xref: /cloud-hypervisor/pci/src/vfio.rs (revision eeae63b4595fbf0cc69f62b6e9d9a79c543c4ac7)
1 // Copyright © 2019 Intel Corporation
2 //
3 // SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
4 //
5 
6 use std::any::Any;
7 use std::collections::{BTreeMap, HashMap};
8 use std::io;
9 use std::os::unix::io::AsRawFd;
10 use std::ptr::null_mut;
11 use std::sync::{Arc, Barrier, Mutex};
12 
13 use anyhow::anyhow;
14 use byteorder::{ByteOrder, LittleEndian};
15 use hypervisor::HypervisorVmError;
16 use libc::{sysconf, _SC_PAGESIZE};
17 use serde::{Deserialize, Serialize};
18 use thiserror::Error;
19 use vfio_bindings::bindings::vfio::*;
20 use vfio_ioctls::{
21     VfioContainer, VfioDevice, VfioIrq, VfioRegionInfoCap, VfioRegionSparseMmapArea,
22 };
23 use vm_allocator::page_size::{
24     align_page_size_down, align_page_size_up, is_4k_aligned, is_4k_multiple, is_page_size_aligned,
25 };
26 use vm_allocator::{AddressAllocator, MemorySlotAllocator, SystemAllocator};
27 use vm_device::dma_mapping::ExternalDmaMapping;
28 use vm_device::interrupt::{
29     InterruptIndex, InterruptManager, InterruptSourceGroup, MsiIrqGroupConfig,
30 };
31 use vm_device::{BusDevice, Resource};
32 use vm_memory::{Address, GuestAddress, GuestAddressSpace, GuestMemory, GuestUsize};
33 use vm_migration::{Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable};
34 use vmm_sys_util::eventfd::EventFd;
35 
36 use crate::msi::{MsiConfigState, MSI_CONFIG_ID};
37 use crate::msix::MsixConfigState;
38 use crate::{
39     msi_num_enabled_vectors, BarReprogrammingParams, MsiCap, MsiConfig, MsixCap, MsixConfig,
40     PciBarConfiguration, PciBarPrefetchable, PciBarRegionType, PciBdf, PciCapabilityId,
41     PciClassCode, PciConfiguration, PciDevice, PciDeviceError, PciExpressCapabilityId,
42     PciHeaderType, PciSubclass, MSIX_CONFIG_ID, MSIX_TABLE_ENTRY_SIZE, PCI_CONFIGURATION_ID,
43 };
44 
45 pub(crate) const VFIO_COMMON_ID: &str = "vfio_common";
46 
47 #[derive(Debug, Error)]
48 pub enum VfioPciError {
49     #[error("Failed to create user memory region: {0}")]
50     CreateUserMemoryRegion(#[source] HypervisorVmError),
51     #[error("Failed to DMA map: {0}")]
52     DmaMap(#[source] vfio_ioctls::VfioError),
53     #[error("Failed to DMA unmap: {0}")]
54     DmaUnmap(#[source] vfio_ioctls::VfioError),
55     #[error("Failed to enable INTx: {0}")]
56     EnableIntx(#[source] VfioError),
57     #[error("Failed to enable MSI: {0}")]
58     EnableMsi(#[source] VfioError),
59     #[error("Failed to enable MSI-x: {0}")]
60     EnableMsix(#[source] VfioError),
61     #[error("Failed to mmap the area")]
62     MmapArea,
63     #[error("Failed to notifier's eventfd")]
64     MissingNotifier,
65     #[error("Invalid region alignment")]
66     RegionAlignment,
67     #[error("Invalid region size")]
68     RegionSize,
69     #[error("Failed to retrieve MsiConfigState: {0}")]
70     RetrieveMsiConfigState(#[source] anyhow::Error),
71     #[error("Failed to retrieve MsixConfigState: {0}")]
72     RetrieveMsixConfigState(#[source] anyhow::Error),
73     #[error("Failed to retrieve PciConfigurationState: {0}")]
74     RetrievePciConfigurationState(#[source] anyhow::Error),
75     #[error("Failed to retrieve VfioCommonState: {0}")]
76     RetrieveVfioCommonState(#[source] anyhow::Error),
77 }
78 
79 #[derive(Copy, Clone)]
80 enum PciVfioSubclass {
81     VfioSubclass = 0xff,
82 }
83 
84 impl PciSubclass for PciVfioSubclass {
85     fn get_register_value(&self) -> u8 {
86         *self as u8
87     }
88 }
89 
90 enum InterruptUpdateAction {
91     EnableMsi,
92     DisableMsi,
93     EnableMsix,
94     DisableMsix,
95 }
96 
97 #[derive(Serialize, Deserialize)]
98 struct IntxState {
99     enabled: bool,
100 }
101 
102 pub(crate) struct VfioIntx {
103     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
104     enabled: bool,
105 }
106 
107 #[derive(Serialize, Deserialize)]
108 struct MsiState {
109     cap: MsiCap,
110     cap_offset: u32,
111 }
112 
113 pub(crate) struct VfioMsi {
114     pub(crate) cfg: MsiConfig,
115     cap_offset: u32,
116     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
117 }
118 
119 impl VfioMsi {
120     fn update(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
121         let old_enabled = self.cfg.enabled();
122 
123         self.cfg.update(offset, data);
124 
125         let new_enabled = self.cfg.enabled();
126 
127         if !old_enabled && new_enabled {
128             return Some(InterruptUpdateAction::EnableMsi);
129         }
130 
131         if old_enabled && !new_enabled {
132             return Some(InterruptUpdateAction::DisableMsi);
133         }
134 
135         None
136     }
137 }
138 
139 #[derive(Serialize, Deserialize)]
140 struct MsixState {
141     cap: MsixCap,
142     cap_offset: u32,
143     bdf: u32,
144 }
145 
146 pub(crate) struct VfioMsix {
147     pub(crate) bar: MsixConfig,
148     cap: MsixCap,
149     cap_offset: u32,
150     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
151 }
152 
153 impl VfioMsix {
154     fn update(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
155         let old_enabled = self.bar.enabled();
156 
157         // Update "Message Control" word
158         if offset == 2 && data.len() == 2 {
159             self.bar.set_msg_ctl(LittleEndian::read_u16(data));
160         }
161 
162         let new_enabled = self.bar.enabled();
163 
164         if !old_enabled && new_enabled {
165             return Some(InterruptUpdateAction::EnableMsix);
166         }
167 
168         if old_enabled && !new_enabled {
169             return Some(InterruptUpdateAction::DisableMsix);
170         }
171 
172         None
173     }
174 
175     fn table_accessed(&self, bar_index: u32, offset: u64) -> bool {
176         let table_offset: u64 = u64::from(self.cap.table_offset());
177         let table_size: u64 = u64::from(self.cap.table_size()) * (MSIX_TABLE_ENTRY_SIZE as u64);
178         let table_bir: u32 = self.cap.table_bir();
179 
180         bar_index == table_bir && offset >= table_offset && offset < table_offset + table_size
181     }
182 }
183 
184 pub(crate) struct Interrupt {
185     pub(crate) intx: Option<VfioIntx>,
186     pub(crate) msi: Option<VfioMsi>,
187     pub(crate) msix: Option<VfioMsix>,
188 }
189 
190 impl Interrupt {
191     fn update_msi(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
192         if let Some(ref mut msi) = &mut self.msi {
193             let action = msi.update(offset, data);
194             return action;
195         }
196 
197         None
198     }
199 
200     fn update_msix(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
201         if let Some(ref mut msix) = &mut self.msix {
202             let action = msix.update(offset, data);
203             return action;
204         }
205 
206         None
207     }
208 
209     fn accessed(&self, offset: u64) -> Option<(PciCapabilityId, u64)> {
210         if let Some(msi) = &self.msi {
211             if offset >= u64::from(msi.cap_offset)
212                 && offset < u64::from(msi.cap_offset) + msi.cfg.size()
213             {
214                 return Some((
215                     PciCapabilityId::MessageSignalledInterrupts,
216                     u64::from(msi.cap_offset),
217                 ));
218             }
219         }
220 
221         if let Some(msix) = &self.msix {
222             if offset == u64::from(msix.cap_offset) {
223                 return Some((PciCapabilityId::MsiX, u64::from(msix.cap_offset)));
224             }
225         }
226 
227         None
228     }
229 
230     fn msix_table_accessed(&self, bar_index: u32, offset: u64) -> bool {
231         if let Some(msix) = &self.msix {
232             return msix.table_accessed(bar_index, offset);
233         }
234 
235         false
236     }
237 
238     fn msix_write_table(&mut self, offset: u64, data: &[u8]) {
239         if let Some(ref mut msix) = &mut self.msix {
240             let offset = offset - u64::from(msix.cap.table_offset());
241             msix.bar.write_table(offset, data)
242         }
243     }
244 
245     fn msix_read_table(&self, offset: u64, data: &mut [u8]) {
246         if let Some(msix) = &self.msix {
247             let offset = offset - u64::from(msix.cap.table_offset());
248             msix.bar.read_table(offset, data)
249         }
250     }
251 
252     pub(crate) fn intx_in_use(&self) -> bool {
253         if let Some(intx) = &self.intx {
254             return intx.enabled;
255         }
256 
257         false
258     }
259 }
260 
261 #[derive(Copy, Clone)]
262 pub struct UserMemoryRegion {
263     pub slot: u32,
264     pub start: u64,
265     pub size: u64,
266     pub host_addr: u64,
267 }
268 
269 #[derive(Clone)]
270 pub struct MmioRegion {
271     pub start: GuestAddress,
272     pub length: GuestUsize,
273     pub(crate) type_: PciBarRegionType,
274     pub(crate) index: u32,
275     pub(crate) user_memory_regions: Vec<UserMemoryRegion>,
276 }
277 
278 trait MmioRegionRange {
279     fn check_range(&self, guest_addr: u64, size: u64) -> bool;
280     fn find_user_address(&self, guest_addr: u64) -> Result<u64, io::Error>;
281 }
282 
283 impl MmioRegionRange for Vec<MmioRegion> {
