xref: /cloud-hypervisor/net_util/src/tap.rs (revision eea9bcea38e0c5649f444c829f3a4f9c22aa486c)
1 // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
2 // SPDX-License-Identifier: Apache-2.0
3 //
4 // Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
5 // Use of this source code is governed by a BSD-style license that can be
6 // found in the THIRD-PARTY file.
7 
8 use super::{
9     create_inet_socket, create_sockaddr, create_unix_socket, vnet_hdr_len, Error as NetUtilError,
10     MacAddr,
11 };
12 use crate::mac::MAC_ADDR_LEN;
13 use std::fs::File;
14 use std::io::{Error as IoError, Read, Result as IoResult, Write};
15 use std::net;
16 use std::os::raw::*;
17 use std::os::unix::io::{AsRawFd, FromRawFd, RawFd};
18 use thiserror::Error;
19 use vmm_sys_util::ioctl::{ioctl_with_mut_ref, ioctl_with_ref, ioctl_with_val};
20 
21 #[derive(Error, Debug)]
22 pub enum Error {
23     #[error("Couldn't open /dev/net/tun: {0}")]
24     OpenTun(IoError),
25     #[error("Unable to configure tap interface: {0}")]
26     ConfigureTap(IoError),
27     #[error("Unable to retrieve features: {0}")]
28     GetFeatures(IoError),
29     #[error("Missing multiqueue support in the kernel.")]
30     MultiQueueKernelSupport,
31     #[error("ioctl failed: {0}")]
32     IoctlError(IoError),
33     #[error("Failed to create a socket: {0}")]
34     NetUtil(NetUtilError),
35     #[error("Invalid interface name.")]
36     InvalidIfname,
37     #[error("Error parsing MAC data: {0}")]
38     MacParsing(IoError),
39 }
40 
41 pub type Result<T> = ::std::result::Result<T, Error>;
42 
43 /// Handle for a network tap interface.
44 ///
45 /// For now, this simply wraps the file descriptor for the tap device so methods
46 /// can run ioctls on the interface. The tap interface fd will be closed when
47 /// Tap goes out of scope, and the kernel will clean up the interface
48 /// automatically.
49 #[derive(Debug)]
50 pub struct Tap {
51     tap_file: File,
52     if_name: Vec<u8>,
53 }
54 
55 impl PartialEq for Tap {
56     fn eq(&self, other: &Tap) -> bool {
57         self.if_name == other.if_name
58     }
59 }
60 
61 impl std::clone::Clone for Tap {
62     fn clone(&self) -> Self {
63         Tap {
64             tap_file: self.tap_file.try_clone().unwrap(),
65             if_name: self.if_name.clone(),
66         }
67     }
68 }
69 
70 // Returns a byte vector representing the contents of a null terminated C string which
71 // contains if_name.
72 fn build_terminated_if_name(if_name: &str) -> Result<Vec<u8>> {
73     // Convert the string slice to bytes, and shadow the variable,
74     // since we no longer need the &str version.
75     let if_name = if_name.as_bytes();
76 
77     // TODO: the 16usize limit of the if_name member from struct Tap is pretty arbitrary.
78     // We leave it as is for now, but this should be refactored at some point.
79     if if_name.len() > 15 {
80         return Err(Error::InvalidIfname);
81     }
82 
83     let mut terminated_if_name = vec![b'\0'; if_name.len() + 1];
84     terminated_if_name[..if_name.len()].copy_from_slice(if_name);
85 
86     Ok(terminated_if_name)
87 }
88 
89 impl Tap {
90     pub fn open_named(if_name: &str, num_queue_pairs: usize, flags: Option<i32>) -> Result<Tap> {
91         let terminated_if_name = build_terminated_if_name(if_name)?;
92 
93         let fd = unsafe {
94             // Open calls are safe because we give a constant null-terminated
95             // string and verify the result.
