xref: /cloud-hypervisor/pci/src/vfio.rs (revision adb318f4cd0079246b3cb07e01c4e978330445d2)
1 // Copyright © 2019 Intel Corporation
2 //
3 // SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
4 //
5 
6 use crate::msi::{MsiConfigState, MSI_CONFIG_ID};
7 use crate::msix::MsixConfigState;
8 use crate::{
9     msi_num_enabled_vectors, BarReprogrammingParams, MsiCap, MsiConfig, MsixCap, MsixConfig,
10     PciBarConfiguration, PciBarPrefetchable, PciBarRegionType, PciBdf, PciCapabilityId,
11     PciClassCode, PciConfiguration, PciDevice, PciDeviceError, PciExpressCapabilityId,
12     PciHeaderType, PciSubclass, MSIX_CONFIG_ID, MSIX_TABLE_ENTRY_SIZE, PCI_CONFIGURATION_ID,
13 };
14 use anyhow::anyhow;
15 use byteorder::{ByteOrder, LittleEndian};
16 use hypervisor::HypervisorVmError;
17 use libc::{sysconf, _SC_PAGESIZE};
18 use std::any::Any;
19 use std::collections::{BTreeMap, HashMap};
20 use std::io;
21 use std::os::unix::io::AsRawFd;
22 use std::ptr::null_mut;
23 use std::sync::{Arc, Barrier, Mutex};
24 use thiserror::Error;
25 use versionize::{VersionMap, Versionize, VersionizeResult};
26 use versionize_derive::Versionize;
27 use vfio_bindings::bindings::vfio::*;
28 use vfio_ioctls::{
29     VfioContainer, VfioDevice, VfioIrq, VfioRegionInfoCap, VfioRegionSparseMmapArea,
30 };
31 use vm_allocator::page_size::{
32     align_page_size_down, align_page_size_up, is_4k_aligned, is_4k_multiple, is_page_size_aligned,
33 };
34 use vm_allocator::{AddressAllocator, SystemAllocator};
35 use vm_device::interrupt::{
36     InterruptIndex, InterruptManager, InterruptSourceGroup, MsiIrqGroupConfig,
37 };
38 use vm_device::{BusDevice, Resource};
39 use vm_memory::{Address, GuestAddress, GuestUsize};
40 use vm_migration::{
41     Migratable, MigratableError, Pausable, Snapshot, Snapshottable, Transportable, VersionMapped,
42 };
43 use vmm_sys_util::eventfd::EventFd;
44 
45 pub(crate) const VFIO_COMMON_ID: &str = "vfio_common";
46 
47 #[derive(Debug, Error)]
48 pub enum VfioPciError {
49     #[error("Failed to create user memory region: {0}")]
50     CreateUserMemoryRegion(#[source] HypervisorVmError),
51     #[error("Failed to DMA map: {0}")]
52     DmaMap(#[source] vfio_ioctls::VfioError),
53     #[error("Failed to DMA unmap: {0}")]
54     DmaUnmap(#[source] vfio_ioctls::VfioError),
55     #[error("Failed to enable INTx: {0}")]
56     EnableIntx(#[source] VfioError),
57     #[error("Failed to enable MSI: {0}")]
58     EnableMsi(#[source] VfioError),
59     #[error("Failed to enable MSI-x: {0}")]
60     EnableMsix(#[source] VfioError),
61     #[error("Failed to mmap the area")]
62     MmapArea,
63     #[error("Failed to notifier's eventfd")]
64     MissingNotifier,
65     #[error("Invalid region alignment")]
66     RegionAlignment,
67     #[error("Invalid region size")]
68     RegionSize,
69     #[error("Failed to retrieve MsiConfigState: {0}")]
70     RetrieveMsiConfigState(#[source] anyhow::Error),
71     #[error("Failed to retrieve MsixConfigState: {0}")]
72     RetrieveMsixConfigState(#[source] anyhow::Error),
73     #[error("Failed to retrieve PciConfigurationState: {0}")]
74     RetrievePciConfigurationState(#[source] anyhow::Error),
75     #[error("Failed to retrieve VfioCommonState: {0}")]
76     RetrieveVfioCommonState(#[source] anyhow::Error),
77 }
78 
79 #[derive(Copy, Clone)]
80 enum PciVfioSubclass {
81     VfioSubclass = 0xff,
82 }
83 
84 impl PciSubclass for PciVfioSubclass {
85     fn get_register_value(&self) -> u8 {
86         *self as u8
87     }
88 }
89 
90 enum InterruptUpdateAction {
91     EnableMsi,
92     DisableMsi,
93     EnableMsix,
94     DisableMsix,
95 }
96 
97 #[derive(Versionize)]
98 struct IntxState {
99     enabled: bool,
100 }
101 
102 pub(crate) struct VfioIntx {
103     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
104     enabled: bool,
105 }
106 
107 #[derive(Versionize)]
108 struct MsiState {
109     cap: MsiCap,
110     cap_offset: u32,
111 }
112 
113 pub(crate) struct VfioMsi {
114     pub(crate) cfg: MsiConfig,
115     cap_offset: u32,
116     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
117 }
118 
119 impl VfioMsi {
120     fn update(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
121         let old_enabled = self.cfg.enabled();
122 
123         self.cfg.update(offset, data);
124 
125         let new_enabled = self.cfg.enabled();
126 
127         if !old_enabled && new_enabled {
128             return Some(InterruptUpdateAction::EnableMsi);
129         }
130 
131         if old_enabled && !new_enabled {
132             return Some(InterruptUpdateAction::DisableMsi);
133         }
134 
135         None
136     }
137 }
138 
139 #[derive(Versionize)]
140 struct MsixState {
141     cap: MsixCap,
142     cap_offset: u32,
143     bdf: u32,
144 }
145 
146 pub(crate) struct VfioMsix {
147     pub(crate) bar: MsixConfig,
148     cap: MsixCap,
149     cap_offset: u32,
150     interrupt_source_group: Arc<dyn InterruptSourceGroup>,
151 }
152 
153 impl VfioMsix {
154     fn update(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
155         let old_enabled = self.bar.enabled();
156 
157         // Update "Message Control" word
158         if offset == 2 && data.len() == 2 {
159             self.bar.set_msg_ctl(LittleEndian::read_u16(data));
160         }
161 
162         let new_enabled = self.bar.enabled();
163 
164         if !old_enabled && new_enabled {
165             return Some(InterruptUpdateAction::EnableMsix);
166         }
167 
168         if old_enabled && !new_enabled {
169             return Some(InterruptUpdateAction::DisableMsix);
170         }
171 
172         None
173     }
174 
175     fn table_accessed(&self, bar_index: u32, offset: u64) -> bool {
176         let table_offset: u64 = u64::from(self.cap.table_offset());
177         let table_size: u64 = u64::from(self.cap.table_size()) * (MSIX_TABLE_ENTRY_SIZE as u64);
178         let table_bir: u32 = self.cap.table_bir();
179 
180         bar_index == table_bir && offset >= table_offset && offset < table_offset + table_size
181     }
182 }
183 
184 pub(crate) struct Interrupt {
185     pub(crate) intx: Option<VfioIntx>,
186     pub(crate) msi: Option<VfioMsi>,
187     pub(crate) msix: Option<VfioMsix>,
188 }
189 
190 impl Interrupt {
191     fn update_msi(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
192         if let Some(ref mut msi) = &mut self.msi {
193             let action = msi.update(offset, data);
194             return action;
195         }
196 
197         None
198     }
199 
200     fn update_msix(&mut self, offset: u64, data: &[u8]) -> Option<InterruptUpdateAction> {
201         if let Some(ref mut msix) = &mut self.msix {
202             let action = msix.update(offset, data);
203             return action;
204         }
205 
206         None
207     }
208 
209     fn accessed(&self, offset: u64) -> Option<(PciCapabilityId, u64)> {
210         if let Some(msi) = &self.msi {
211             if offset >= u64::from(msi.cap_offset)
212                 && offset < u64::from(msi.cap_offset) + msi.cfg.size()
213             {
214                 return Some((
215                     PciCapabilityId::MessageSignalledInterrupts,
216                     u64::from(msi.cap_offset),
217                 ));
218             }
219         }
220 
221         if let Some(msix) = &self.msix {
222             if offset == u64::from(msix.cap_offset) {
223                 return Some((PciCapabilityId::MsiX, u64::from(msix.cap_offset)));
224             }
225         }
226 
227         None
228     }
229 
230     fn msix_table_accessed(&self, bar_index: u32, offset: u64) -> bool {
231         if let Some(msix) = &self.msix {
232             return msix.table_accessed(bar_index, offset);
233         }
234 
235         false
236     }
237 
238     fn msix_write_table(&mut self, offset: u64, data: &[u8]) {
239         if let Some(ref mut msix) = &mut self.msix {
240             let offset = offset - u64::from(msix.cap.table_offset());
241             msix.bar.write_table(offset, data)
242         }
243     }
244 
245     fn msix_read_table(&self, offset: u64, data: &mut [u8]) {
246         if let Some(msix) = &self.msix {
247             let offset = offset - u64::from(msix.cap.table_offset());
248             msix.bar.read_table(offset, data)
249         }
250     }
251 
252     pub(crate) fn intx_in_use(&self) -> bool {