284     // Check if a guest address is within the range of mmio regions
285     fn check_range(&self, guest_addr: u64, size: u64) -> bool {
286         for region in self.iter() {
287             let Some(guest_addr_end) = guest_addr.checked_add(size) else {
288                 return false;
289             };
290             let Some(region_end) = region.start.raw_value().checked_add(region.length) else {
291                 return false;
292             };
293             if guest_addr >= region.start.raw_value() && guest_addr_end <= region_end {
294                 return true;
295             }
296         }
297         false
298     }
299 
300     // Locate the user region address for a guest address within all mmio regions
301     fn find_user_address(&self, guest_addr: u64) -> Result<u64, io::Error> {
302         for region in self.iter() {
303             for user_region in region.user_memory_regions.iter() {
304                 if guest_addr >= user_region.start
305                     && guest_addr < user_region.start + user_region.size
306                 {
307                     return Ok(user_region.host_addr + (guest_addr - user_region.start));
308                 }
309             }
310         }
311 
312         Err(io::Error::new(
313             io::ErrorKind::Other,
314             format!("unable to find user address: 0x{guest_addr:x}"),
315         ))
316     }
317 }
318 
319 #[derive(Debug, Error)]
320 pub enum VfioError {
321     #[error("Kernel VFIO error: {0}")]
322     KernelVfio(#[source] vfio_ioctls::VfioError),
323     #[error("VFIO user error: {0}")]
324     VfioUser(#[source] vfio_user::Error),
325 }
326 
327 pub(crate) trait Vfio: Send + Sync {
328     fn read_config_byte(&self, offset: u32) -> u8 {
329         let mut data: [u8; 1] = [0];
330         self.read_config(offset, &mut data);
331         data[0]
332     }
333 
334     fn read_config_word(&self, offset: u32) -> u16 {
335         let mut data: [u8; 2] = [0, 0];
336         self.read_config(offset, &mut data);
337         u16::from_le_bytes(data)
338     }
339 
340     fn read_config_dword(&self, offset: u32) -> u32 {
341         let mut data: [u8; 4] = [0, 0, 0, 0];
342         self.read_config(offset, &mut data);
343         u32::from_le_bytes(data)
344     }
345 
346     fn write_config_dword(&self, offset: u32, buf: u32) {
347         let data: [u8; 4] = buf.to_le_bytes();
348         self.write_config(offset, &data)
349     }
350 
351     fn read_config(&self, offset: u32, data: &mut [u8]) {
352         self.region_read(VFIO_PCI_CONFIG_REGION_INDEX, offset.into(), data.as_mut());
353     }
354 
355     fn write_config(&self, offset: u32, data: &[u8]) {
356         self.region_write(VFIO_PCI_CONFIG_REGION_INDEX, offset.into(), data)
357     }
358 
359     fn enable_msi(&self, fds: Vec<&EventFd>) -> Result<(), VfioError> {
360         self.enable_irq(VFIO_PCI_MSI_IRQ_INDEX, fds)
361     }
362 
363     fn disable_msi(&self) -> Result<(), VfioError> {
364         self.disable_irq(VFIO_PCI_MSI_IRQ_INDEX)
365     }
366 
367     fn enable_msix(&self, fds: Vec<&EventFd>) -> Result<(), VfioError> {
368         self.enable_irq(VFIO_PCI_MSIX_IRQ_INDEX, fds)
369     }
370 
371     fn disable_msix(&self) -> Result<(), VfioError> {
372         self.disable_irq(VFIO_PCI_MSIX_IRQ_INDEX)
373     }
374 
375     fn region_read(&self, _index: u32, _offset: u64, _data: &mut [u8]) {
376         unimplemented!()
377     }
378 
379     fn region_write(&self, _index: u32, _offset: u64, _data: &[u8]) {
380         unimplemented!()
381     }
382 
383     fn get_irq_info(&self, _irq_index: u32) -> Option<VfioIrq> {
384         unimplemented!()
385     }
386 
387     fn enable_irq(&self, _irq_index: u32, _event_fds: Vec<&EventFd>) -> Result<(), VfioError> {
388         unimplemented!()
389     }
390 
391     fn disable_irq(&self, _irq_index: u32) -> Result<(), VfioError> {
392         unimplemented!()
393     }
394 
395     fn unmask_irq(&self, _irq_index: u32) -> Result<(), VfioError> {
396         unimplemented!()
397     }
398 }
399 
400 struct VfioDeviceWrapper {
401     device: Arc<VfioDevice>,
402 }
403 
404 impl VfioDeviceWrapper {
405     fn new(device: Arc<VfioDevice>) -> Self {
406         Self { device }
407     }
408 }
409 
410 impl Vfio for VfioDeviceWrapper {
411     fn region_read(&self, index: u32, offset: u64, data: &mut [u8]) {
412         self.device.region_read(index, data, offset)
413     }
414 
415     fn region_write(&self, index: u32, offset: u64, data: &[u8]) {
416         self.device.region_write(index, data, offset)
417     }
418 
419     fn get_irq_info(&self, irq_index: u32) -> Option<VfioIrq> {
420         self.device.get_irq_info(irq_index).copied()
421     }
422 
423     fn enable_irq(&self, irq_index: u32, event_fds: Vec<&EventFd>) -> Result<(), VfioError> {
424         self.device
425             .enable_irq(irq_index, event_fds)
426             .map_err(VfioError::KernelVfio)
427     }
428 
429     fn disable_irq(&self, irq_index: u32) -> Result<(), VfioError> {
430         self.device
431             .disable_irq(irq_index)
432             .map_err(VfioError::KernelVfio)
433     }
434 
435     fn unmask_irq(&self, irq_index: u32) -> Result<(), VfioError> {
436         self.device
437             .unmask_irq(irq_index)
438             .map_err(VfioError::KernelVfio)
439     }
440 }
441 
442 #[derive(Serialize, Deserialize)]
443 struct VfioCommonState {
444     intx_state: Option<IntxState>,
445     msi_state: Option<MsiState>,
446     msix_state: Option<MsixState>,
447 }
448 
449 pub(crate) struct ConfigPatch {
450     mask: u32,
451     patch: u32,
452 }
453 
454 pub(crate) struct VfioCommon {
455     pub(crate) configuration: PciConfiguration,
456     pub(crate) mmio_regions: Vec<MmioRegion>,
457     pub(crate) interrupt: Interrupt,
458     pub(crate) msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
459     pub(crate) legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
460     pub(crate) vfio_wrapper: Arc<dyn Vfio>,
461     pub(crate) patches: HashMap<usize, ConfigPatch>,
462     x_nv_gpudirect_clique: Option<u8>,
463 }
464 
465 impl VfioCommon {
466     pub(crate) fn new(
467         msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
468         legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
469         vfio_wrapper: Arc<dyn Vfio>,
470         subclass: &dyn PciSubclass,
471         bdf: PciBdf,
472         snapshot: Option<Snapshot>,
473         x_nv_gpudirect_clique: Option<u8>,
474     ) -> Result<Self, VfioPciError> {
475         let pci_configuration_state =
476             vm_migration::state_from_id(snapshot.as_ref(), PCI_CONFIGURATION_ID).map_err(|e| {
477                 VfioPciError::RetrievePciConfigurationState(anyhow!(
478                     "Failed to get PciConfigurationState from Snapshot: {}",
479                     e
480                 ))
481             })?;
482 
483         let configuration = PciConfiguration::new(
484             0,
485             0,
486             0,
487             PciClassCode::Other,
488             subclass,
489             None,
490             PciHeaderType::Device,
491             0,
492             0,
493             None,
494             pci_configuration_state,
495         );
496 
497         let mut vfio_common = VfioCommon {
498             mmio_regions: Vec::new(),
499             configuration,
500             interrupt: Interrupt {
501                 intx: None,
502                 msi: None,
503                 msix: None,
504             },
505             msi_interrupt_manager,
506             legacy_interrupt_group,
507             vfio_wrapper,
508             patches: HashMap::new(),
509             x_nv_gpudirect_clique,
510         };
511 
512         let state: Option<VfioCommonState> = snapshot
513             .as_ref()
514             .map(|s| s.to_state())
515             .transpose()
516             .map_err(|e| {
517                 VfioPciError::RetrieveVfioCommonState(anyhow!(
518                     "Failed to get VfioCommonState from Snapshot: {}",
519                     e
520                 ))
521             })?;
522         let msi_state =
523             vm_migration::state_from_id(snapshot.as_ref(), MSI_CONFIG_ID).map_err(|e| {
524                 VfioPciError::RetrieveMsiConfigState(anyhow!(
525                     "Failed to get MsiConfigState from Snapshot: {}",
526                     e
527                 ))
528             })?;
529         let msix_state =
530             vm_migration::state_from_id(snapshot.as_ref(), MSIX_CONFIG_ID).map_err(|e| {
531                 VfioPciError::RetrieveMsixConfigState(anyhow!(
532                     "Failed to get MsixConfigState from Snapshot: {}",
533                     e
534                 ))
535             })?;
536 
537         if let Some(state) = state.as_ref() {
538             vfio_common.set_state(state, msi_state, msix_state)?;
539         } else {
540             vfio_common.parse_capabilities(bdf);
541             vfio_common.initialize_legacy_interrupt()?;
542         }
543 
544         Ok(vfio_common)
545     }
546 
547     /// In case msix table offset is not page size aligned, we need do some fixup to achieve it.
