduction::Success); 621 assert_eq!(tb.one_time_burst(), 100); 622 assert_eq!(tb.reduce(500), BucketReduction::Success); 623 assert_eq!(tb.one_time_burst(), 0); 624 assert_eq!(tb.reduce(500), BucketReduction::Success); 625 assert_eq!(tb.reduce(500), BucketReduction::Failure); 626 thread::sleep(Duration::from_millis(500)); 627 assert_eq!(tb.reduce(500), BucketReduction::Success); 628 thread::sleep(Duration::from_millis(1000)); 629 assert_eq!(tb.reduce(2500), BucketReduction::OverConsumption(1.5)); 630 631 let before = Instant::now(); 632 tb.reset(); 633 assert_eq!(tb.capacity(), 1000); 634 assert_eq!(tb.budget(), 1000); 635 assert!(*tb.get_last_update() >= before); 636 let after = Instant::now(); 637 assert!(*tb.get_last_update() <= after); 638 } 639 640 #[test] 641 fn test_rate_limiter_default() { 642 let mut l = RateLimiter::default(); 643 644 // limiter should not be blocked 645 assert!(!l.is_blocked()); 646 // limiter should be disabled so consume(whatever) should work 647 assert!(l.consume(u64::max_value(), TokenType::Ops)); 648 assert!(l.consume(u64::max_value(), TokenType::Bytes)); 649 // calling the handler without there having been an event should error 650 assert!(l.event_handler().is_err()); 651 assert_eq!( 652 format!("{:?}", l.event_handler().err().unwrap()), 653 "SpuriousRateLimiterEvent(\ 654 \"Rate limiter event handler called without a present timer\")" 655 ); 656 } 657 658 #[test] 659 fn test_rate_limiter_new() { 660 let l = RateLimiter::new(1000, 1001, 1002, 1003, 1004, 1005).unwrap(); 661 662 let bw = l.bandwidth.unwrap(); 663 assert_eq!(bw.capacity(), 1000); 664 assert_eq!(bw.one_time_burst(), 1001); 665 assert_eq!(bw.refill_time_ms(), 1002); 666 assert_eq!(bw.budget(), 1000); 667 668 let ops = l.ops.unwrap(); 669 assert_eq!(ops.capacity(), 1003); 670 assert_eq!(ops.one_time_burst(), 1004); 671 assert_eq!(ops.refill_time_ms(), 1005); 672 assert_eq!(ops.budget(), 1003); 673 } 674 675 #[test] 676 fn test_rate_limiter_manual_replenish() { 677 // rate limiter with limit of 1000 bytes/s and 1000 ops/s 678 let mut l = RateLimiter::new(1000, 0, 1000, 1000, 0, 1000).unwrap(); 679 680 // consume 123 bytes 681 assert!(l.consume(123, TokenType::Bytes)); 682 l.manual_replenish(23, TokenType::Bytes); 683 { 684 let bytes_tb = l.get_token_bucket(TokenType::Bytes).unwrap(); 685 assert_eq!(bytes_tb.budget(), 900); 686 } 687 // consume 123 ops 688 assert!(l.consume(123, TokenType::Ops)); 689 l.manual_replenish(23, TokenType::Ops); 690 { 691 let bytes_tb = l.get_token_bucket(TokenType::Ops).unwrap(); 692 assert_eq!(bytes_tb.budget(), 900); 693 } 694 } 695 696 #[test] 697 fn test_rate_limiter_bandwidth() { 698 // rate limiter with limit of 1000 bytes/s 699 let mut l = RateLimiter::new(1000, 0, 1000, 0, 0, 0).unwrap(); 700 701 // limiter should not be blocked 702 assert!(!l.is_blocked()); 703 // raw FD for this disabled should be valid 704 assert!(l.as_raw_fd() > 0); 705 706 // ops/s limiter should be disabled so consume(whatever) should work 707 assert!(l.consume(u64::max_value(), TokenType::Ops)); 708 709 // do full 1000 bytes 710 assert!(l.consume(1000, TokenType::Bytes)); 711 // try and fail on another 100 712 assert!(!l.consume(100, TokenType::Bytes)); 713 // since consume failed, limiter should be blocked now 714 assert!