253         if let Some(intx) = &self.intx {
254             return intx.enabled;
255         }
256 
257         false
258     }
259 }
260 
261 #[derive(Copy, Clone)]
262 pub struct UserMemoryRegion {
263     pub slot: u32,
264     pub start: u64,
265     pub size: u64,
266     pub host_addr: u64,
267 }
268 
269 #[derive(Clone)]
270 pub struct MmioRegion {
271     pub start: GuestAddress,
272     pub length: GuestUsize,
273     pub(crate) type_: PciBarRegionType,
274     pub(crate) index: u32,
275     pub(crate) user_memory_regions: Vec<UserMemoryRegion>,
276 }
277 #[derive(Debug, Error)]
278 pub enum VfioError {
279     #[error("Kernel VFIO error: {0}")]
280     KernelVfio(#[source] vfio_ioctls::VfioError),
281     #[error("VFIO user error: {0}")]
282     VfioUser(#[source] vfio_user::Error),
283 }
284 
285 pub(crate) trait Vfio: Send + Sync {
286     fn read_config_byte(&self, offset: u32) -> u8 {
287         let mut data: [u8; 1] = [0];
288         self.read_config(offset, &mut data);
289         data[0]
290     }
291 
292     fn read_config_word(&self, offset: u32) -> u16 {
293         let mut data: [u8; 2] = [0, 0];
294         self.read_config(offset, &mut data);
295         u16::from_le_bytes(data)
296     }
297 
298     fn read_config_dword(&self, offset: u32) -> u32 {
299         let mut data: [u8; 4] = [0, 0, 0, 0];
300         self.read_config(offset, &mut data);
301         u32::from_le_bytes(data)
302     }
303 
304     fn write_config_dword(&self, offset: u32, buf: u32) {
305         let data: [u8; 4] = buf.to_le_bytes();
306         self.write_config(offset, &data)
307     }
308 
309     fn read_config(&self, offset: u32, data: &mut [u8]) {
310         self.region_read(VFIO_PCI_CONFIG_REGION_INDEX, offset.into(), data.as_mut());
311     }
312 
313     fn write_config(&self, offset: u32, data: &[u8]) {
314         self.region_write(VFIO_PCI_CONFIG_REGION_INDEX, offset.into(), data)
315     }
316 
317     fn enable_msi(&self, fds: Vec<&EventFd>) -> Result<(), VfioError> {
318         self.enable_irq(VFIO_PCI_MSI_IRQ_INDEX, fds)
319     }
320 
321     fn disable_msi(&self) -> Result<(), VfioError> {
322         self.disable_irq(VFIO_PCI_MSI_IRQ_INDEX)
323     }
324 
325     fn enable_msix(&self, fds: Vec<&EventFd>) -> Result<(), VfioError> {
326         self.enable_irq(VFIO_PCI_MSIX_IRQ_INDEX, fds)
327     }
328 
329     fn disable_msix(&self) -> Result<(), VfioError> {
330         self.disable_irq(VFIO_PCI_MSIX_IRQ_INDEX)
331     }
332 
333     fn region_read(&self, _index: u32, _offset: u64, _data: &mut [u8]) {
334         unimplemented!()
335     }
336 
337     fn region_write(&self, _index: u32, _offset: u64, _data: &[u8]) {
338         unimplemented!()
339     }
340 
341     fn get_irq_info(&self, _irq_index: u32) -> Option<VfioIrq> {
342         unimplemented!()
343     }
344 
345     fn enable_irq(&self, _irq_index: u32, _event_fds: Vec<&EventFd>) -> Result<(), VfioError> {
346         unimplemented!()
347     }
348 
349     fn disable_irq(&self, _irq_index: u32) -> Result<(), VfioError> {
350         unimplemented!()
351     }
352 
353     fn unmask_irq(&self, _irq_index: u32) -> Result<(), VfioError> {
354         unimplemented!()
355     }
356 }
357 
358 struct VfioDeviceWrapper {
359     device: Arc<VfioDevice>,
360 }
361 
362 impl VfioDeviceWrapper {
363     fn new(device: Arc<VfioDevice>) -> Self {
364         Self { device }
365     }
366 }
367 
368 impl Vfio for VfioDeviceWrapper {
369     fn region_read(&self, index: u32, offset: u64, data: &mut [u8]) {
370         self.device.region_read(index, data, offset)
371     }
372 
373     fn region_write(&self, index: u32, offset: u64, data: &[u8]) {
374         self.device.region_write(index, data, offset)
375     }
376 
377     fn get_irq_info(&self, irq_index: u32) -> Option<VfioIrq> {
378         self.device.get_irq_info(irq_index).copied()
379     }
380 
381     fn enable_irq(&self, irq_index: u32, event_fds: Vec<&EventFd>) -> Result<(), VfioError> {
382         self.device
383             .enable_irq(irq_index, event_fds)
384             .map_err(VfioError::KernelVfio)
385     }
386 
387     fn disable_irq(&self, irq_index: u32) -> Result<(), VfioError> {
388         self.device
389             .disable_irq(irq_index)
390             .map_err(VfioError::KernelVfio)
391     }
392 
393     fn unmask_irq(&self, irq_index: u32) -> Result<(), VfioError> {
394         self.device
395             .unmask_irq(irq_index)
396             .map_err(VfioError::KernelVfio)
397     }
398 }
399 
400 #[derive(Versionize)]
401 struct VfioCommonState {
402     intx_state: Option<IntxState>,
403     msi_state: Option<MsiState>,
404     msix_state: Option<MsixState>,
405 }
406 
407 impl VersionMapped for VfioCommonState {}
408 
409 pub(crate) struct ConfigPatch {
410     mask: u32,
411     patch: u32,
412 }
413 
414 pub(crate) struct VfioCommon {
415     pub(crate) configuration: PciConfiguration,
416     pub(crate) mmio_regions: Vec<MmioRegion>,
417     pub(crate) interrupt: Interrupt,
418     pub(crate) msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
419     pub(crate) legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
420     pub(crate) vfio_wrapper: Arc<dyn Vfio>,
421     pub(crate) patches: HashMap<usize, ConfigPatch>,
422 }
423 
424 impl VfioCommon {
425     pub(crate) fn new(
426         msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
427         legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
428         vfio_wrapper: Arc<dyn Vfio>,
429         subclass: &dyn PciSubclass,
430         bdf: PciBdf,
431         snapshot: Option<Snapshot>,
432     ) -> Result<Self, VfioPciError> {
433         let pci_configuration_state =
434             vm_migration::versioned_state_from_id(snapshot.as_ref(), PCI_CONFIGURATION_ID)
435                 .map_err(|e| {
436                     VfioPciError::RetrievePciConfigurationState(anyhow!(
437                         "Failed to get PciConfigurationState from Snapshot: {}",
438                         e
439                     ))
440                 })?;
441 
442         let configuration = PciConfiguration::new(
443             0,
444             0,
445             0,
446             PciClassCode::Other,
447             subclass,
448             None,
449             PciHeaderType::Device,
450             0,
451             0,
452             None,
453             pci_configuration_state,
454         );
455 
456         let mut vfio_common = VfioCommon {
457             mmio_regions: Vec::new(),
458             configuration,
459             interrupt: Interrupt {
460                 intx: None,
461                 msi: None,
462                 msix: None,
463             },
464             msi_interrupt_manager,
465             legacy_interrupt_group,
466             vfio_wrapper,
467             patches: HashMap::new(),
468         };
469 
470         let state: Option<VfioCommonState> = snapshot
471             .as_ref()
472             .map(|s| s.to_versioned_state())
473             .transpose()
474             .map_err(|e| {
475                 VfioPciError::RetrieveVfioCommonState(anyhow!(
476                     "Failed to get VfioCommonState from Snapshot: {}",
477                     e
478                 ))
479             })?;
480         let msi_state = vm_migration::versioned_state_from_id(snapshot.as_ref(), MSI_CONFIG_ID)
481             .map_err(|e| {
482                 VfioPciError::RetrieveMsiConfigState(anyhow!(
483                     "Failed to get MsiConfigState from Snapshot: {}",
484                     e
485                 ))
486             })?;
487         let msix_state = vm_migration::versioned_state_from_id(snapshot.as_ref(), MSIX_CONFIG_ID)
488             .map_err(|e| {
489             VfioPciError::RetrieveMsixConfigState(anyhow!(
490                 "Failed to get MsixConfigState from Snapshot: {}",
491                 e
492             ))
493         })?;
494 
495         if let Some(state) = state.as_ref() {
496             vfio_common.set_state(state, msi_state, msix_state)?;
497         } else {
498             vfio_common.parse_capabilities(bdf);
499             vfio_common.initialize_legacy_interrupt()?;
500         }
501 
502         Ok(vfio_common)
503     }
504 
505     /// In case msix table offset is not page size aligned, we need do some fixup to achieve it.