548     /// Because we don't want the MMIO RW region and trap region overlap each other.
549     fn fixup_msix_region(&mut self, bar_id: u32, region_size: u64) -> u64 {
550         if let Some(msix) = self.interrupt.msix.as_mut() {
551             let msix_cap = &mut msix.cap;
552 
553             // Suppose table_bir equals to pba_bir here. Am I right?
554             let (table_offset, table_size) = msix_cap.table_range();
555             if is_page_size_aligned(table_offset) || msix_cap.table_bir() != bar_id {
556                 return region_size;
557             }
558 
559             let (pba_offset, pba_size) = msix_cap.pba_range();
560             let msix_sz = align_page_size_up(table_size + pba_size);
561             // Expand region to hold RW and trap region which both page size aligned
562             let size = std::cmp::max(region_size * 2, msix_sz * 2);
563             // let table starts from the middle of the region
564             msix_cap.table_set_offset((size / 2) as u32);
565             msix_cap.pba_set_offset((size / 2 + pba_offset - table_offset) as u32);
566 
567             size
568         } else {
569             // MSI-X not supported for this device
570             region_size
571         }
572     }
573 
574     // The `allocator` argument is unused on `aarch64`
575     #[allow(unused_variables)]
576     pub(crate) fn allocate_bars(
577         &mut self,
578         allocator: &Arc<Mutex<SystemAllocator>>,
579         mmio32_allocator: &mut AddressAllocator,
580         mmio64_allocator: &mut AddressAllocator,
581         resources: Option<Vec<Resource>>,
582     ) -> Result<Vec<PciBarConfiguration>, PciDeviceError> {
583         let mut bars = Vec::new();
584         let mut bar_id = VFIO_PCI_BAR0_REGION_INDEX;
585 
586         // Going through all regular regions to compute the BAR size.
587         // We're not saving the BAR address to restore it, because we
588         // are going to allocate a guest address for each BAR and write
589         // that new address back.
590         while bar_id < VFIO_PCI_CONFIG_REGION_INDEX {
591             let mut region_size: u64 = 0;
592             let mut region_type = PciBarRegionType::Memory32BitRegion;
593             let mut prefetchable = PciBarPrefetchable::NotPrefetchable;
594             let mut flags: u32 = 0;
595 
596             let mut restored_bar_addr = None;
597             if let Some(resources) = &resources {
598                 for resource in resources {
599                     if let Resource::PciBar {
600                         index,
601                         base,
602                         size,
603                         type_,
604                         ..
605                     } = resource
606                     {
607                         if *index == bar_id as usize {
608                             restored_bar_addr = Some(GuestAddress(*base));
609                             region_size = *size;
610                             region_type = PciBarRegionType::from(*type_);
611                             break;
612                         }
613                     }
614                 }
615                 if restored_bar_addr.is_none() {
616                     bar_id += 1;
617                     continue;
618                 }
619             } else {
620                 let bar_offset = if bar_id == VFIO_PCI_ROM_REGION_INDEX {
621                     (PCI_ROM_EXP_BAR_INDEX * 4) as u32
622                 } else {
623                     PCI_CONFIG_BAR_OFFSET + bar_id * 4
624                 };
625 
626                 // First read flags
627                 flags = self.vfio_wrapper.read_config_dword(bar_offset);
628 
629                 // Is this an IO BAR?
630                 let io_bar = if bar_id != VFIO_PCI_ROM_REGION_INDEX {
631                     matches!(flags & PCI_CONFIG_IO_BAR, PCI_CONFIG_IO_BAR)
632                 } else {
633                     false
634                 };
635 
636                 // Is this a 64-bit BAR?
637                 let is_64bit_bar = if bar_id != VFIO_PCI_ROM_REGION_INDEX {
638                     matches!(
639                         flags & PCI_CONFIG_MEMORY_BAR_64BIT,
640                         PCI_CONFIG_MEMORY_BAR_64BIT
641                     )
642                 } else {
643                     false
644                 };
645 
646                 if matches!(
647                     flags & PCI_CONFIG_BAR_PREFETCHABLE,
648                     PCI_CONFIG_BAR_PREFETCHABLE
649                 ) {
650                     prefetchable = PciBarPrefetchable::Prefetchable
651                 };
652 
653                 // To get size write all 1s
654                 self.vfio_wrapper
655                     .write_config_dword(bar_offset, 0xffff_ffff);
656 
657                 // And read back BAR value. The device will write zeros for bits it doesn't care about
658                 let mut lower = self.vfio_wrapper.read_config_dword(bar_offset);
659 
660                 if io_bar {
661                     // Mask flag bits (lowest 2 for I/O bars)
662                     lower &= !0b11;
663 
664                     // BAR is not enabled
665                     if lower == 0 {
666                         bar_id += 1;
667                         continue;
668                     }
669 
670                     // IO BAR
671                     region_type = PciBarRegionType::IoRegion;
672 
673                     // Invert bits and add 1 to calculate size
674                     region_size = (!lower + 1) as u64;
675                 } else if is_64bit_bar {
676                     // 64 bits Memory BAR
677                     region_type = PciBarRegionType::Memory64BitRegion;
678 
679                     // Query size of upper BAR of 64-bit BAR
680                     let upper_offset: u32 = PCI_CONFIG_BAR_OFFSET + (bar_id + 1) * 4;
681                     self.vfio_wrapper
682                         .write_config_dword(upper_offset, 0xffff_ffff);
683                     let upper = self.vfio_wrapper.read_config_dword(upper_offset);
684 
685                     let mut combined_size = u64::from(upper) << 32 | u64::from(lower);
686 
687                     // Mask out flag bits (lowest 4 for memory bars)
688                     combined_size &= !0b1111;
689 
690                     // BAR is not enabled
691                     if combined_size == 0 {
692                         bar_id += 1;
693                         continue;
694                     }
695 
696                     // Invert and add 1 to to find size
697                     region_size = !combined_size + 1;
698                 } else {
699                     region_type = PciBarRegionType::Memory32BitRegion;
700 
701                     // Mask out flag bits (lowest 4 for memory bars)
702                     lower &= !0b1111;
703 
704                     if lower == 0 {
705                         bar_id += 1;
706                         continue;
707                     }
708 
709                     // Invert and add 1 to to find size
710                     region_size = (!lower + 1) as u64;
711                 }
712             }
713 
714             let bar_addr = match region_type {
715                 PciBarRegionType::IoRegion => {
716                     // The address needs to be 4 bytes aligned.
717                     allocator
718                         .lock()
719                         .unwrap()
720                         .allocate_io_addresses(restored_bar_addr, region_size, Some(0x4))
721                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
722                 }
723                 PciBarRegionType::Memory32BitRegion => {
724                     // BAR allocation must be naturally aligned
725                     mmio32_allocator
726                         .allocate(restored_bar_addr, region_size, Some(region_size))
727                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
728                 }
729                 PciBarRegionType::Memory64BitRegion => {
730                     // We need do some fixup to keep MMIO RW region and msix cap region page size
731                     // aligned.
732                     region_size = self.fixup_msix_region(bar_id, region_size);
733                     mmio64_allocator
734                         .allocate(
735                             restored_bar_addr,
736                             region_size,
737                             Some(std::cmp::max(
738                                 // SAFETY: FFI call. Trivially safe.
739                                 unsafe { sysconf(_SC_PAGESIZE) as GuestUsize },
740                                 region_size,
741                             )),
742                         )
743                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
744                 }
745             };
746 
747             // We can now build our BAR configuration block.