96             libc::open(
97                 b"/dev/net/tun\0".as_ptr() as *const c_char,
98                 flags.unwrap_or(libc::O_RDWR | libc::O_NONBLOCK | libc::O_CLOEXEC),
99             )
100         };
101         if fd < 0 {
102             return Err(Error::OpenTun(IoError::last_os_error()));
103         }
104 
105         // We just checked that the fd is valid.
106         let tuntap = unsafe { File::from_raw_fd(fd) };
107 
108         // Let's validate some features before going any further.
109         // ioctl is safe since we call it with a valid tap fd and check the return
110         // value.
111         let mut features = 0;
112         let ret = unsafe { ioctl_with_mut_ref(&tuntap, net_gen::TUNGETFEATURES(), &mut features) };
113         if ret < 0 {
114             return Err(Error::GetFeatures(IoError::last_os_error()));
115         }
116 
117         // Check if the user parameters match the kernel support for MQ
118         if (features & net_gen::IFF_MULTI_QUEUE == 0) && num_queue_pairs > 1 {
119             return Err(Error::MultiQueueKernelSupport);
120         }
121 
122         // This is pretty messy because of the unions used by ifreq. Since we
123         // don't call as_mut on the same union field more than once, this block
124         // is safe.
125         let mut ifreq: net_gen::ifreq = Default::default();
126         unsafe {
127             let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
128             let name_slice = &mut ifrn_name[..terminated_if_name.len()];
129             name_slice.copy_from_slice(terminated_if_name.as_slice());
130             ifreq.ifr_ifru.ifru_flags =
131                 (net_gen::IFF_TAP | net_gen::IFF_NO_PI | net_gen::IFF_VNET_HDR) as c_short;
132             if num_queue_pairs > 1 {
133                 ifreq.ifr_ifru.ifru_flags |= net_gen::IFF_MULTI_QUEUE as c_short;
134             }
135         }
136 
137         // ioctl is safe since we call it with a valid tap fd and check the return
138         // value.
139         let ret = unsafe { ioctl_with_mut_ref(&tuntap, net_gen::TUNSETIFF(), &mut ifreq) };
140         if ret < 0 {
141             return Err(Error::ConfigureTap(IoError::last_os_error()));
142         }
143 
144         let mut if_name = unsafe { ifreq.ifr_ifrn.ifrn_name }.to_vec();
145         if_name.truncate(terminated_if_name.len() - 1);
146         // Safe since only the name is accessed, and it's cloned out.
147         Ok(Tap {
148             tap_file: tuntap,
149             if_name,
150         })
151     }
152 
153     /// Create a new tap interface.
154     pub fn new(num_queue_pairs: usize) -> Result<Tap> {
155         Self::open_named("vmtap%d", num_queue_pairs, None)
156     }
157 
158     pub fn from_tap_fd(fd: RawFd, num_queue_pairs: usize) -> Result<Tap> {
159         // Ensure that the file is opened non-blocking, this is particularly
160         // needed when opened via the shell for macvtap.
161         let ret = unsafe {
162             let mut flags = libc::fcntl(fd, libc::F_GETFL);
163             flags |= libc::O_NONBLOCK;
164             libc::fcntl(fd, libc::F_SETFL, flags)
165         };
166         if ret < 0 {
167             return Err(Error::ConfigureTap(IoError::last_os_error()));
168         }
169 
170         let tap_file = unsafe { File::from_raw_fd(fd) };
171         let mut ifreq: net_gen::ifreq = Default::default();
172 
173         // Get current config including name
174         let ret = unsafe { ioctl_with_mut_ref(&tap_file, net_gen::TUNGETIFF(), &mut ifreq) };
175         if ret < 0 {
176             return Err(Error::IoctlError(IoError::last_os_error()));
177         }
178         // We only access one field of the ifru union, hence this is safe.
179         let if_name = unsafe { ifreq.ifr_ifrn.ifrn_name }.to_vec();
180 
181         // Try and update flags. Depending on how the tap was created (macvtap
182         // or via open_named()) this might return -EEXIST so we just ignore that.