(l.is_blocked()); 715 // wait half the timer period 716 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 717 // limiter should still be blocked 718 assert!(l.is_blocked()); 719 // wait the other half of the timer period 720 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 721 // the timer_fd should have an event on it by now 722 assert!(l.event_handler().is_ok()); 723 // limiter should now be unblocked 724 assert!(!l.is_blocked()); 725 // try and succeed on another 100 bytes this time 726 assert!(l.consume(100, TokenType::Bytes)); 727 } 728 729 #[test] 730 fn test_rate_limiter_ops() { 731 // rate limiter with limit of 1000 ops/s 732 let mut l = RateLimiter::new(0, 0, 0, 1000, 0, 1000).unwrap(); 733 734 // limiter should not be blocked 735 assert!(!l.is_blocked()); 736 // raw FD for this disabled should be valid 737 assert!(l.as_raw_fd() > 0); 738 739 // bytes/s limiter should be disabled so consume(whatever) should work 740 assert!(l.consume(u64::max_value(), TokenType::Bytes)); 741 742 // do full 1000 ops 743 assert!(l.consume(1000, TokenType::Ops)); 744 // try and fail on another 100 745 assert!(!l.consume(100, TokenType::Ops)); 746 // since consume failed, limiter should be blocked now 747 assert!(l.is_blocked()); 748 // wait half the timer period 749 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 750 // limiter should still be blocked 751 assert!(l.is_blocked()); 752 // wait the other half of the timer period 753 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 754 // the timer_fd should have an event on it by now 755 assert!(l.event_handler().is_ok()); 756 // limiter should now be unblocked 757 assert!(!l.is_blocked()); 758 // try and succeed on another 100 ops this time 759 assert!(l.consume(100, TokenType::Ops)); 760 } 761 762 #[test] 763 fn test_rate_limiter_full() { 764 // rate limiter with limit of 1000 bytes/s and 1000 ops/s 765 let mut l = RateLimiter::new(1000, 0, 1000, 1000, 0, 1000).unwrap(); 766 767 // limiter should not be blocked 768 assert!(!l.is_blocked()); 769 // raw FD for this disabled should be valid 770 assert!(l.as_raw_fd() > 0); 771 772 // do full 1000 bytes 773 assert!(l.consume(1000, TokenType::Ops)); 774 // do full 1000 bytes 775 assert!(l.consume(1000, TokenType::Bytes)); 776 // try and fail on another 100 ops 777 assert!(!l.consume(100, TokenType::Ops)); 778 // try and fail on another 100 bytes 779 assert!(!l.consume(100, TokenType::Bytes)); 780 // since consume failed, limiter should be blocked now 781 assert!(l.is_blocked()); 782 // wait half the timer period 783 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 784 // limiter should still be blocked 785 assert!(l.is_blocked()); 786 // wait the other half of the timer period 787 thread::sleep(Duration::from_millis(REFILL_TIMER_INTERVAL_MS / 2)); 788 // the timer_fd should have an event on it by now 789 assert!(l.event_handler().is_ok()); 790 // limiter should now be unblocked 791 assert!(!l.is_blocked()); 792 // try and succeed on another 100 ops this time 793 assert!(l.consume(100, TokenType::Ops)); 794 // try and succeed on another 100 bytes this time 795 assert!(l.consume(100, TokenType::Bytes)); 796 } 797 798 #[test] 799 fn test_rate_limiter_overconsumption() { 800 // initialize the rate limiter 801 let mut l = RateLimiter::new(1000, 0, 1000, 1000, 0, 1000).unwrap(); 802 // try to consume 2.5x the bucket size 803 // we are "borrowing" 1.5x the bucket size in tokens since 804 // the bucket is full 805 assert!