748             let bar = PciBarConfiguration::default()
749                 .set_index(bar_id as usize)
750                 .set_address(bar_addr.raw_value())
751                 .set_size(region_size)
752                 .set_region_type(region_type)
753                 .set_prefetchable(prefetchable);
754 
755             if bar_id == VFIO_PCI_ROM_REGION_INDEX {
756                 self.configuration
757                     .add_pci_rom_bar(&bar, flags & 0x1)
758                     .map_err(|e| PciDeviceError::IoRegistrationFailed(bar_addr.raw_value(), e))?;
759             } else {
760                 self.configuration
761                     .add_pci_bar(&bar)
762                     .map_err(|e| PciDeviceError::IoRegistrationFailed(bar_addr.raw_value(), e))?;
763             }
764 
765             bars.push(bar);
766             self.mmio_regions.push(MmioRegion {
767                 start: bar_addr,
768                 length: region_size,
769                 type_: region_type,
770                 index: bar_id,
771                 user_memory_regions: Vec::new(),
772             });
773 
774             bar_id += 1;
775             if region_type == PciBarRegionType::Memory64BitRegion {
776                 bar_id += 1;
777             }
778         }
779 
780         Ok(bars)
781     }
782 
783     // The `allocator` argument is unused on `aarch64`
784     #[allow(unused_variables)]
785     pub(crate) fn free_bars(
786         &mut self,
787         allocator: &mut SystemAllocator,
788         mmio32_allocator: &mut AddressAllocator,
789         mmio64_allocator: &mut AddressAllocator,
790     ) -> Result<(), PciDeviceError> {
791         for region in self.mmio_regions.iter() {
792             match region.type_ {
793                 PciBarRegionType::IoRegion => {
794                     allocator.free_io_addresses(region.start, region.length);
795                 }
796                 PciBarRegionType::Memory32BitRegion => {
797                     mmio32_allocator.free(region.start, region.length);
798                 }
799                 PciBarRegionType::Memory64BitRegion => {
800                     mmio64_allocator.free(region.start, region.length);
801                 }
802             }
803         }
804         Ok(())
805     }
806 
807     pub(crate) fn parse_msix_capabilities(&mut self, cap: u8) -> MsixCap {
808         let msg_ctl = self.vfio_wrapper.read_config_word((cap + 2).into());
809 
810         let table = self.vfio_wrapper.read_config_dword((cap + 4).into());
811 
812         let pba = self.vfio_wrapper.read_config_dword((cap + 8).into());
813 
814         MsixCap {
815             msg_ctl,
816             table,
817             pba,
818         }
819     }
820 
821     pub(crate) fn initialize_msix(
822         &mut self,
823         msix_cap: MsixCap,
824         cap_offset: u32,
825         bdf: PciBdf,
826         state: Option<MsixConfigState>,
827     ) {
828         let interrupt_source_group = self
829             .msi_interrupt_manager
830             .create_group(MsiIrqGroupConfig {
831                 base: 0,
832                 count: msix_cap.table_size() as InterruptIndex,
833             })
834             .unwrap();
835 
836         let msix_config = MsixConfig::new(
837             msix_cap.table_size(),
838             interrupt_source_group.clone(),
839             bdf.into(),
840             state,
841         )
842         .unwrap();
843 
844         self.interrupt.msix = Some(VfioMsix {
845             bar: msix_config,
846             cap: msix_cap,
847             cap_offset,
848             interrupt_source_group,
849         });
850     }
851 
852     pub(crate) fn parse_msi_capabilities(&mut self, cap: u8) -> u16 {
853         self.vfio_wrapper.read_config_word((cap + 2).into())
854     }
855 
856     pub(crate) fn initialize_msi(
857         &mut self,
858         msg_ctl: u16,
859         cap_offset: u32,
860         state: Option<MsiConfigState>,
861     ) {
862         let interrupt_source_group = self
863             .msi_interrupt_manager
864             .create_group(MsiIrqGroupConfig {
865                 base: 0,
866                 count: msi_num_enabled_vectors(msg_ctl) as InterruptIndex,
867             })
868             .unwrap();
869 
870         let msi_config = MsiConfig::new(msg_ctl, interrupt_source_group.clone(), state).unwrap();
871 
872         self.interrupt.msi = Some(VfioMsi {
873             cfg: msi_config,
874             cap_offset,
875             interrupt_source_group,
876         });
877     }
878 
879     pub(crate) fn get_msix_cap_idx(&self) -> Option<usize> {
880         let mut cap_next = self
881             .vfio_wrapper
882             .read_config_byte(PCI_CONFIG_CAPABILITY_OFFSET);
883 
884         while cap_next != 0 {
885             let cap_id = self.vfio_wrapper.read_config_byte(cap_next.into());
886             if PciCapabilityId::from(cap_id) == PciCapabilityId::MsiX {
887                 return Some(cap_next as usize);
888             } else {
889                 cap_next = self.vfio_wrapper.read_config_byte((cap_next + 1).into());
890             }
891         }
892 
893         None
894     }
895 
896     pub(crate) fn parse_capabilities(&mut self, bdf: PciBdf) {
897         let mut cap_iter = self
898             .vfio_wrapper
899             .read_config_byte(PCI_CONFIG_CAPABILITY_OFFSET);
900 
901         let mut pci_express_cap_found = false;
902         let mut power_management_cap_found = false;
903 
904         while cap_iter != 0 {
905             let cap_id = self.vfio_wrapper.read_config_byte(cap_iter.into());
906 
907             match PciCapabilityId::from(cap_id) {
908                 PciCapabilityId::MessageSignalledInterrupts => {
909                     if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_MSI_IRQ_INDEX) {
910                         if irq_info.count > 0 {
911                             // Parse capability only if the VFIO device
912                             // supports MSI.
913                             let msg_ctl = self.parse_msi_capabilities(cap_iter);
914                             self.initialize_msi(msg_ctl, cap_iter as u32, None);
915                         }
916                     }
917                 }
918                 PciCapabilityId::MsiX => {
919                     if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_MSIX_IRQ_INDEX)
920                     {
921                         if irq_info.count > 0 {
922                             // Parse capability only if the VFIO device
923                             // supports MSI-X.
924                             let msix_cap = self.parse_msix_capabilities(cap_iter);
925                             self.initialize_msix(msix_cap, cap_iter as u32, bdf, None);
926                         }
927                     }
928                 }
929                 PciCapabilityId::PciExpress => pci_express_cap_found = true,
930                 PciCapabilityId::PowerManagement => power_management_cap_found = true,
931                 _ => {}
932             };
933 
934             let cap_next = self.vfio_wrapper.read_config_byte((cap_iter + 1).into());
935             if cap_next == 0 {
936                 break;
937             }
938 
939             cap_iter = cap_next;
940         }
941 
942         if let Some(clique_id) = self.x_nv_gpudirect_clique {
943             self.add_nv_gpudirect_clique_cap(cap_iter, clique_id);
944         }
945 
946         if pci_express_cap_found && power_management_cap_found {
947             self.parse_extended_capabilities();
948         }
949     }
950 
951     fn add_nv_gpudirect_clique_cap(&mut self, cap_iter: u8, clique_id: u8) {
952         // Turing, Ampere, Hopper, and Lovelace GPUs have dedicated space
953         // at 0xD4 for this capability.