183         unsafe {
184             ifreq.ifr_ifru.ifru_flags =
185                 (net_gen::IFF_TAP | net_gen::IFF_NO_PI | net_gen::IFF_VNET_HDR) as c_short;
186             if num_queue_pairs > 1 {
187                 ifreq.ifr_ifru.ifru_flags |= net_gen::IFF_MULTI_QUEUE as c_short;
188             }
189         }
190         let ret = unsafe { ioctl_with_mut_ref(&tap_file, net_gen::TUNSETIFF(), &mut ifreq) };
191         if ret < 0 && IoError::last_os_error().raw_os_error().unwrap() != libc::EEXIST {
192             return Err(Error::ConfigureTap(IoError::last_os_error()));
193         }
194 
195         let tap = Tap { tap_file, if_name };
196         let vnet_hdr_size = vnet_hdr_len() as i32;
197         tap.set_vnet_hdr_size(vnet_hdr_size)?;
198 
199         Ok(tap)
200     }
201 
202     /// Set the host-side IP address for the tap interface.
203     pub fn set_ip_addr(&self, ip_addr: net::Ipv4Addr) -> Result<()> {
204         let sock = create_inet_socket().map_err(Error::NetUtil)?;
205         let addr = create_sockaddr(ip_addr);
206 
207         let mut ifreq = self.get_ifreq();
208 
209         ifreq.ifr_ifru.ifru_addr = addr;
210 
211         // ioctl is safe. Called with a valid sock fd, and we check the return.
212         let ret =
213             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFADDR as c_ulong, &ifreq) };
214         if ret < 0 {
215             return Err(Error::IoctlError(IoError::last_os_error()));
216         }
217 
218         Ok(())
219     }
220 
221     /// Set mac addr for tap interface.
222     pub fn set_mac_addr(&self, addr: MacAddr) -> Result<()> {
223         // Checking if the mac address already matches the desired one
224         // is useful to avoid making the "set ioctl" in the case where
225         // the VMM is running without the privilege to do that.
226         // In practice this comes from a reboot after the configuration
227         // has been update with the kernel generated address.
228         if self.get_mac_addr()? == addr {
229             return Ok(());
230         }
231 
232         let sock = create_unix_socket().map_err(Error::NetUtil)?;
233 
234         let mut ifreq = self.get_ifreq();
235 
236         // ioctl is safe. Called with a valid sock fd, and we check the return.
237         let ret =
238             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFHWADDR as c_ulong, &ifreq) };
239         if ret < 0 {
240             return Err(Error::IoctlError(IoError::last_os_error()));
241         }
242         // We only access one field of the ifru union, hence this is safe.
243         unsafe {
244             let ifru_hwaddr = &mut ifreq.ifr_ifru.ifru_hwaddr;
245             for (i, v) in addr.get_bytes().iter().enumerate() {
246                 ifru_hwaddr.sa_data[i] = *v as c_uchar;
247             }
248         }
249 
250         // ioctl is safe. Called with a valid sock fd, and we check the return.
251         let ret =
252             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFHWADDR as c_ulong, &ifreq) };
253         if ret < 0 {
254             return Err(Error::IoctlError(IoError::last_os_error()));
255         }
256 
257         Ok(())
258     }
259 
260     /// Get mac addr for tap interface.
261     pub fn get_mac_addr(&self) -> Result<MacAddr> {
262         let sock = create_unix_socket().map_err(Error::NetUtil)?;
263 
264         let ifreq = self.get_ifreq();
265 
266         // ioctl is safe. Called with a valid sock fd, and we check the return.
267         let ret =
268             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFHWADDR as c_ulong, &ifreq) };
269         if ret < 0 {
270             return Err(Error::IoctlError(IoError::last_os_error()));
271         }
272 
273         // We only access one field of the ifru union, hence this is safe.
274         let addr = unsafe {
275             MacAddr::from_bytes(&ifreq.ifr_ifru.ifru_hwaddr.sa_data[0..MAC_ADDR_LEN])
276                 .map_err(Error::MacParsing)?