506     /// Because we don't want the MMIO RW region and trap region overlap each other.
507     fn fixup_msix_region(&mut self, bar_id: u32, region_size: u64) -> u64 {
508         if let Some(msix) = self.interrupt.msix.as_mut() {
509             let msix_cap = &mut msix.cap;
510 
511             // Suppose table_bir equals to pba_bir here. Am I right?
512             let (table_offset, table_size) = msix_cap.table_range();
513             if is_page_size_aligned(table_offset) || msix_cap.table_bir() != bar_id {
514                 return region_size;
515             }
516 
517             let (pba_offset, pba_size) = msix_cap.pba_range();
518             let msix_sz = align_page_size_up(table_size + pba_size);
519             // Expand region to hold RW and trap region which both page size aligned
520             let size = std::cmp::max(region_size * 2, msix_sz * 2);
521             // let table starts from the middle of the region
522             msix_cap.table_set_offset((size / 2) as u32);
523             msix_cap.pba_set_offset((size / 2 + pba_offset - table_offset) as u32);
524 
525             size
526         } else {
527             // MSI-X not supported for this device
528             region_size
529         }
530     }
531 
532     // The `allocator` argument is unused on `aarch64`
533     #[allow(unused_variables)]
534     pub(crate) fn allocate_bars(
535         &mut self,
536         allocator: &Arc<Mutex<SystemAllocator>>,
537         mmio32_allocator: &mut AddressAllocator,
538         mmio64_allocator: &mut AddressAllocator,
539         resources: Option<Vec<Resource>>,
540     ) -> Result<Vec<PciBarConfiguration>, PciDeviceError> {
541         let mut bars = Vec::new();
542         let mut bar_id = VFIO_PCI_BAR0_REGION_INDEX;
543 
544         // Going through all regular regions to compute the BAR size.
545         // We're not saving the BAR address to restore it, because we
546         // are going to allocate a guest address for each BAR and write
547         // that new address back.
548         while bar_id < VFIO_PCI_CONFIG_REGION_INDEX {
549             let mut region_size: u64 = 0;
550             let mut region_type = PciBarRegionType::Memory32BitRegion;
551             let mut prefetchable = PciBarPrefetchable::NotPrefetchable;
552             let mut flags: u32 = 0;
553 
554             let mut restored_bar_addr = None;
555             if let Some(resources) = &resources {
556                 for resource in resources {
557                     if let Resource::PciBar {
558                         index,
559                         base,
560                         size,
561                         type_,
562                         ..
563                     } = resource
564                     {
565                         if *index == bar_id as usize {
566                             restored_bar_addr = Some(GuestAddress(*base));
567                             region_size = *size;
568                             region_type = PciBarRegionType::from(*type_);
569                             break;
570                         }
571                     }
572                 }
573                 if restored_bar_addr.is_none() {
574                     bar_id += 1;
575                     continue;
576                 }
577             } else {
578                 let bar_offset = if bar_id == VFIO_PCI_ROM_REGION_INDEX {
579                     (PCI_ROM_EXP_BAR_INDEX * 4) as u32
580                 } else {
581                     PCI_CONFIG_BAR_OFFSET + bar_id * 4
582                 };
583 
584                 // First read flags
585                 flags = self.vfio_wrapper.read_config_dword(bar_offset);
586 
587                 // Is this an IO BAR?
588                 let io_bar = if bar_id != VFIO_PCI_ROM_REGION_INDEX {
589                     matches!(flags & PCI_CONFIG_IO_BAR, PCI_CONFIG_IO_BAR)
590                 } else {
591                     false
592                 };
593 
594                 // Is this a 64-bit BAR?
595                 let is_64bit_bar = if bar_id != VFIO_PCI_ROM_REGION_INDEX {
596                     matches!(
597                         flags & PCI_CONFIG_MEMORY_BAR_64BIT,
598                         PCI_CONFIG_MEMORY_BAR_64BIT
599                     )
600                 } else {
601                     false
602                 };
603 
604                 if matches!(
605                     flags & PCI_CONFIG_BAR_PREFETCHABLE,
606                     PCI_CONFIG_BAR_PREFETCHABLE
607                 ) {
608                     prefetchable = PciBarPrefetchable::Prefetchable
609                 };
610 
611                 // To get size write all 1s
612                 self.vfio_wrapper
613                     .write_config_dword(bar_offset, 0xffff_ffff);
614 
615                 // And read back BAR value. The device will write zeros for bits it doesn't care about
616                 let mut lower = self.vfio_wrapper.read_config_dword(bar_offset);
617 
618                 if io_bar {
619                     // Mask flag bits (lowest 2 for I/O bars)
620                     lower &= !0b11;
621 
622                     // BAR is not enabled
623                     if lower == 0 {
624                         bar_id += 1;
625                         continue;
626                     }
627 
628                     // IO BAR
629                     region_type = PciBarRegionType::IoRegion;
630 
631                     // Invert bits and add 1 to calculate size
632                     region_size = (!lower + 1) as u64;
633                 } else if is_64bit_bar {
634                     // 64 bits Memory BAR
635                     region_type = PciBarRegionType::Memory64BitRegion;
636 
637                     // Query size of upper BAR of 64-bit BAR
638                     let upper_offset: u32 = PCI_CONFIG_BAR_OFFSET + (bar_id + 1) * 4;
639                     self.vfio_wrapper
640                         .write_config_dword(upper_offset, 0xffff_ffff);
641                     let upper = self.vfio_wrapper.read_config_dword(upper_offset);
642 
643                     let mut combined_size = u64::from(upper) << 32 | u64::from(lower);
644 
645                     // Mask out flag bits (lowest 4 for memory bars)
646                     combined_size &= !0b1111;
647 
648                     // BAR is not enabled
649                     if combined_size == 0 {
650                         bar_id += 1;
651                         continue;
652                     }
653 
654                     // Invert and add 1 to to find size
655                     region_size = !combined_size + 1;
656                 } else {
657                     region_type = PciBarRegionType::Memory32BitRegion;
658 
659                     // Mask out flag bits (lowest 4 for memory bars)
660                     lower &= !0b1111;
661 
662                     if lower == 0 {
663                         bar_id += 1;
664                         continue;
665                     }
666 
667                     // Invert and add 1 to to find size
668                     region_size = (!lower + 1) as u64;
669                 }
670             }
671 
672             let bar_addr = match region_type {
673                 PciBarRegionType::IoRegion => {
674                     #[cfg(target_arch = "aarch64")]
675                     unimplemented!();
676 
677                     // The address needs to be 4 bytes aligned.
678                     #[cfg(not(target_arch = "aarch64"))]
679                     allocator
680                         .lock()
681                         .unwrap()
682                         .allocate_io_addresses(restored_bar_addr, region_size, Some(0x4))
683                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
684                 }
685                 PciBarRegionType::Memory32BitRegion => {
686                     // BAR allocation must be naturally aligned
687                     mmio32_allocator
688                         .allocate(restored_bar_addr, region_size, Some(region_size))
689                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
690                 }
691                 PciBarRegionType::Memory64BitRegion => {
692                     // We need do some fixup to keep MMIO RW region and msix cap region page size
693                     // aligned.
694                     region_size = self.fixup_msix_region(bar_id, region_size);
695                     mmio64_allocator
696                         .allocate(
697                             restored_bar_addr,
698                             region_size,
699                             Some(std::cmp::max(
700                                 // SAFETY: FFI call. Trivially safe.