(l.consume(2500, TokenType::Bytes)); 806 807 // check that even after a whole second passes, the rate limiter 808 // is still blocked 809 thread::sleep(Duration::from_millis(1000)); 810 assert!(l.event_handler().is_err()); 811 assert!(l.is_blocked()); 812 813 // after 1.5x the replenish time has passed, the rate limiter 814 // is available again 815 thread::sleep(Duration::from_millis(500)); 816 assert!(l.event_handler().is_ok()); 817 assert!(!l.is_blocked()); 818 819 // reset the rate limiter 820 let mut l = RateLimiter::new(1000, 0, 1000, 1000, 0, 1000).unwrap(); 821 // try to consume 1.5x the bucket size 822 // we are "borrowing" 1.5x the bucket size in tokens since 823 // the bucket is full, should arm the timer to 0.5x replenish 824 // time, which is 500 ms 825 assert!(l.consume(1500, TokenType::Bytes)); 826 827 // check that after more than the minimum refill time, 828 // the rate limiter is still blocked 829 thread::sleep(Duration::from_millis(200)); 830 assert!(l.event_handler().is_err()); 831 assert!(l.is_blocked()); 832 833 // try to consume some tokens, which should fail as the timer 834 // is still active 835 assert!(!l.consume(100, TokenType::Bytes)); 836 assert!(l.event_handler().is_err()); 837 assert!(l.is_blocked()); 838 839 // check that after the minimum refill time, the timer was not 840 // overwritten and the rate limiter is still blocked from the 841 // borrowing we performed earlier 842 thread::sleep(Duration::from_millis(100)); 843 assert!(l.event_handler().is_err()); 844 assert!(l.is_blocked()); 845 assert!(!l.consume(100, TokenType::Bytes)); 846 847 // after waiting out the full duration, rate limiter should be 848 // availale again 849 thread::sleep(Duration::from_millis(200)); 850 assert!(l.event_handler().is_ok()); 851 assert!(!l.is_blocked()); 852 assert!(l.consume(100, TokenType::Bytes)); 853 } 854 855 #[test] 856 fn test_update_buckets() { 857 let mut x = RateLimiter::new(1000, 2000, 1000, 10, 20, 1000).unwrap(); 858 859 let initial_bw = x.bandwidth.clone(); 860 let initial_ops = x.ops.clone(); 861 862 x.update_buckets(BucketUpdate::None, BucketUpdate::None); 863 assert_eq!(x.bandwidth, initial_bw); 864 assert_eq!(x.ops, initial_ops); 865 866 let new_bw = TokenBucket::new(123, 0, 57).unwrap(); 867 let new_ops = TokenBucket::new(321, 12346, 89).unwrap(); 868 x.update_buckets( 869 BucketUpdate::Update(new_bw.clone()), 870 BucketUpdate::Update(new_ops.clone()), 871 ); 872 873 // We have manually adjust the last_update field, because it changes when update_buckets() 874 // constructs new buckets (and thus gets a different value for last_update). We do this so 875 // it makes sense to test the following assertions. 876 x.bandwidth.as_mut().unwrap().last_update = new_bw.last_update; 877 x.ops.as_mut().unwrap().last_update = new_ops.last_update; 878 879 assert_eq!(x.bandwidth, Some(new_bw)); 880 assert_eq!(x.ops, Some(new_ops)); 881 882 x.update_buckets(BucketUpdate::Disabled, BucketUpdate::Disabled); 883 assert_eq!(x.bandwidth, None); 884 assert_eq!(x.ops, None); 885 } 886 887 #[test] 888 fn test_rate_limiter_debug() { 889 let l = RateLimiter::new(1, 2, 3, 4, 5, 6).unwrap(); 890 assert_eq!( 891 format!("{:?}", l), 892 format!( 893 "RateLimiter {{ bandwidth: {:?}, ops: {:?} }}", 894 l.bandwidth(), 895 l.ops() 896 ), 897 ); 898 } 899 } 900