954         let cap_offset = 0xd4u32;
955 
956         let reg_idx = (cap_iter / 4) as usize;
957         self.patches.insert(
958             reg_idx,
959             ConfigPatch {
960                 mask: 0x0000_ff00,
961                 patch: cap_offset << 8,
962             },
963         );
964 
965         let reg_idx = (cap_offset / 4) as usize;
966         self.patches.insert(
967             reg_idx,
968             ConfigPatch {
969                 mask: 0xffff_ffff,
970                 patch: 0x50080009u32,
971             },
972         );
973         self.patches.insert(
974             reg_idx + 1,
975             ConfigPatch {
976                 mask: 0xffff_ffff,
977                 patch: u32::from(clique_id) << 19 | 0x5032,
978             },
979         );
980     }
981 
982     fn parse_extended_capabilities(&mut self) {
983         let mut current_offset = PCI_CONFIG_EXTENDED_CAPABILITY_OFFSET;
984 
985         loop {
986             let ext_cap_hdr = self.vfio_wrapper.read_config_dword(current_offset);
987 
988             let cap_id: u16 = (ext_cap_hdr & 0xffff) as u16;
989             let cap_next: u16 = ((ext_cap_hdr >> 20) & 0xfff) as u16;
990 
991             match PciExpressCapabilityId::from(cap_id) {
992                 PciExpressCapabilityId::AlternativeRoutingIdentificationInterpretation
993                 | PciExpressCapabilityId::ResizeableBar
994                 | PciExpressCapabilityId::SingleRootIoVirtualization => {
995                     let reg_idx = (current_offset / 4) as usize;
996                     self.patches.insert(
997                         reg_idx,
998                         ConfigPatch {
999                             mask: 0x0000_ffff,
1000                             patch: PciExpressCapabilityId::NullCapability as u32,
1001                         },
1002                     );
1003                 }
1004                 _ => {}
1005             }
1006 
1007             if cap_next == 0 {
1008                 break;
1009             }
1010 
1011             current_offset = cap_next.into();
1012         }
1013     }
1014 
1015     pub(crate) fn enable_intx(&mut self) -> Result<(), VfioPciError> {
1016         if let Some(intx) = &mut self.interrupt.intx {
1017             if !intx.enabled {
1018                 if let Some(eventfd) = intx.interrupt_source_group.notifier(0) {
1019                     self.vfio_wrapper
1020                         .enable_irq(VFIO_PCI_INTX_IRQ_INDEX, vec![&eventfd])
1021                         .map_err(VfioPciError::EnableIntx)?;
1022 
1023                     intx.enabled = true;
1024                 } else {
1025                     return Err(VfioPciError::MissingNotifier);
1026                 }
1027             }
1028         }
1029 
1030         Ok(())
1031     }
1032 
1033     pub(crate) fn disable_intx(&mut self) {
1034         if let Some(intx) = &mut self.interrupt.intx {
1035             if intx.enabled {
1036                 if let Err(e) = self.vfio_wrapper.disable_irq(VFIO_PCI_INTX_IRQ_INDEX) {
1037                     error!("Could not disable INTx: {}", e);
1038                 } else {
1039                     intx.enabled = false;
1040                 }
1041             }
1042         }
1043     }
1044 
1045     pub(crate) fn enable_msi(&self) -> Result<(), VfioPciError> {
1046         if let Some(msi) = &self.interrupt.msi {
1047             let mut irq_fds: Vec<EventFd> = Vec::new();
1048             for i in 0..msi.cfg.num_enabled_vectors() {
1049                 if let Some(eventfd) = msi.interrupt_source_group.notifier(i as InterruptIndex) {
1050                     irq_fds.push(eventfd);
1051                 } else {
1052                     return Err(VfioPciError::MissingNotifier);
1053                 }
1054             }
1055 
1056             self.vfio_wrapper
1057                 .enable_msi(irq_fds.iter().collect())
1058                 .map_err(VfioPciError::EnableMsi)?;
1059         }
1060 
1061         Ok(())
1062     }
1063 
1064     pub(crate) fn disable_msi(&self) {
1065         if let Err(e) = self.vfio_wrapper.disable_msi() {
1066             error!("Could not disable MSI: {}", e);
1067         }
1068     }
1069 
1070     pub(crate) fn enable_msix(&self) -> Result<(), VfioPciError> {
1071         if let Some(msix) = &self.interrupt.msix {
1072             let mut irq_fds: Vec<EventFd> = Vec::new();
1073             for i in 0..msix.bar.table_entries.len() {
1074                 if let Some(eventfd) = msix.interrupt_source_group.notifier(i as InterruptIndex) {
1075                     irq_fds.push(eventfd);
1076                 } else {
1077                     return Err(VfioPciError::MissingNotifier);
1078                 }
1079             }
1080 
1081             self.vfio_wrapper
1082                 .enable_msix(irq_fds.iter().collect())
1083                 .map_err(VfioPciError::EnableMsix)?;
1084         }
1085 
1086         Ok(())
1087     }
1088 
1089     pub(crate) fn disable_msix(&self) {
1090         if let Err(e) = self.vfio_wrapper.disable_msix() {
1091             error!("Could not disable MSI-X: {}", e);
1092         }
1093     }
1094 
1095     pub(crate) fn initialize_legacy_interrupt(&mut self) -> Result<(), VfioPciError> {
1096         if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_INTX_IRQ_INDEX) {
1097             if irq_info.count == 0 {
1098                 // A count of 0 means the INTx IRQ is not supported, therefore
1099                 // it shouldn't be initialized.
1100                 return Ok(());
1101             }
1102         }
1103 
1104         if let Some(interrupt_source_group) = self.legacy_interrupt_group.clone() {
1105             self.interrupt.intx = Some(VfioIntx {
1106                 interrupt_source_group,
1107                 enabled: false,
1108             });
1109 
1110             self.enable_intx()?;
1111         }
1112 
1113         Ok(())
1114     }
1115 
1116     pub(crate) fn update_msi_capabilities(
1117         &mut self,
1118         offset: u64,
1119         data: &[u8],
1120     ) -> Result<(), VfioPciError> {
1121         match self.interrupt.update_msi(offset, data) {
1122             Some(InterruptUpdateAction::EnableMsi) => {
1123                 // Disable INTx before we can enable MSI
1124                 self.disable_intx();
1125                 self.enable_msi()?;
1126             }
1127             Some(InterruptUpdateAction::DisableMsi) => {
1128                 // Fallback onto INTx when disabling MSI
1129                 self.disable_msi();
1130                 self.enable_intx()?;
1131             }
1132             _ => {}
1133         }
1134 
1135         Ok(())
1136     }
1137 
1138     pub(crate) fn update_msix_capabilities(
1139         &mut self,
1140         offset: u64,
1141         data: &[u8],
1142     ) -> Result<(), VfioPciError> {
1143         match self.interrupt.update_msix(offset, data) {
1144             Some(InterruptUpdateAction::EnableMsix) => {
1145                 // Disable INTx before we can enable MSI-X
1146                 self.disable_intx();
1147                 self.enable_msix()?;
1148             }
1149             Some(InterruptUpdateAction::DisableMsix) => {
1150                 // Fallback onto INTx when disabling MSI-X
1151                 self.disable_msix();
1152                 self.enable_intx()?;
1153             }
1154             _ => {}
1155         }
1156 
1157         Ok(())
1158     }
1159 
1160     pub(crate) fn find_region(&self, addr: u64) -> Option<MmioRegion> {
1161         for region in self.mmio_regions.iter() {
1162             if addr >= region.start.raw_value()
1163                 && addr < region.start.unchecked_add(region.length).raw_value()
1164             {
1165                 return Some(region.clone());
1166             }
1167         }
1168         None
1169     }
1170 
1171     pub(crate) fn read_bar(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1172         let addr = base + offset;
1173         if let Some(region) = self.find_region(addr) {
1174             let offset = addr - region.start.raw_value();
1175 
1176             if self.interrupt.msix_table_accessed(region.index, offset) {
1177                 self.interrupt.msix_read_table(offset, data);
1178             } else {
1179                 self.vfio_wrapper.region_read(region.index, offset, data);
1180             }
1181         }
1182 
1183         // INTx EOI
1184         // The guest reading from the BAR potentially means the interrupt has
1185         // been received and can be acknowledged.
1186         if self.interrupt.intx_in_use() {
1187             if let Err(e) = self.vfio_wrapper.unmask_irq(VFIO_PCI_INTX_IRQ_INDEX) {
1188                 error!("Failed unmasking INTx IRQ: {}", e);
1189             }
1190         }
1191     }
1192 
1193     pub(crate) fn write_bar(
1194         &mut self,
1195         base: u64,
1196         offset: u64,
1197         data: &[u8],
1198     ) -> Option<Arc<Barrier>> {
1199         let addr = base + offset;
1200         if let Some(region) = self.find_region(addr) {
1201             let offset = addr - region.start.raw_value();
1202 
1203             // If the MSI-X table is written to, we need to update our cache.
1204             if self.interrupt.msix_table_accessed(region.index, offset) {
1205                 self.interrupt.msix_write_table(offset, data);
1206             } else {
1207                 self.vfio_wrapper.region_write(region.index, offset, data);
1208             }
1209         }
1210 
1211         // INTx EOI
1212         // The guest writing to the BAR potentially means the interrupt has
1213         // been received and can be acknowledged.
1214         if self.interrupt.intx_in_use() {
1215             if let Err(e) = self.vfio_wrapper.unmask_irq(VFIO_PCI_INTX_IRQ_INDEX) {
1216                 error!("Failed unmasking INTx IRQ: {}", e);
1217             }
1218         }
1219 
1220         None
1221     }
1222 
1223     pub(crate) fn write_config_register(
1224         &mut self,
1225         reg_idx: usize,
1226         offset: u64,
1227         data: &[u8],
1228     ) -> Option<Arc<Barrier>> {
1229         // When the guest wants to write to a BAR, we trap it into
1230         // our local configuration space. We're not reprogramming
1231         // VFIO device.
1232         if (PCI_CONFIG_BAR0_INDEX..PCI_CONFIG_BAR0_INDEX + BAR_NUMS).contains(&reg_idx)
1233             || reg_idx == PCI_ROM_EXP_BAR_INDEX
1234         {
1235             // We keep our local cache updated with the BARs.
1236             // We'll read it back from there when the guest is asking
1237             // for BARs (see read_config_register()).
1238             self.configuration
1239                 .write_config_register(reg_idx, offset, data);
1240             return None;
1241         }
1242 
1243         let reg = (reg_idx * PCI_CONFIG_REGISTER_SIZE) as u64;
1244 
1245         // If the MSI or MSI-X capabilities are accessed, we need to
1246         // update our local cache accordingly.
1247         // Depending on how the capabilities are modified, this could
1248         // trigger a VFIO MSI or MSI-X toggle.
1249         if let Some((cap_id, cap_base)) = self.interrupt.accessed(reg) {
1250             let cap_offset: u64 = reg - cap_base + offset;
1251             match cap_id {
1252                 PciCapabilityId::MessageSignalledInterrupts => {
1253                     if let Err(e) = self.update_msi_capabilities(cap_offset, data) {
1254                         error!("Could not update MSI capabilities: {}", e);
1255                     }
1256                 }
1257                 PciCapabilityId::MsiX => {
1258                     if let Err(e) = self.update_msix_capabilities(cap_offset, data) {
1259                         error!("Could not update MSI-X capabilities: {}", e);
1260                     }
1261                 }
1262                 _ => {}
1263             }
1264         }
1265 
1266         // Make sure to write to the device's PCI config space after MSI/MSI-X
1267         // interrupts have been enabled/disabled. In case of MSI, when the
1268         // interrupts are enabled through VFIO (using VFIO_DEVICE_SET_IRQS),
1269         // the MSI Enable bit in the MSI capability structure found in the PCI
1270         // config space is disabled by default. That's why when the guest is
1271         // enabling this bit, we first need to enable the MSI interrupts with
1272         // VFIO through VFIO_DEVICE_SET_IRQS ioctl, and only after we can write
1273         // to the device region to update the MSI Enable bit.