701                                 unsafe { sysconf(_SC_PAGESIZE) as GuestUsize },
702                                 region_size,
703                             )),
704                         )
705                         .ok_or(PciDeviceError::IoAllocationFailed(region_size))?
706                 }
707             };
708 
709             // We can now build our BAR configuration block.
710             let bar = PciBarConfiguration::default()
711                 .set_index(bar_id as usize)
712                 .set_address(bar_addr.raw_value())
713                 .set_size(region_size)
714                 .set_region_type(region_type)
715                 .set_prefetchable(prefetchable);
716 
717             if bar_id == VFIO_PCI_ROM_REGION_INDEX {
718                 self.configuration
719                     .add_pci_rom_bar(&bar, flags & 0x1)
720                     .map_err(|e| PciDeviceError::IoRegistrationFailed(bar_addr.raw_value(), e))?;
721             } else {
722                 self.configuration
723                     .add_pci_bar(&bar)
724                     .map_err(|e| PciDeviceError::IoRegistrationFailed(bar_addr.raw_value(), e))?;
725             }
726 
727             bars.push(bar);
728             self.mmio_regions.push(MmioRegion {
729                 start: bar_addr,
730                 length: region_size,
731                 type_: region_type,
732                 index: bar_id,
733                 user_memory_regions: Vec::new(),
734             });
735 
736             bar_id += 1;
737             if region_type == PciBarRegionType::Memory64BitRegion {
738                 bar_id += 1;
739             }
740         }
741 
742         Ok(bars)
743     }
744 
745     // The `allocator` argument is unused on `aarch64`
746     #[allow(unused_variables)]
747     pub(crate) fn free_bars(
748         &mut self,
749         allocator: &mut SystemAllocator,
750         mmio32_allocator: &mut AddressAllocator,
751         mmio64_allocator: &mut AddressAllocator,
752     ) -> Result<(), PciDeviceError> {
753         for region in self.mmio_regions.iter() {
754             match region.type_ {
755                 PciBarRegionType::IoRegion => {
756                     #[cfg(target_arch = "x86_64")]
757                     allocator.free_io_addresses(region.start, region.length);
758                     #[cfg(target_arch = "aarch64")]
759                     error!("I/O region is not supported");
760                 }
761                 PciBarRegionType::Memory32BitRegion => {
762                     mmio32_allocator.free(region.start, region.length);
763                 }
764                 PciBarRegionType::Memory64BitRegion => {
765                     mmio64_allocator.free(region.start, region.length);
766                 }
767             }
768         }
769         Ok(())
770     }
771 
772     pub(crate) fn parse_msix_capabilities(&mut self, cap: u8) -> MsixCap {
773         let msg_ctl = self.vfio_wrapper.read_config_word((cap + 2).into());
774 
775         let table = self.vfio_wrapper.read_config_dword((cap + 4).into());
776 
777         let pba = self.vfio_wrapper.read_config_dword((cap + 8).into());
778 
779         MsixCap {
780             msg_ctl,
781             table,
782             pba,
783         }
784     }
785 
786     pub(crate) fn initialize_msix(
787         &mut self,
788         msix_cap: MsixCap,
789         cap_offset: u32,
790         bdf: PciBdf,
791         state: Option<MsixConfigState>,
792     ) {
793         let interrupt_source_group = self
794             .msi_interrupt_manager
795             .create_group(MsiIrqGroupConfig {
796                 base: 0,
797                 count: msix_cap.table_size() as InterruptIndex,
798             })
799             .unwrap();
800 
801         let msix_config = MsixConfig::new(
802             msix_cap.table_size(),
803             interrupt_source_group.clone(),
804             bdf.into(),
805             state,
806         )
807         .unwrap();
808 
809         self.interrupt.msix = Some(VfioMsix {
810             bar: msix_config,
811             cap: msix_cap,
812             cap_offset,
813             interrupt_source_group,
814         });
815     }
816 
817     pub(crate) fn parse_msi_capabilities(&mut self, cap: u8) -> u16 {
818         self.vfio_wrapper.read_config_word((cap + 2).into())
819     }
820 
821     pub(crate) fn initialize_msi(
822         &mut self,
823         msg_ctl: u16,
824         cap_offset: u32,
825         state: Option<MsiConfigState>,
826     ) {
827         let interrupt_source_group = self
828             .msi_interrupt_manager
829             .create_group(MsiIrqGroupConfig {
830                 base: 0,
831                 count: msi_num_enabled_vectors(msg_ctl) as InterruptIndex,
832             })
833             .unwrap();
834 
835         let msi_config = MsiConfig::new(msg_ctl, interrupt_source_group.clone(), state).unwrap();
836 
837         self.interrupt.msi = Some(VfioMsi {
838             cfg: msi_config,
839             cap_offset,
840             interrupt_source_group,
841         });
842     }
843 
844     pub(crate) fn get_msix_cap_idx(&self) -> Option<usize> {
845         let mut cap_next = self
846             .vfio_wrapper
847             .read_config_byte(PCI_CONFIG_CAPABILITY_OFFSET);
848 
849         while cap_next != 0 {
850             let cap_id = self.vfio_wrapper.read_config_byte(cap_next.into());
851             if PciCapabilityId::from(cap_id) == PciCapabilityId::MsiX {
852                 return Some(cap_next as usize);
853             } else {
854                 cap_next = self.vfio_wrapper.read_config_byte((cap_next + 1).into());
855             }
856         }
857 
858         None
859     }
860 
861     pub(crate) fn parse_capabilities(&mut self, bdf: PciBdf) {
862         let mut cap_next = self
863             .vfio_wrapper
864             .read_config_byte(PCI_CONFIG_CAPABILITY_OFFSET);
865 
866         let mut pci_express_cap_found = false;
867         let mut power_management_cap_found = false;
868 
869         while cap_next != 0 {
870             let cap_id = self.vfio_wrapper.read_config_byte(cap_next.into());
871 
872             match PciCapabilityId::from(cap_id) {
873                 PciCapabilityId::MessageSignalledInterrupts => {
874                     if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_MSI_IRQ_INDEX) {
875                         if irq_info.count > 0 {
876                             // Parse capability only if the VFIO device
877                             // supports MSI.
878                             let msg_ctl = self.parse_msi_capabilities(cap_next);
879                             self.initialize_msi(msg_ctl, cap_next as u32, None);
880                         }
881                     }
882                 }
883                 PciCapabilityId::MsiX => {
884                     if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_MSIX_IRQ_INDEX)
885                     {
886                         if irq_info.count > 0 {
887                             // Parse capability only if the VFIO device
888                             // supports MSI-X.