277         };
278         Ok(addr)
279     }
280 
281     /// Set the netmask for the subnet that the tap interface will exist on.
282     pub fn set_netmask(&self, netmask: net::Ipv4Addr) -> Result<()> {
283         let sock = create_inet_socket().map_err(Error::NetUtil)?;
284         let addr = create_sockaddr(netmask);
285 
286         let mut ifreq = self.get_ifreq();
287 
288         ifreq.ifr_ifru.ifru_addr = addr;
289 
290         // ioctl is safe. Called with a valid sock fd, and we check the return.
291         let ret =
292             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFNETMASK as c_ulong, &ifreq) };
293         if ret < 0 {
294             return Err(Error::IoctlError(IoError::last_os_error()));
295         }
296 
297         Ok(())
298     }
299 
300     pub fn mtu(&self) -> Result<i32> {
301         let sock = create_unix_socket().map_err(Error::NetUtil)?;
302 
303         let ifreq = self.get_ifreq();
304 
305         // ioctl is safe. Called with a valid sock fd, and we check the return.
306         let ret = unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFMTU as c_ulong, &ifreq) };
307         if ret < 0 {
308             return Err(Error::IoctlError(IoError::last_os_error()));
309         }
310 
311         let mtu = unsafe { ifreq.ifr_ifru.ifru_mtu };
312 
313         Ok(mtu)
314     }
315 
316     pub fn set_mtu(&self, mtu: i32) -> Result<()> {
317         let sock = create_unix_socket().map_err(Error::NetUtil)?;
318 
319         let mut ifreq = self.get_ifreq();
320         ifreq.ifr_ifru.ifru_mtu = mtu;
321 
322         // ioctl is safe. Called with a valid sock fd, and we check the return.
323         let ret = unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFMTU as c_ulong, &ifreq) };
324         if ret < 0 {
325             return Err(Error::IoctlError(IoError::last_os_error()));
326         }
327 
328         Ok(())
329     }
330 
331     /// Set the offload flags for the tap interface.
332     pub fn set_offload(&self, flags: c_uint) -> Result<()> {
333         // ioctl is safe. Called with a valid tap fd, and we check the return.
334         let ret =
335             unsafe { ioctl_with_val(&self.tap_file, net_gen::TUNSETOFFLOAD(), flags as c_ulong) };
336         if ret < 0 {
337             return Err(Error::IoctlError(IoError::last_os_error()));
338         }
339 
340         Ok(())
341     }
342 
343     /// Enable the tap interface.
344     pub fn enable(&self) -> Result<()> {
345         let sock = create_unix_socket().map_err(Error::NetUtil)?;
346 
347         let mut ifreq = self.get_ifreq();
348 
349         let ret =
350             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCGIFFLAGS as c_ulong, &ifreq) };
351         if ret < 0 {
352             return Err(Error::IoctlError(IoError::last_os_error()));
353         }
354 
355         // If TAP device is already up don't try and enable it
356         let ifru_flags = unsafe { ifreq.ifr_ifru.ifru_flags };
357         if ifru_flags & net_gen::net_device_flags_IFF_UP as i16
358             == net_gen::net_device_flags_IFF_UP as i16
359         {
360             return Ok(());
361         }
362 
363         ifreq.ifr_ifru.ifru_flags = net_gen::net_device_flags_IFF_UP as i16;
364 
365         // ioctl is safe. Called with a valid sock fd, and we check the return.
366         let ret =
367             unsafe { ioctl_with_ref(&sock, net_gen::sockios::SIOCSIFFLAGS as c_ulong, &ifreq) };
368         if ret < 0 {
369             return Err(Error::IoctlError(IoError::last_os_error()));
370         }
371 
372         Ok(())
373     }
374 
375     /// Set the size of the vnet hdr.
376     pub fn set_vnet_hdr_size(&self, size: c_int) -> Result<()> {
377         // ioctl is safe. Called with a valid tap fd, and we check the return.