1274         self.vfio_wrapper.write_config((reg + offset) as u32, data);
1275 
1276         None
1277     }
1278 
1279     pub(crate) fn read_config_register(&mut self, reg_idx: usize) -> u32 {
1280         // When reading the BARs, we trap it and return what comes
1281         // from our local configuration space. We want the guest to
1282         // use that and not the VFIO device BARs as it does not map
1283         // with the guest address space.
1284         if (PCI_CONFIG_BAR0_INDEX..PCI_CONFIG_BAR0_INDEX + BAR_NUMS).contains(&reg_idx)
1285             || reg_idx == PCI_ROM_EXP_BAR_INDEX
1286         {
1287             return self.configuration.read_reg(reg_idx);
1288         }
1289 
1290         if let Some(id) = self.get_msix_cap_idx() {
1291             let msix = self.interrupt.msix.as_mut().unwrap();
1292             if reg_idx * 4 == id + 4 {
1293                 return msix.cap.table;
1294             } else if reg_idx * 4 == id + 8 {
1295                 return msix.cap.pba;
1296             }
1297         }
1298 
1299         // Since we don't support passing multi-functions devices, we should
1300         // mask the multi-function bit, bit 7 of the Header Type byte on the
1301         // register 3.
1302         let mask = if reg_idx == PCI_HEADER_TYPE_REG_INDEX {
1303             0xff7f_ffff
1304         } else {
1305             0xffff_ffff
1306         };
1307 
1308         // The config register read comes from the VFIO device itself.
1309         let mut value = self.vfio_wrapper.read_config_dword((reg_idx * 4) as u32) & mask;
1310 
1311         if let Some(config_patch) = self.patches.get(&reg_idx) {
1312             value = (value & !config_patch.mask) | config_patch.patch;
1313         }
1314 
1315         value
1316     }
1317 
1318     fn state(&self) -> VfioCommonState {
1319         let intx_state = self.interrupt.intx.as_ref().map(|intx| IntxState {
1320             enabled: intx.enabled,
1321         });
1322 
1323         let msi_state = self.interrupt.msi.as_ref().map(|msi| MsiState {
1324             cap: msi.cfg.cap,
1325             cap_offset: msi.cap_offset,
1326         });
1327 
1328         let msix_state = self.interrupt.msix.as_ref().map(|msix| MsixState {
1329             cap: msix.cap,
1330             cap_offset: msix.cap_offset,
1331             bdf: msix.bar.devid,
1332         });
1333 
1334         VfioCommonState {
1335             intx_state,
1336             msi_state,
1337             msix_state,
1338         }
1339     }
1340 
1341     fn set_state(
1342         &mut self,
1343         state: &VfioCommonState,
1344         msi_state: Option<MsiConfigState>,
1345         msix_state: Option<MsixConfigState>,
1346     ) -> Result<(), VfioPciError> {
1347         if let (Some(intx), Some(interrupt_source_group)) =
1348             (&state.intx_state, self.legacy_interrupt_group.clone())
1349         {
1350             self.interrupt.intx = Some(VfioIntx {
1351                 interrupt_source_group,
1352                 enabled: false,
1353             });
1354 
1355             if intx.enabled {
1356                 self.enable_intx()?;
1357             }
1358         }
1359 
1360         if let Some(msi) = &state.msi_state {
1361             self.initialize_msi(msi.cap.msg_ctl, msi.cap_offset, msi_state);
1362         }
1363 
1364         if let Some(msix) = &state.msix_state {
1365             self.initialize_msix(msix.cap, msix.cap_offset, msix.bdf.into(), msix_state);
1366         }
1367 
1368         Ok(())
1369     }
1370 }
1371 
1372 impl Pausable for VfioCommon {}
1373 
1374 impl Snapshottable for VfioCommon {
1375     fn id(&self) -> String {
1376         String::from(VFIO_COMMON_ID)
1377     }
1378 
1379     fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
1380         let mut vfio_common_snapshot = Snapshot::new_from_state(&self.state())?;
1381 
1382         // Snapshot PciConfiguration
1383         vfio_common_snapshot.add_snapshot(self.configuration.id(), self.configuration.snapshot()?);
1384 
1385         // Snapshot MSI
1386         if let Some(msi) = &mut self.interrupt.msi {
1387             vfio_common_snapshot.add_snapshot(msi.cfg.id(), msi.cfg.snapshot()?);
1388         }
1389 
1390         // Snapshot MSI-X
1391         if let Some(msix) = &mut self.interrupt.msix {
1392             vfio_common_snapshot.add_snapshot(msix.bar.id(), msix.bar.snapshot()?);
1393         }
1394 
1395         Ok(vfio_common_snapshot)
1396     }
1397 }
1398 
1399 /// VfioPciDevice represents a VFIO PCI device.
1400 /// This structure implements the BusDevice and PciDevice traits.
1401 ///
1402 /// A VfioPciDevice is bound to a VfioDevice and is also a PCI device.
1403 /// The VMM creates a VfioDevice, then assigns it to a VfioPciDevice,
1404 /// which then gets added to the PCI bus.
1405 pub struct VfioPciDevice {
1406     id: String,
1407     vm: Arc<dyn hypervisor::Vm>,
1408     device: Arc<VfioDevice>,
1409     container: Arc<VfioContainer>,
1410     common: VfioCommon,
1411     iommu_attached: bool,
1412     memory_slot_allocator: MemorySlotAllocator,
1413 }
1414 
1415 impl VfioPciDevice {
1416     /// Constructs a new Vfio Pci device for the given Vfio device
1417     #[allow(clippy::too_many_arguments)]
1418     pub fn new(
1419         id: String,
1420         vm: &Arc<dyn hypervisor::Vm>,
1421         device: VfioDevice,
1422         container: Arc<VfioContainer>,
1423         msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
1424         legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
1425         iommu_attached: bool,
1426         bdf: PciBdf,
1427         memory_slot_allocator: MemorySlotAllocator,
1428         snapshot: Option<Snapshot>,
1429         x_nv_gpudirect_clique: Option<u8>,
1430     ) -> Result<Self, VfioPciError> {
1431         let device = Arc::new(device);
1432         device.reset();
1433 
1434         let vfio_wrapper = VfioDeviceWrapper::new(Arc::clone(&device));
1435 
1436         let common = VfioCommon::new(
1437             msi_interrupt_manager,
1438             legacy_interrupt_group,
1439             Arc::new(vfio_wrapper) as Arc<dyn Vfio>,
1440             &PciVfioSubclass::VfioSubclass,
1441             bdf,
1442             vm_migration::snapshot_from_id(snapshot.as_ref(), VFIO_COMMON_ID),
1443             x_nv_gpudirect_clique,
1444         )?;
1445 
1446         let vfio_pci_device = VfioPciDevice {
1447             id,
1448             vm: vm.clone(),
1449             device,
1450             container,
1451             common,
1452             iommu_attached,
1453             memory_slot_allocator,
1454         };
1455 
1456         Ok(vfio_pci_device)
1457     }
1458 
1459     pub fn iommu_attached(&self) -> bool {
1460         self.iommu_attached
1461     }
1462 
1463     fn generate_sparse_areas(
1464         caps: &[VfioRegionInfoCap],
1465         region_index: u32,
1466         region_start: u64,
1467         region_size: u64,
1468         vfio_msix: Option<&VfioMsix>,
1469     ) -> Result<Vec<VfioRegionSparseMmapArea>, VfioPciError> {
1470         for cap in caps {
1471             match cap {
1472                 VfioRegionInfoCap::SparseMmap(sparse_mmap) => return Ok(sparse_mmap.areas.clone()),
1473                 VfioRegionInfoCap::MsixMappable => {
1474                     if !is_4k_aligned(region_start) {
1475                         error!(
1476                             "Region start address 0x{:x} must be at least aligned on 4KiB",
1477                             region_start
1478                         );
1479                         return Err(VfioPciError::RegionAlignment);
1480                     }
1481                     if !is_4k_multiple(region_size) {
1482                         error!(
1483                             "Region size 0x{:x} must be at least a multiple of 4KiB",
1484                             region_size
1485                         );
1486                         return Err(VfioPciError::RegionSize);
1487                     }
1488 
1489                     // In case the region contains the MSI-X vectors table or
1490                     // the MSI-X PBA table, we must calculate the subregions
1491                     // around them, leading to a list of sparse areas.
1492                     // We want to make sure we will still trap MMIO accesses
1493                     // to these MSI-X specific ranges. If these region don't align
1494                     // with pagesize, we can achieve it by enlarging its range.
1495                     //
1496                     // Using a BtreeMap as the list provided through the iterator is sorted
1497                     // by key. This ensures proper split of the whole region.