889                             let msix_cap = self.parse_msix_capabilities(cap_next);
890                             self.initialize_msix(msix_cap, cap_next as u32, bdf, None);
891                         }
892                     }
893                 }
894                 PciCapabilityId::PciExpress => pci_express_cap_found = true,
895                 PciCapabilityId::PowerManagement => power_management_cap_found = true,
896                 _ => {}
897             };
898 
899             cap_next = self.vfio_wrapper.read_config_byte((cap_next + 1).into());
900         }
901 
902         if pci_express_cap_found && power_management_cap_found {
903             self.parse_extended_capabilities();
904         }
905     }
906 
907     fn parse_extended_capabilities(&mut self) {
908         let mut current_offset = PCI_CONFIG_EXTENDED_CAPABILITY_OFFSET;
909 
910         loop {
911             let ext_cap_hdr = self.vfio_wrapper.read_config_dword(current_offset);
912 
913             let cap_id: u16 = (ext_cap_hdr & 0xffff) as u16;
914             let cap_next: u16 = ((ext_cap_hdr >> 20) & 0xfff) as u16;
915 
916             match PciExpressCapabilityId::from(cap_id) {
917                 PciExpressCapabilityId::AlternativeRoutingIdentificationInterpretation
918                 | PciExpressCapabilityId::ResizeableBar
919                 | PciExpressCapabilityId::SingleRootIoVirtualization => {
920                     let reg_idx = (current_offset / 4) as usize;
921                     self.patches.insert(
922                         reg_idx,
923                         ConfigPatch {
924                             mask: 0x0000_ffff,
925                             patch: PciExpressCapabilityId::NullCapability as u32,
926                         },
927                     );
928                 }
929                 _ => {}
930             }
931 
932             if cap_next == 0 {
933                 break;
934             }
935 
936             current_offset = cap_next.into();
937         }
938     }
939 
940     pub(crate) fn enable_intx(&mut self) -> Result<(), VfioPciError> {
941         if let Some(intx) = &mut self.interrupt.intx {
942             if !intx.enabled {
943                 if let Some(eventfd) = intx.interrupt_source_group.notifier(0) {
944                     self.vfio_wrapper
945                         .enable_irq(VFIO_PCI_INTX_IRQ_INDEX, vec![&eventfd])
946                         .map_err(VfioPciError::EnableIntx)?;
947 
948                     intx.enabled = true;
949                 } else {
950                     return Err(VfioPciError::MissingNotifier);
951                 }
952             }
953         }
954 
955         Ok(())
956     }
957 
958     pub(crate) fn disable_intx(&mut self) {
959         if let Some(intx) = &mut self.interrupt.intx {
960             if intx.enabled {
961                 if let Err(e) = self.vfio_wrapper.disable_irq(VFIO_PCI_INTX_IRQ_INDEX) {
962                     error!("Could not disable INTx: {}", e);
963                 } else {
964                     intx.enabled = false;
965                 }
966             }
967         }
968     }
969 
970     pub(crate) fn enable_msi(&self) -> Result<(), VfioPciError> {
971         if let Some(msi) = &self.interrupt.msi {
972             let mut irq_fds: Vec<EventFd> = Vec::new();
973             for i in 0..msi.cfg.num_enabled_vectors() {
974                 if let Some(eventfd) = msi.interrupt_source_group.notifier(i as InterruptIndex) {
975                     irq_fds.push(eventfd);
976                 } else {
977                     return Err(VfioPciError::MissingNotifier);
978                 }
979             }
980 
981             self.vfio_wrapper
982                 .enable_msi(irq_fds.iter().collect())
983                 .map_err(VfioPciError::EnableMsi)?;
984         }
985 
986         Ok(())
987     }
988 
989     pub(crate) fn disable_msi(&self) {
990         if let Err(e) = self.vfio_wrapper.disable_msi() {
991             error!("Could not disable MSI: {}", e);
992         }
993     }
994 
995     pub(crate) fn enable_msix(&self) -> Result<(), VfioPciError> {
996         if let Some(msix) = &self.interrupt.msix {
997             let mut irq_fds: Vec<EventFd> = Vec::new();
998             for i in 0..msix.bar.table_entries.len() {
999                 if let Some(eventfd) = msix.interrupt_source_group.notifier(i as InterruptIndex) {
1000                     irq_fds.push(eventfd);
1001                 } else {
1002                     return Err(VfioPciError::MissingNotifier);
1003                 }
1004             }
1005 
1006             self.vfio_wrapper
1007                 .enable_msix(irq_fds.iter().collect())
1008                 .map_err(VfioPciError::EnableMsix)?;
1009         }
1010 
1011         Ok(())
1012     }
1013 
1014     pub(crate) fn disable_msix(&self) {
1015         if let Err(e) = self.vfio_wrapper.disable_msix() {
1016             error!("Could not disable MSI-X: {}", e);
1017         }
1018     }
1019 
1020     pub(crate) fn initialize_legacy_interrupt(&mut self) -> Result<(), VfioPciError> {
1021         if let Some(irq_info) = self.vfio_wrapper.get_irq_info(VFIO_PCI_INTX_IRQ_INDEX) {
1022             if irq_info.count == 0 {
1023                 // A count of 0 means the INTx IRQ is not supported, therefore
1024                 // it shouldn't be initialized.
1025                 return Ok(());
1026             }
1027         }
1028 
1029         if let Some(interrupt_source_group) = self.legacy_interrupt_group.clone() {
1030             self.interrupt.intx = Some(VfioIntx {
1031                 interrupt_source_group,
1032                 enabled: false,
1033             });
1034 
1035             self.enable_intx()?;
1036         }
1037 
1038         Ok(())
1039     }
1040 
1041     pub(crate) fn update_msi_capabilities(
1042         &mut self,
1043         offset: u64,
1044         data: &[u8],
1045     ) -> Result<(), VfioPciError> {
1046         match self.interrupt.update_msi(offset, data) {
1047             Some(InterruptUpdateAction::EnableMsi) => {
1048                 // Disable INTx before we can enable MSI
1049                 self.disable_intx();
1050                 self.enable_msi()?;
1051             }
1052             Some(InterruptUpdateAction::DisableMsi) => {
1053                 // Fallback onto INTx when disabling MSI
1054                 self.disable_msi();
1055                 self.enable_intx()?;
1056             }
1057             _ => {}
1058         }
1059 
1060         Ok(())
1061     }
1062 
1063     pub(crate) fn update_msix_capabilities(
1064         &mut self,
1065         offset: u64,
1066         data: &[u8],
1067     ) -> Result<(), VfioPciError> {
1068         match self.interrupt.update_msix(offset, data) {
1069             Some(InterruptUpdateAction::EnableMsix) => {
1070                 // Disable INTx before we can enable MSI-X
1071                 self.disable_intx();
1072                 self.enable_msix()?;
1073             }
1074             Some(InterruptUpdateAction::DisableMsix) => {
1075                 // Fallback onto INTx when disabling MSI-X
1076                 self.disable_msix();
1077                 self.enable_intx()?;
1078             }
1079             _ => {}
1080         }
1081 
1082         Ok(())
1083     }
1084 
1085     pub(crate) fn find_region(&self, addr: u64) -> Option<MmioRegion> {
1086         for region in self.mmio_regions.iter() {
1087             if addr >= region.start.raw_value()
1088                 && addr < region.start.unchecked_add(region.length).raw_value()
1089             {
1090                 return Some(region.clone());
1091             }
1092         }
1093         None
1094     }
1095 
1096     pub(crate) fn read_bar(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1097         let addr = base + offset;
1098         if let Some(region) = self.find_region(addr) {
1099             let offset = addr - region.start.raw_value();
1100 
1101             if self.interrupt.msix_table_accessed(region.index, offset) {
1102                 self.interrupt.msix_read_table(offset, data);
1103             } else {
1104                 self.vfio_wrapper.region_read(region.index, offset, data);
1105             }
1106         }
1107 
1108         // INTx EOI
1109         // The guest reading from the BAR potentially means the interrupt has
1110         // been received and can be acknowledged.
1111         if self.interrupt.intx_in_use() {
1112             if let Err(e) = self.vfio_wrapper.unmask_irq(VFIO_PCI_INTX_IRQ_INDEX) {
1113                 error!("Failed unmasking INTx IRQ: {}", e);
1114             }
1115         }
1116     }
1117 
1118     pub(crate) fn write_bar(
1119         &mut self,
1120         base: u64,
1121         offset: u64,
1122         data: &[u8],
1123     ) -> Option<Arc<Barrier>> {
1124         let addr = base + offset;
1125         if let Some(region) = self.find_region(addr) {
1126             let offset = addr - region.start.raw_value();
1127 
1128             // If the MSI-X table is written to, we need to update our cache.
1129             if self.interrupt.msix_table_accessed(region.index, offset) {
1130                 self.interrupt.msix_write_table(offset, data);
1131             } else {
1132                 self.vfio_wrapper.region_write(region.index, offset, data);
1133             }
1134         }
1135 
1136         // INTx EOI
1137         // The guest writing to the BAR potentially means the interrupt has
1138         // been received and can be acknowledged.
1139         if self.interrupt.intx_in_use() {
1140             if let Err(e) = self.vfio_wrapper.unmask_irq(VFIO_PCI_INTX_IRQ_INDEX) {
1141                 error!("Failed unmasking INTx IRQ: {}", e);
1142             }
1143         }
1144 
1145         None
1146     }
1147 
1148     pub(crate) fn write_config_register(
1149         &mut self,
1150         reg_idx: usize,
1151         offset: u64,
1152         data: &[u8],
1153     ) -> Option<Arc<Barrier>> {
1154         // When the guest wants to write to a BAR, we trap it into
1155         // our local configuration space. We're not reprogramming
1156         // VFIO device.
1157         if (PCI_CONFIG_BAR0_INDEX..PCI_CONFIG_BAR0_INDEX + BAR_NUMS).contains(&reg_idx)
1158             || reg_idx == PCI_ROM_EXP_BAR_INDEX
1159         {
1160             // We keep our local cache updated with the BARs.
1161             // We'll read it back from there when the guest is asking
1162             // for BARs (see read_config_register()).
1163             self.configuration
1164                 .write_config_register(reg_idx, offset, data);
1165             return None;
1166         }
1167 
1168         let reg = (reg_idx * PCI_CONFIG_REGISTER_SIZE) as u64;
1169 
1170         // If the MSI or MSI-X capabilities are accessed, we need to
1171         // update our local cache accordingly.