378         let ret = unsafe { ioctl_with_ref(&self.tap_file, net_gen::TUNSETVNETHDRSZ(), &size) };
379         if ret < 0 {
380             return Err(Error::IoctlError(IoError::last_os_error()));
381         }
382 
383         Ok(())
384     }
385 
386     fn get_ifreq(&self) -> net_gen::ifreq {
387         let mut ifreq: net_gen::ifreq = Default::default();
388 
389         // This sets the name of the interface, which is the only entry
390         // in a single-field union.
391         unsafe {
392             let ifrn_name = ifreq.ifr_ifrn.ifrn_name.as_mut();
393             let name_slice = &mut ifrn_name[..self.if_name.len()];
394             name_slice.copy_from_slice(&self.if_name);
395         }
396 
397         ifreq
398     }
399 
400     pub fn get_if_name(&self) -> Vec<u8> {
401         self.if_name.clone()
402     }
403 }
404 
405 impl Read for Tap {
406     fn read(&mut self, buf: &mut [u8]) -> IoResult<usize> {
407         self.tap_file.read(buf)
408     }
409 }
410 
411 impl Write for Tap {
412     fn write(&mut self, buf: &[u8]) -> IoResult<usize> {
413         self.tap_file.write(buf)
414     }
415 
416     fn flush(&mut self) -> IoResult<()> {
417         Ok(())
418     }
419 }
420 
421 impl AsRawFd for Tap {
422     fn as_raw_fd(&self) -> RawFd {
423         self.tap_file.as_raw_fd()
424     }
425 }
426 
427 #[cfg(test)]
428 mod tests {
429     use std::net::Ipv4Addr;
430     use std::str;
431     use std::sync::{mpsc, Mutex};
432     use std::thread;
433     use std::time::Duration;
434 
435     use once_cell::sync::Lazy;
436 
437     use pnet::packet::ethernet::{EtherTypes, EthernetPacket, MutableEthernetPacket};
438     use pnet::packet::ip::IpNextHeaderProtocols;
439     use pnet::packet::ipv4::{Ipv4Packet, MutableIpv4Packet};
440     use pnet::packet::udp::{MutableUdpPacket, UdpPacket};
441     use pnet::packet::{MutablePacket, Packet};
442     use pnet::util::MacAddr;
443     use pnet_datalink::Channel::Ethernet;
444     use pnet_datalink::{DataLinkReceiver, DataLinkSender, NetworkInterface};
445 
446     use super::*;
447 
448     static DATA_STRING: &str = "test for tap";
449     static SUBNET_MASK: &str = "255.255.255.0";
450 
451     // We needed to have a mutex as a global variable, so we used once_cell for testing. The main
452     // potential problem, caused by tests being run in parallel by cargo, is creating different
453     // TAPs and trying to associate the same address, so we hide the IP address &str behind this
454     // mutex, more as a convention to remember to lock it at the very beginning of each function
455     // susceptible to this issue. Another variant is to use a different IP address per function,
456     // but we must remember to pick an unique one each time.
457     static TAP_IP_LOCK: Lazy<Mutex<&'static str>> = Lazy::new(|| Mutex::new("192.168.241.1"));
458 
459     // Describes the outcomes we are currently interested in when parsing a packet (we use
460     // an UDP packet for testing).
461     struct ParsedPkt<'a> {
462         eth: EthernetPacket<'a>,
463         ipv4: Option<Ipv4Packet<'a>>,
464         udp: Option<UdpPacket<'a>>,
465     }
466 
467     impl<'a> ParsedPkt<'a> {
468         fn new(buf: &'a [u8]) -> Self {
469             let eth = EthernetPacket::new(buf).unwrap();
470             let mut ipv4 = None;
471             let mut udp = None;
472 
473             if eth.get_ethertype() == EtherTypes::Ipv4 {
474                 let ipv4_start = 14;
475                 ipv4 = Some(Ipv4Packet::new(&buf[ipv4_start..]).unwrap());
476 
477                 // Hiding the old ipv4 variable for the rest of this block.