1498                     let mut inter_ranges = BTreeMap::new();
1499                     if let Some(msix) = vfio_msix {
1500                         if region_index == msix.cap.table_bir() {
1501                             let (offset, size) = msix.cap.table_range();
1502                             let offset = align_page_size_down(offset);
1503                             let size = align_page_size_up(size);
1504                             inter_ranges.insert(offset, size);
1505                         }
1506                         if region_index == msix.cap.pba_bir() {
1507                             let (offset, size) = msix.cap.pba_range();
1508                             let offset = align_page_size_down(offset);
1509                             let size = align_page_size_up(size);
1510                             inter_ranges.insert(offset, size);
1511                         }
1512                     }
1513 
1514                     let mut sparse_areas = Vec::new();
1515                     let mut current_offset = 0;
1516                     for (range_offset, range_size) in inter_ranges {
1517                         if range_offset > current_offset {
1518                             sparse_areas.push(VfioRegionSparseMmapArea {
1519                                 offset: current_offset,
1520                                 size: range_offset - current_offset,
1521                             });
1522                         }
1523                         current_offset = align_page_size_down(range_offset + range_size);
1524                     }
1525 
1526                     if region_size > current_offset {
1527                         sparse_areas.push(VfioRegionSparseMmapArea {
1528                             offset: current_offset,
1529                             size: region_size - current_offset,
1530                         });
1531                     }
1532 
1533                     return Ok(sparse_areas);
1534                 }
1535                 _ => {}
1536             }
1537         }
1538 
1539         // In case no relevant capabilities have been found, create a single
1540         // sparse area corresponding to the entire MMIO region.
1541         Ok(vec![VfioRegionSparseMmapArea {
1542             offset: 0,
1543             size: region_size,
1544         }])
1545     }
1546 
1547     /// Map MMIO regions into the guest, and avoid VM exits when the guest tries
1548     /// to reach those regions.
1549     ///
1550     /// # Arguments
1551     ///
1552     /// * `vm` - The VM object. It is used to set the VFIO MMIO regions
1553     ///          as user memory regions.
1554     /// * `mem_slot` - The closure to return a memory slot.
1555     pub fn map_mmio_regions(&mut self) -> Result<(), VfioPciError> {
1556         let fd = self.device.as_raw_fd();
1557 
1558         for region in self.common.mmio_regions.iter_mut() {
1559             let region_flags = self.device.get_region_flags(region.index);
1560             if region_flags & VFIO_REGION_INFO_FLAG_MMAP != 0 {
1561                 let mut prot = 0;
1562                 if region_flags & VFIO_REGION_INFO_FLAG_READ != 0 {
1563                     prot |= libc::PROT_READ;
1564                 }
1565                 if region_flags & VFIO_REGION_INFO_FLAG_WRITE != 0 {
1566                     prot |= libc::PROT_WRITE;
1567                 }
1568 
1569                 // Retrieve the list of capabilities found on the region
1570                 let caps = if region_flags & VFIO_REGION_INFO_FLAG_CAPS != 0 {
1571                     self.device.get_region_caps(region.index)
1572                 } else {
1573                     Vec::new()
1574                 };
1575 
1576                 // Don't try to mmap the region if it contains MSI-X table or
1577                 // MSI-X PBA subregion, and if we couldn't find MSIX_MAPPABLE
1578                 // in the list of supported capabilities.
1579                 if let Some(msix) = self.common.interrupt.msix.as_ref() {
1580                     if (region.index == msix.cap.table_bir() || region.index == msix.cap.pba_bir())
1581                         && !caps.contains(&VfioRegionInfoCap::MsixMappable)
1582                     {
1583                         continue;
1584                     }
1585                 }
1586 
1587                 let mmap_size = self.device.get_region_size(region.index);
1588                 let mmap_offset = self.device.get_region_offset(region.index);
1589 
1590                 let sparse_areas = Self::generate_sparse_areas(
1591                     &caps,
1592                     region.index,
1593                     region.start.0,
1594                     mmap_size,
1595                     self.common.interrupt.msix.as_ref(),
1596                 )?;
1597 
1598                 for area in sparse_areas.iter() {
1599                     // SAFETY: FFI call with correct arguments
1600                     let host_addr = unsafe {
1601                         libc::mmap(
1602                             null_mut(),
1603                             area.size as usize,
1604                             prot,
1605                             libc::MAP_SHARED,
1606                             fd,
1607                             mmap_offset as libc::off_t + area.offset as libc::off_t,
1608                         )
1609                     };
1610 
1611                     if host_addr == libc::MAP_FAILED {
1612                         error!(
1613                             "Could not mmap sparse area (offset = 0x{:x}, size = 0x{:x}): {}",
1614                             area.offset,
1615                             area.size,
1616                             std::io::Error::last_os_error()
1617                         );
1618                         return Err(VfioPciError::MmapArea);
1619                     }
1620 
1621                     if !is_page_size_aligned(area.size) || !is_page_size_aligned(area.offset) {
1622                         warn!(
1623                             "Could not mmap sparse area that is not page size aligned (offset = 0x{:x}, size = 0x{:x})",
1624                             area.offset,
1625                             area.size,
1626                             );
1627                         return Ok(());
1628                     }
1629 
1630                     let user_memory_region = UserMemoryRegion {
1631                         slot: self.memory_slot_allocator.next_memory_slot(),
1632                         start: region.start.0 + area.offset,
1633                         size: area.size,
1634                         host_addr: host_addr as u64,
1635                     };
1636 
1637                     region.user_memory_regions.push(user_memory_region);
1638 
1639                     let mem_region = self.vm.make_user_memory_region(
1640                         user_memory_region.slot,
1641                         user_memory_region.start,
1642                         user_memory_region.size,
1643                         user_memory_region.host_addr,
1644                         false,
1645                         false,
1646                     );
1647 
1648                     self.vm
1649                         .create_user_memory_region(mem_region)
1650                         .map_err(VfioPciError::CreateUserMemoryRegion)?;
1651 
1652                     if !self.iommu_attached {
1653                         self.container
1654                             .vfio_dma_map(
1655                                 user_memory_region.start,
1656                                 user_memory_region.size,
1657                                 user_memory_region.host_addr,
1658                             )
1659                             .map_err(VfioPciError::DmaMap)?;
1660                     }
1661                 }
1662             }
1663         }
1664 
1665         Ok(())
1666     }
1667 
1668     pub fn unmap_mmio_regions(&mut self) {
1669         for region in self.common.mmio_regions.iter() {
1670             for user_memory_region in region.user_memory_regions.iter() {
1671                 // Unmap from vfio container
1672                 if !self.iommu_attached {
1673                     if let Err(e) = self
1674                         .container
1675                         .vfio_dma_unmap(user_memory_region.start, user_memory_region.size)
1676                     {
1677                         error!("Could not unmap mmio region from vfio container: {}", e);
1678                     }
1679                 }
1680 
1681                 // Remove region
1682                 let r = self.vm.make_user_memory_region(
1683                     user_memory_region.slot,
1684                     user_memory_region.start,
1685                     user_memory_region.size,
1686                     user_memory_region.host_addr,
1687                     false,
1688                     false,
1689                 );
1690 
1691                 if let Err(e) = self.vm.remove_user_memory_region(r) {
1692                     error!("Could not remove the userspace memory region: {}", e);
1693                 }
1694 
1695                 self.memory_slot_allocator
1696                     .free_memory_slot(user_memory_region.slot);
1697 
1698                 // SAFETY: FFI call with correct arguments
1699                 let ret = unsafe {
1700                     libc::munmap(
1701                         user_memory_region.host_addr as *mut libc::c_void,
1702                         user_memory_region.size as usize,
1703                     )
1704                 };
1705                 if ret != 0 {
1706                     error!(
1707                         "Could not unmap region {}, error:{}",
1708                         region.index,
1709                         io::Error::last_os_error()
1710                     );
1711                 }
1712             }
1713         }
1714     }
1715 
1716     pub fn dma_map(&self, iova: u64, size: u64, user_addr: u64) -> Result<(), VfioPciError> {
1717         if !self.iommu_attached {
1718             self.container
1719                 .vfio_dma_map(iova, size, user_addr)
1720                 .map_err(VfioPciError::DmaMap)?;
1721         }
1722 
1723         Ok(())
1724     }
1725 
1726     pub fn dma_unmap(&self, iova: u64, size: u64) -> Result<(), VfioPciError> {
1727         if !self.iommu_attached {
1728             self.container
1729                 .vfio_dma_unmap(iova, size)
1730                 .map_err(VfioPciError::DmaUnmap)?;
1731         }
1732 
1733         Ok(())
1734     }
1735 
1736     pub fn mmio_regions(&self) -> Vec<MmioRegion> {
1737         self.common.mmio_regions.clone()
1738     }
1739 }
1740 
1741 impl Drop for VfioPciDevice {
1742     fn drop(&mut self) {
1743         self.unmap_mmio_regions();
1744 
1745         if let Some(msix) = &self.common.interrupt.msix {
1746             if msix.bar.enabled() {
1747                 self.common.disable_msix();
1748             }
1749         }
1750 
1751         if let Some(msi) = &self.common.interrupt.msi {
1752             if msi.cfg.enabled() {
1753                 self.common.disable_msi()
1754             }
1755         }
1756 
1757         if self.common.interrupt.intx_in_use() {
1758             self.common.disable_intx();
1759         }
1760     }
1761 }
1762 
1763 impl BusDevice for VfioPciDevice {
1764     fn read(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1765         self.read_bar(base, offset, data)
1766     }
1767 
1768     fn write(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
1769         self.write_bar(base, offset, data)
1770     }
1771 }
1772 
1773 // First BAR offset in the PCI config space.