1172         // Depending on how the capabilities are modified, this could
1173         // trigger a VFIO MSI or MSI-X toggle.
1174         if let Some((cap_id, cap_base)) = self.interrupt.accessed(reg) {
1175             let cap_offset: u64 = reg - cap_base + offset;
1176             match cap_id {
1177                 PciCapabilityId::MessageSignalledInterrupts => {
1178                     if let Err(e) = self.update_msi_capabilities(cap_offset, data) {
1179                         error!("Could not update MSI capabilities: {}", e);
1180                     }
1181                 }
1182                 PciCapabilityId::MsiX => {
1183                     if let Err(e) = self.update_msix_capabilities(cap_offset, data) {
1184                         error!("Could not update MSI-X capabilities: {}", e);
1185                     }
1186                 }
1187                 _ => {}
1188             }
1189         }
1190 
1191         // Make sure to write to the device's PCI config space after MSI/MSI-X
1192         // interrupts have been enabled/disabled. In case of MSI, when the
1193         // interrupts are enabled through VFIO (using VFIO_DEVICE_SET_IRQS),
1194         // the MSI Enable bit in the MSI capability structure found in the PCI
1195         // config space is disabled by default. That's why when the guest is
1196         // enabling this bit, we first need to enable the MSI interrupts with
1197         // VFIO through VFIO_DEVICE_SET_IRQS ioctl, and only after we can write
1198         // to the device region to update the MSI Enable bit.
1199         self.vfio_wrapper.write_config((reg + offset) as u32, data);
1200 
1201         None
1202     }
1203 
1204     pub(crate) fn read_config_register(&mut self, reg_idx: usize) -> u32 {
1205         // When reading the BARs, we trap it and return what comes
1206         // from our local configuration space. We want the guest to
1207         // use that and not the VFIO device BARs as it does not map
1208         // with the guest address space.
1209         if (PCI_CONFIG_BAR0_INDEX..PCI_CONFIG_BAR0_INDEX + BAR_NUMS).contains(&reg_idx)
1210             || reg_idx == PCI_ROM_EXP_BAR_INDEX
1211         {
1212             return self.configuration.read_reg(reg_idx);
1213         }
1214 
1215         if let Some(id) = self.get_msix_cap_idx() {
1216             let msix = self.interrupt.msix.as_mut().unwrap();
1217             if reg_idx * 4 == id + 4 {
1218                 return msix.cap.table;
1219             } else if reg_idx * 4 == id + 8 {
1220                 return msix.cap.pba;
1221             }
1222         }
1223 
1224         // Since we don't support passing multi-functions devices, we should
1225         // mask the multi-function bit, bit 7 of the Header Type byte on the
1226         // register 3.
1227         let mask = if reg_idx == PCI_HEADER_TYPE_REG_INDEX {
1228             0xff7f_ffff
1229         } else {
1230             0xffff_ffff
1231         };
1232 
1233         // The config register read comes from the VFIO device itself.
1234         let mut value = self.vfio_wrapper.read_config_dword((reg_idx * 4) as u32) & mask;
1235 
1236         if let Some(config_patch) = self.patches.get(&reg_idx) {
1237             value = (value & !config_patch.mask) | config_patch.patch;
1238         }
1239 
1240         value
1241     }
1242 
1243     fn state(&self) -> VfioCommonState {
1244         let intx_state = self.interrupt.intx.as_ref().map(|intx| IntxState {
1245             enabled: intx.enabled,
1246         });
1247 
1248         let msi_state = self.interrupt.msi.as_ref().map(|msi| MsiState {
1249             cap: msi.cfg.cap,
1250             cap_offset: msi.cap_offset,
1251         });
1252 
1253         let msix_state = self.interrupt.msix.as_ref().map(|msix| MsixState {
1254             cap: msix.cap,
1255             cap_offset: msix.cap_offset,
1256             bdf: msix.bar.devid,
1257         });
1258 
1259         VfioCommonState {
1260             intx_state,
1261             msi_state,
1262             msix_state,
1263         }
1264     }
1265 
1266     fn set_state(
1267         &mut self,
1268         state: &VfioCommonState,
1269         msi_state: Option<MsiConfigState>,
1270         msix_state: Option<MsixConfigState>,
1271     ) -> Result<(), VfioPciError> {
1272         if let (Some(intx), Some(interrupt_source_group)) =
1273             (&state.intx_state, self.legacy_interrupt_group.clone())
1274         {
1275             self.interrupt.intx = Some(VfioIntx {
1276                 interrupt_source_group,
1277                 enabled: false,
1278             });
1279 
1280             if intx.enabled {
1281                 self.enable_intx()?;
1282             }
1283         }
1284 
1285         if let Some(msi) = &state.msi_state {
1286             self.initialize_msi(msi.cap.msg_ctl, msi.cap_offset, msi_state);
1287         }
1288 
1289         if let Some(msix) = &state.msix_state {
1290             self.initialize_msix(msix.cap, msix.cap_offset, msix.bdf.into(), msix_state);
1291         }
1292 
1293         Ok(())
1294     }
1295 }
1296 
1297 impl Pausable for VfioCommon {}
1298 
1299 impl Snapshottable for VfioCommon {
1300     fn id(&self) -> String {
1301         String::from(VFIO_COMMON_ID)
1302     }
1303 
1304     fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
1305         let mut vfio_common_snapshot = Snapshot::new_from_versioned_state(&self.state())?;
1306 
1307         // Snapshot PciConfiguration
1308         vfio_common_snapshot.add_snapshot(self.configuration.id(), self.configuration.snapshot()?);
1309 
1310         // Snapshot MSI
1311         if let Some(msi) = &mut self.interrupt.msi {
1312             vfio_common_snapshot.add_snapshot(msi.cfg.id(), msi.cfg.snapshot()?);
1313         }
1314 
1315         // Snapshot MSI-X
1316         if let Some(msix) = &mut self.interrupt.msix {
1317             vfio_common_snapshot.add_snapshot(msix.bar.id(), msix.bar.snapshot()?);
1318         }
1319 
1320         Ok(vfio_common_snapshot)
1321     }
1322 }
1323 
1324 /// VfioPciDevice represents a VFIO PCI device.
1325 /// This structure implements the BusDevice and PciDevice traits.
1326 ///
1327 /// A VfioPciDevice is bound to a VfioDevice and is also a PCI device.
1328 /// The VMM creates a VfioDevice, then assigns it to a VfioPciDevice,
1329 /// which then gets added to the PCI bus.
1330 pub struct VfioPciDevice {
1331     id: String,
1332     vm: Arc<dyn hypervisor::Vm>,
1333     device: Arc<VfioDevice>,
1334     container: Arc<VfioContainer>,
1335     common: VfioCommon,
1336     iommu_attached: bool,
1337     memory_slot: Arc<dyn Fn() -> u32 + Send + Sync>,
1338 }
1339 
1340 impl VfioPciDevice {
1341     /// Constructs a new Vfio Pci device for the given Vfio device
1342     #[allow(clippy::too_many_arguments)]
1343     pub fn new(
1344         id: String,
1345         vm: &Arc<dyn hypervisor::Vm>,
1346         device: VfioDevice,
1347         container: Arc<VfioContainer>,
1348         msi_interrupt_manager: Arc<dyn InterruptManager<GroupConfig = MsiIrqGroupConfig>>,
1349         legacy_interrupt_group: Option<Arc<dyn InterruptSourceGroup>>,
1350         iommu_attached: bool,
1351         bdf: PciBdf,
1352         memory_slot: Arc<dyn Fn() -> u32 + Send + Sync>,
1353         snapshot: Option<Snapshot>,
1354     ) -> Result<Self, VfioPciError> {
1355         let device = Arc::new(device);
1356         device.reset();
1357 
1358         let vfio_wrapper = VfioDeviceWrapper::new(Arc::clone(&device));
1359 
1360         let common = VfioCommon::new(
1361             msi_interrupt_manager,
1362             legacy_interrupt_group,
1363             Arc::new(vfio_wrapper) as Arc<dyn Vfio>,
1364             &PciVfioSubclass::VfioSubclass,
1365             bdf,
1366             vm_migration::snapshot_from_id(snapshot.as_ref(), VFIO_COMMON_ID),
1367         )?;
1368 
1369         let vfio_pci_device = VfioPciDevice {
1370             id,
1371             vm: vm.clone(),
1372             device,
1373             container,
1374             common,
1375             iommu_attached,
1376             memory_slot,
1377         };
1378 
1379         Ok(vfio_pci_device)
1380     }
1381 
1382     pub fn iommu_attached(&self) -> bool {
1383         self.iommu_attached
1384     }
1385 
1386     fn generate_sparse_areas(
1387         caps: &[VfioRegionInfoCap],
1388         region_index: u32,
1389         region_start: u64,
1390         region_size: u64,
1391         vfio_msix: Option<&VfioMsix>,
1392     ) -> Result<Vec<VfioRegionSparseMmapArea>, VfioPciError> {
1393         for cap in caps {
1394             match cap {
1395                 VfioRegionInfoCap::SparseMmap(sparse_mmap) => return Ok(sparse_mmap.areas.clone()),
1396                 VfioRegionInfoCap::MsixMappable => {
1397                     if !is_4k_aligned(region_start) {
1398                         error!(
1399                             "Region start address 0x{:x} must be at least aligned on 4KiB",
1400                             region_start
1401                         );
1402                         return Err(VfioPciError::RegionAlignment);
1403                     }
1404                     if !is_4k_multiple(region_size) {
1405                         error!(
1406                             "Region size 0x{:x} must be at least a multiple of 4KiB",
1407                             region_size
1408                         );
1409                         return Err(VfioPciError::RegionSize);
1410                     }
1411 
1412                     // In case the region contains the MSI-X vectors table or
1413                     // the MSI-X PBA table, we must calculate the subregions
1414                     // around them, leading to a list of sparse areas.