1774 const PCI_CONFIG_BAR_OFFSET: u32 = 0x10;
1775 // Capability register offset in the PCI config space.
1776 const PCI_CONFIG_CAPABILITY_OFFSET: u32 = 0x34;
1777 // Extended capabilities register offset in the PCI config space.
1778 const PCI_CONFIG_EXTENDED_CAPABILITY_OFFSET: u32 = 0x100;
1779 // IO BAR when first BAR bit is 1.
1780 const PCI_CONFIG_IO_BAR: u32 = 0x1;
1781 // 64-bit memory bar flag.
1782 const PCI_CONFIG_MEMORY_BAR_64BIT: u32 = 0x4;
1783 // Prefetchable BAR bit
1784 const PCI_CONFIG_BAR_PREFETCHABLE: u32 = 0x8;
1785 // PCI config register size (4 bytes).
1786 const PCI_CONFIG_REGISTER_SIZE: usize = 4;
1787 // Number of BARs for a PCI device
1788 const BAR_NUMS: usize = 6;
1789 // PCI Header Type register index
1790 const PCI_HEADER_TYPE_REG_INDEX: usize = 3;
1791 // First BAR register index
1792 const PCI_CONFIG_BAR0_INDEX: usize = 4;
1793 // PCI ROM expansion BAR register index
1794 const PCI_ROM_EXP_BAR_INDEX: usize = 12;
1795 
1796 impl PciDevice for VfioPciDevice {
1797     fn allocate_bars(
1798         &mut self,
1799         allocator: &Arc<Mutex<SystemAllocator>>,
1800         mmio32_allocator: &mut AddressAllocator,
1801         mmio64_allocator: &mut AddressAllocator,
1802         resources: Option<Vec<Resource>>,
1803     ) -> Result<Vec<PciBarConfiguration>, PciDeviceError> {
1804         self.common
1805             .allocate_bars(allocator, mmio32_allocator, mmio64_allocator, resources)
1806     }
1807 
1808     fn free_bars(
1809         &mut self,
1810         allocator: &mut SystemAllocator,
1811         mmio32_allocator: &mut AddressAllocator,
1812         mmio64_allocator: &mut AddressAllocator,
1813     ) -> Result<(), PciDeviceError> {
1814         self.common
1815             .free_bars(allocator, mmio32_allocator, mmio64_allocator)
1816     }
1817 
1818     fn write_config_register(
1819         &mut self,
1820         reg_idx: usize,
1821         offset: u64,
1822         data: &[u8],
1823     ) -> Option<Arc<Barrier>> {
1824         self.common.write_config_register(reg_idx, offset, data)
1825     }
1826 
1827     fn read_config_register(&mut self, reg_idx: usize) -> u32 {
1828         self.common.read_config_register(reg_idx)
1829     }
1830 
1831     fn detect_bar_reprogramming(
1832         &mut self,
1833         reg_idx: usize,
1834         data: &[u8],
1835     ) -> Option<BarReprogrammingParams> {
1836         self.common
1837             .configuration
1838             .detect_bar_reprogramming(reg_idx, data)
1839     }
1840 
1841     fn read_bar(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1842         self.common.read_bar(base, offset, data)
1843     }
1844 
1845     fn write_bar(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
1846         self.common.write_bar(base, offset, data)
1847     }
1848 
1849     fn move_bar(&mut self, old_base: u64, new_base: u64) -> Result<(), io::Error> {
1850         for region in self.common.mmio_regions.iter_mut() {
1851             if region.start.raw_value() == old_base {
1852                 region.start = GuestAddress(new_base);
1853 
1854                 for user_memory_region in region.user_memory_regions.iter_mut() {
1855                     // Remove old region
1856                     let old_mem_region = self.vm.make_user_memory_region(
1857                         user_memory_region.slot,
1858                         user_memory_region.start,
1859                         user_memory_region.size,
1860                         user_memory_region.host_addr,
1861                         false,
1862                         false,
1863                     );
1864 
1865                     self.vm
1866                         .remove_user_memory_region(old_mem_region)
1867                         .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
1868 
1869                     // Update the user memory region with the correct start address.
1870                     if new_base > old_base {
1871                         user_memory_region.start += new_base - old_base;
1872                     } else {
1873                         user_memory_region.start -= old_base - new_base;
1874                     }
1875 
1876                     // Insert new region
1877                     let new_mem_region = self.vm.make_user_memory_region(
1878                         user_memory_region.slot,
1879                         user_memory_region.start,
1880                         user_memory_region.size,
1881                         user_memory_region.host_addr,
1882                         false,
1883                         false,
1884                     );
1885 
1886                     self.vm
1887                         .create_user_memory_region(new_mem_region)
1888                         .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
1889                 }
1890             }
1891         }
1892 
1893         Ok(())
1894     }
1895 
1896     fn as_any(&mut self) -> &mut dyn Any {
1897         self
1898     }
1899 
1900     fn id(&self) -> Option<String> {
1901         Some(self.id.clone())
1902     }
1903 }
1904 
1905 impl Pausable for VfioPciDevice {}
1906 
1907 impl Snapshottable for VfioPciDevice {
1908     fn id(&self) -> String {
1909         self.id.clone()
1910     }
1911 
1912     fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
1913         let mut vfio_pci_dev_snapshot = Snapshot::default();
1914 
1915         // Snapshot VfioCommon
1916         vfio_pci_dev_snapshot.add_snapshot(self.common.id(), self.common.snapshot()?);
1917 
1918         Ok(vfio_pci_dev_snapshot)
1919     }
1920 }
1921 impl Transportable for VfioPciDevice {}
1922 impl Migratable for VfioPciDevice {}
1923 
1924 /// This structure implements the ExternalDmaMapping trait. It is meant to
1925 /// be used when the caller tries to provide a way to update the mappings
1926 /// associated with a specific VFIO container.
1927 pub struct VfioDmaMapping<M: GuestAddressSpace> {
1928     container: Arc<VfioContainer>,
1929     memory: Arc<M>,
1930     mmio_regions: Arc<Mutex<Vec<MmioRegion>>>,
1931 }
1932 
1933 impl<M: GuestAddressSpace> VfioDmaMapping<M> {
1934     /// Create a DmaMapping object.
1935     /// # Parameters
1936     /// * `container`: VFIO container object.
1937     /// * `memory`: guest memory to mmap.
1938     /// * `mmio_regions`: mmio_regions to mmap.
1939     pub fn new(
1940         container: Arc<VfioContainer>,
1941         memory: Arc<M>,
1942         mmio_regions: Arc<Mutex<Vec<MmioRegion>>>,
1943     ) -> Self {
1944         VfioDmaMapping {
1945             container,
1946             memory,
1947             mmio_regions,
1948         }
1949     }
1950 }
1951 
1952 impl<M: GuestAddressSpace + Sync + Send> ExternalDmaMapping for VfioDmaMapping<M> {
1953     fn map(&self, iova: u64, gpa: u64, size: u64) -> std::result::Result<(), io::Error> {
1954         let mem = self.memory.memory();
1955         let guest_addr = GuestAddress(gpa);
1956         let user_addr = if mem.check_range(guest_addr, size as usize) {
1957             match mem.get_host_address(guest_addr) {
1958                 Ok(t) => t as u64,
1959                 Err(e) => {
1960                     return Err(io::Error::new(
1961                         io::ErrorKind::Other,
1962                         format!("unable to retrieve user address for gpa 0x{gpa:x} from guest memory region: {e}")
1963                     ));
1964                 }
1965             }
1966         } else if self.mmio_regions.lock().unwrap().check_range(gpa, size) {
1967             self.mmio_regions.lock().unwrap().find_user_address(gpa)?
1968         } else {
1969             return Err(io::Error::new(
1970                 io::ErrorKind::Other,
1971                 format!("failed to locate guest address 0x{gpa:x} in guest memory"),
1972             ));
1973         };
1974 
1975         self.container
1976             .vfio_dma_map(iova, size, user_addr)
1977             .map_err(|e| {
1978                 io::Error::new(
1979                     io::ErrorKind::Other,
1980                     format!(
1981                         "failed to map memory for VFIO container, \
1982                          iova 0x{iova:x}, gpa 0x{gpa:x}, size 0x{size:x}: {e:?}"
1983                     ),
1984                 )
1985             })
1986     }
1987 
1988     fn unmap(&self, iova: u64, size: u64) -> std::result::Result<(), io::Error> {
1989         self.container.vfio_dma_unmap(iova, size).map_err(|e| {
1990             io::Error::new(
1991                 io::ErrorKind::Other,
1992                 format!(
1993                     "failed to unmap memory for VFIO container, \
1994                      iova 0x{iova:x}, size 0x{size:x}: {e:?}"
1995                 ),
1996             )
1997         })
1998     }
1999 }
2000