1415                     // We want to make sure we will still trap MMIO accesses
1416                     // to these MSI-X specific ranges. If these region don't align
1417                     // with pagesize, we can achieve it by enlarging its range.
1418                     //
1419                     // Using a BtreeMap as the list provided through the iterator is sorted
1420                     // by key. This ensures proper split of the whole region.
1421                     let mut inter_ranges = BTreeMap::new();
1422                     if let Some(msix) = vfio_msix {
1423                         if region_index == msix.cap.table_bir() {
1424                             let (offset, size) = msix.cap.table_range();
1425                             let offset = align_page_size_down(offset);
1426                             let size = align_page_size_up(size);
1427                             inter_ranges.insert(offset, size);
1428                         }
1429                         if region_index == msix.cap.pba_bir() {
1430                             let (offset, size) = msix.cap.pba_range();
1431                             let offset = align_page_size_down(offset);
1432                             let size = align_page_size_up(size);
1433                             inter_ranges.insert(offset, size);
1434                         }
1435                     }
1436 
1437                     let mut sparse_areas = Vec::new();
1438                     let mut current_offset = 0;
1439                     for (range_offset, range_size) in inter_ranges {
1440                         if range_offset > current_offset {
1441                             sparse_areas.push(VfioRegionSparseMmapArea {
1442                                 offset: current_offset,
1443                                 size: range_offset - current_offset,
1444                             });
1445                         }
1446                         current_offset = align_page_size_down(range_offset + range_size);
1447                     }
1448 
1449                     if region_size > current_offset {
1450                         sparse_areas.push(VfioRegionSparseMmapArea {
1451                             offset: current_offset,
1452                             size: region_size - current_offset,
1453                         });
1454                     }
1455 
1456                     return Ok(sparse_areas);
1457                 }
1458                 _ => {}
1459             }
1460         }
1461 
1462         // In case no relevant capabilities have been found, create a single
1463         // sparse area corresponding to the entire MMIO region.
1464         Ok(vec![VfioRegionSparseMmapArea {
1465             offset: 0,
1466             size: region_size,
1467         }])
1468     }
1469 
1470     /// Map MMIO regions into the guest, and avoid VM exits when the guest tries
1471     /// to reach those regions.
1472     ///
1473     /// # Arguments
1474     ///
1475     /// * `vm` - The VM object. It is used to set the VFIO MMIO regions
1476     ///          as user memory regions.
1477     /// * `mem_slot` - The closure to return a memory slot.
1478     pub fn map_mmio_regions(&mut self) -> Result<(), VfioPciError> {
1479         let fd = self.device.as_raw_fd();
1480 
1481         for region in self.common.mmio_regions.iter_mut() {
1482             let region_flags = self.device.get_region_flags(region.index);
1483             if region_flags & VFIO_REGION_INFO_FLAG_MMAP != 0 {
1484                 let mut prot = 0;
1485                 if region_flags & VFIO_REGION_INFO_FLAG_READ != 0 {
1486                     prot |= libc::PROT_READ;
1487                 }
1488                 if region_flags & VFIO_REGION_INFO_FLAG_WRITE != 0 {
1489                     prot |= libc::PROT_WRITE;
1490                 }
1491 
1492                 // Retrieve the list of capabilities found on the region
1493                 let caps = if region_flags & VFIO_REGION_INFO_FLAG_CAPS != 0 {
1494                     self.device.get_region_caps(region.index)
1495                 } else {
1496                     Vec::new()
1497                 };
1498 
1499                 // Don't try to mmap the region if it contains MSI-X table or
1500                 // MSI-X PBA subregion, and if we couldn't find MSIX_MAPPABLE
1501                 // in the list of supported capabilities.
1502                 if let Some(msix) = self.common.interrupt.msix.as_ref() {
1503                     if (region.index == msix.cap.table_bir() || region.index == msix.cap.pba_bir())
1504                         && !caps.contains(&VfioRegionInfoCap::MsixMappable)
1505                     {
1506                         continue;
1507                     }
1508                 }
1509 
1510                 let mmap_size = self.device.get_region_size(region.index);
1511                 let mmap_offset = self.device.get_region_offset(region.index);
1512 
1513                 let sparse_areas = Self::generate_sparse_areas(
1514                     &caps,
1515                     region.index,
1516                     region.start.0,
1517                     mmap_size,
1518                     self.common.interrupt.msix.as_ref(),
1519                 )?;
1520 
1521                 for area in sparse_areas.iter() {
1522                     // SAFETY: FFI call with correct arguments
1523                     let host_addr = unsafe {
1524                         libc::mmap(
1525                             null_mut(),
1526                             area.size as usize,
1527                             prot,
1528                             libc::MAP_SHARED,
1529                             fd,
1530                             mmap_offset as libc::off_t + area.offset as libc::off_t,
1531                         )
1532                     };
1533 
1534                     if host_addr == libc::MAP_FAILED {
1535                         error!(
1536                             "Could not mmap sparse area (offset = 0x{:x}, size = 0x{:x}): {}",
1537                             area.offset,
1538                             area.size,
1539                             std::io::Error::last_os_error()
1540                         );
1541                         return Err(VfioPciError::MmapArea);
1542                     }
1543 
1544                     if !is_page_size_aligned(area.size) || !is_page_size_aligned(area.offset) {
1545                         warn!(
1546                             "Could not mmap sparse area that is not page size aligned (offset = 0x{:x}, size = 0x{:x})",
1547                             area.offset,
1548                             area.size,
1549                             );
1550                         return Ok(());
1551                     }
1552 
1553                     let user_memory_region = UserMemoryRegion {
1554                         slot: (self.memory_slot)(),
1555                         start: region.start.0 + area.offset,
1556                         size: area.size,
1557                         host_addr: host_addr as u64,
1558                     };
1559 
1560                     region.user_memory_regions.push(user_memory_region);
1561 
1562                     let mem_region = self.vm.make_user_memory_region(
1563                         user_memory_region.slot,
1564                         user_memory_region.start,
1565                         user_memory_region.size,
1566                         user_memory_region.host_addr,
1567                         false,
1568                         false,
1569                     );
1570 
1571                     self.vm
1572                         .create_user_memory_region(mem_region)
1573                         .map_err(VfioPciError::CreateUserMemoryRegion)?;
1574 
1575                     if !self.iommu_attached {
1576                         self.container
1577                             .vfio_dma_map(
1578                                 user_memory_region.start,
1579                                 user_memory_region.size,
1580                                 user_memory_region.host_addr,
1581                             )
1582                             .map_err(VfioPciError::DmaMap)?;
1583                     }
1584                 }
1585             }
1586         }
1587 
1588         Ok(())
1589     }
1590 
1591     pub fn unmap_mmio_regions(&mut self) {
1592         for region in self.common.mmio_regions.iter() {
1593             for user_memory_region in region.user_memory_regions.iter() {
1594                 // Unmap from vfio container
1595                 if !self.iommu_attached {
1596                     if let Err(e) = self
1597                         .container
1598                         .vfio_dma_unmap(user_memory_region.start, user_memory_region.size)
1599                     {
1600                         error!("Could not unmap mmio region from vfio container: {}", e);
1601                     }
1602                 }
1603 
1604                 // Remove region
1605                 let r = self.vm.make_user_memory_region(
1606                     user_memory_region.slot,
1607                     user_memory_region.start,
1608                     user_memory_region.size,
1609                     user_memory_region.host_addr,
1610                     false,
1611                     false,
1612                 );
1613 
1614                 if let Err(e) = self.vm.remove_user_memory_region(r) {
1615                     error!("Could not remove the userspace memory region: {}", e);
1616                 }
1617 
1618                 // SAFETY: FFI call with correct arguments
1619                 let ret = unsafe {
1620                     libc::munmap(
1621                         user_memory_region.host_addr as *mut libc::c_void,
1622                         user_memory_region.size as usize,
1623                     )
1624                 };
1625                 if ret != 0 {
1626                     error!(
1627                         "Could not unmap region {}, error:{}",
1628                         region.index,
1629                         io::Error::last_os_error()
1630                     );
1631                 }
1632             }
1633         }
1634     }
1635 
1636     pub fn dma_map(&self, iova: u64, size: u64, user_addr: u64) -> Result<(), VfioPciError> {
1637         if !self.iommu_attached {
1638             self.container
1639                 .vfio_dma_map(iova, size, user_addr)
1640                 .map_err(VfioPciError::DmaMap)?;
1641         }
1642 
1643         Ok(())
1644     }
1645 
1646     pub fn dma_unmap(&self, iova: u64, size: u64) -> Result<(), VfioPciError> {
1647         if !self.iommu_attached {
1648             self.container
1649                 .vfio_dma_unmap(iova, size)
1650                 .map_err(VfioPciError::DmaUnmap)?;
1651         }
1652 
1653         Ok(())
1654     }
1655 
1656     pub fn mmio_regions(&self) -> Vec<MmioRegion> {
1657         self.common.mmio_regions.clone()
1658     }
1659 }
1660 
1661 impl Drop for VfioPciDevice {
1662     fn drop(&mut self) {
1663         self.unmap_mmio_regions();
1664 
1665         if let Some(msix) = &self.common.interrupt.msix {
1666             if msix.bar.enabled() {
1667                 self.common.disable_msix();
1668             }
1669         }
1670 
1671         if let Some(msi) = &self.common.interrupt.msi {
1672             if msi.cfg.enabled() {
1673                 self.common.disable_msi()
1674             }
1675         }
1676 
1677         if self.common.interrupt.intx_in_use() {
1678             self.common.disable_intx();
1679         }
1680     }
1681 }
1682 
1683 impl BusDevice for VfioPciDevice {
1684     fn read(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1685         self.read_bar(base, offset, data)
1686     }
1687 
1688     fn write(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
1689         self.write_bar(base, offset, data)
1690     }
1691 }
1692 
1693 // First BAR offset in the PCI config space.
1694 const PCI_CONFIG_BAR_OFFSET: u32 = 0x10;
1695 // Capability register offset in the PCI config space.
1696 const PCI_CONFIG_CAPABILITY_OFFSET: u32 = 0x34;
1697 // Extended capabilities register offset in the PCI config space.
1698 const PCI_CONFIG_EXTENDED_CAPABILITY_OFFSET: u32 = 0x100;
1699 // IO BAR when first BAR bit is 1.
1700 const PCI_CONFIG_IO_BAR: u32 = 0x1;
1701 // 64-bit memory bar flag.
1702 const PCI_CONFIG_MEMORY_BAR_64BIT: u32 = 0x4;
1703 // Prefetchable BAR bit
1704 const PCI_CONFIG_BAR_PREFETCHABLE: u32 = 0x8;
1705 // PCI config register size (4 bytes).
1706 const PCI_CONFIG_REGISTER_SIZE: usize = 4;
1707 // Number of BARs for a PCI device
1708 const BAR_NUMS: usize = 6;
1709 // PCI Header Type register index
1710 const PCI_HEADER_TYPE_REG_INDEX: usize = 3;
1711 // First BAR register index
1712 const PCI_CONFIG_BAR0_INDEX: usize = 4;
1713 // PCI ROM expansion BAR register index
1714 const PCI_ROM_EXP_BAR_INDEX: usize = 12;
1715 
1716 impl PciDevice for VfioPciDevice {
1717     fn allocate_bars(
1718         &mut self,
1719         allocator: &Arc<Mutex<SystemAllocator>>,
1720         mmio32_allocator: &mut AddressAllocator,
1721         mmio64_allocator: &mut AddressAllocator,
1722         resources: Option<Vec<Resource>>,
1723     ) -> Result<Vec<PciBarConfiguration>, PciDeviceError> {
1724         self.common
1725             .allocate_bars(allocator, mmio32_allocator, mmio64_allocator, resources)
1726     }
1727 
1728     fn free_bars(
1729         &mut self,
1730         allocator: &mut SystemAllocator,
1731         mmio32_allocator: &mut AddressAllocator,
1732         mmio64_allocator: &mut AddressAllocator,
1733     ) -> Result<(), PciDeviceError> {
1734         self.common
1735             .free_bars(allocator, mmio32_allocator, mmio64_allocator)
1736     }
1737 
1738     fn write_config_register(
1739         &mut self,
1740         reg_idx: usize,
1741         offset: u64,
1742         data: &[u8],
1743     ) -> Option<Arc<Barrier>> {
1744         self.common.write_config_register(reg_idx, offset, data)
1745     }
1746 
1747     fn read_config_register(&mut self, reg_idx: usize) -> u32 {
1748         self.common.read_config_register(reg_idx)
1749     }
1750 
1751     fn detect_bar_reprogramming(
1752         &mut self,
1753         reg_idx: usize,
1754         data: &[u8],
1755     ) -> Option<BarReprogrammingParams> {
1756         self.common
1757             .configuration
1758             .detect_bar_reprogramming(reg_idx, data)
1759     }
1760 
1761     fn read_bar(&mut self, base: u64, offset: u64, data: &mut [u8]) {
1762         self.common.read_bar(base, offset, data)
1763     }
1764 
1765     fn write_bar(&mut self, base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> {
1766         self.common.write_bar(base, offset, data)
1767     }
1768 
1769     fn move_bar(&mut self, old_base: u64, new_base: u64) -> Result<(), io::Error> {
1770         for region in self.common.mmio_regions.iter_mut() {
1771             if region.start.raw_value() == old_base {
1772                 region.start = GuestAddress(new_base);
1773 
1774                 for user_memory_region in region.user_memory_regions.iter_mut() {
1775                     // Remove old region
1776                     let old_mem_region = self.vm.make_user_memory_region(
1777                         user_memory_region.slot,
1778                         user_memory_region.start,
1779                         user_memory_region.size,
1780                         user_memory_region.host_addr,
1781                         false,
1782                         false,
1783                     );
1784 
1785                     self.vm
1786                         .remove_user_memory_region(old_mem_region)
1787                         .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
1788 
1789                     // Update the user memory region with the correct start address.
1790                     if new_base > old_base {
1791                         user_memory_region.start += new_base - old_base;
1792                     } else {
1793                         user_memory_region.start -= old_base - new_base;
1794                     }
1795 
1796                     // Insert new region
1797                     let new_mem_region = self.vm.make_user_memory_region(
1798                         user_memory_region.slot,
1799                         user_memory_region.start,
1800                         user_memory_region.size,
1801                         user_memory_region.host_addr,
1802                         false,
1803                         false,
1804                     );
1805 
1806                     self.vm
1807                         .create_user_memory_region(new_mem_region)
1808                         .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
1809                 }
1810             }
1811         }
1812 
1813         Ok(())
1814     }
1815 
1816     fn as_any(&mut self) -> &mut dyn Any {
1817         self
1818     }
1819 
1820     fn id(&self) -> Option<String> {
1821         Some(self.id.clone())
1822     }
1823 }
1824 
1825 impl Pausable for VfioPciDevice {}
1826 
1827 impl Snapshottable for VfioPciDevice {
1828     fn id(&self) -> String {
1829         self.id.clone()
1830     }
1831 
1832     fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
1833         let mut vfio_pci_dev_snapshot = Snapshot::default();
1834 
1835         // Snapshot VfioCommon
1836         vfio_pci_dev_snapshot.add_snapshot(self.common.id(), self.common.snapshot()?);
1837 
1838         Ok(vfio_pci_dev_snapshot)
1839     }
1840 }
1841 impl Transportable for VfioPciDevice {}
1842 impl Migratable for VfioPciDevice {}
1843