478                 let ipv4 = Ipv4Packet::new(eth.payload()).unwrap();
479 
480                 if ipv4.get_next_level_protocol() == IpNextHeaderProtocols::Udp {
481                     // The value in header_length indicates the number of 32 bit words
482                     // that make up the header, not the actual length in bytes.
483                     let udp_start = ipv4_start + ipv4.get_header_length() as usize * 4;
484                     udp = Some(UdpPacket::new(&buf[udp_start..]).unwrap());
485                 }
486             }
487 
488             ParsedPkt { eth, ipv4, udp }
489         }
490 
491         fn print(&self) {
492             print!(
493                 "{} {} {} ",
494                 self.eth.get_source(),
495                 self.eth.get_destination(),
496                 self.eth.get_ethertype()
497             );
498             if let Some(ref ipv4) = self.ipv4 {
499                 print!(
500                     "{} {} {} ",
501                     ipv4.get_source(),
502                     ipv4.get_destination(),
503                     ipv4.get_next_level_protocol()
504                 );
505             }
506             if let Some(ref udp) = self.udp {
507                 print!(
508                     "{} {} {}",
509                     udp.get_source(),
510                     udp.get_destination(),
511                     str::from_utf8(udp.payload()).unwrap()
512                 );
513             }
514             println!();
515         }
516     }
517 
518     fn tap_name_to_string(tap: &Tap) -> String {
519         let null_pos = tap.if_name.iter().position(|x| *x == 0).unwrap();
520         str::from_utf8(&tap.if_name[..null_pos])
521             .unwrap()
522             .to_string()
523     }
524 
525     // Given a buffer of appropriate size, this fills in the relevant fields based on the
526     // provided information. Payload refers to the UDP payload.
527     fn pnet_build_packet(buf: &mut [u8], dst_mac: MacAddr, payload: &[u8]) {
528         let mut eth = MutableEthernetPacket::new(buf).unwrap();
529         eth.set_source(MacAddr::new(0x06, 0, 0, 0, 0, 0));
530         eth.set_destination(dst_mac);
531         eth.set_ethertype(EtherTypes::Ipv4);
532 
533         let mut ipv4 = MutableIpv4Packet::new(eth.payload_mut()).unwrap();
534         ipv4.set_version(4);
535         ipv4.set_header_length(5);
536         ipv4.set_total_length(20 + 8 + payload.len() as u16);
537         ipv4.set_ttl(200);
538         ipv4.set_next_level_protocol(IpNextHeaderProtocols::Udp);
539         ipv4.set_source(Ipv4Addr::new(192, 168, 241, 1));
540         ipv4.set_destination(Ipv4Addr::new(192, 168, 241, 2));
541 
542         let mut udp = MutableUdpPacket::new(ipv4.payload_mut()).unwrap();
543         udp.set_source(1000);
544         udp.set_destination(1001);
545         udp.set_length(8 + payload.len() as u16);
546         udp.set_payload(payload);
547     }
548 
549     // Sends a test packet on the interface named "ifname".
550     fn pnet_send_packet(ifname: String) {
551         let payload = DATA_STRING.as_bytes();
552 
553         // eth hdr + ip hdr + udp hdr + payload len
554         let buf_size = 14 + 20 + 8 + payload.len();
555 
556         let (mac, mut tx, _) = pnet_get_mac_tx_rx(ifname);
557 
558         let res = tx.build_and_send(1, buf_size, &mut |buf| {
559             pnet_build_packet(buf, mac, payload);
560         });
561         // Make sure build_and_send() -> Option<io::Result<()>> succeeds.
562         res.unwrap().unwrap();
563     }
564 
565     // For a given interface name, this returns a tuple that contains the MAC address of the
566     // interface, an object that can be used to send Ethernet frames, and a receiver of
567     // Ethernet frames arriving at the specified interface.
568     fn pnet_get_mac_tx_rx(
569         ifname: String,
570     ) -> (MacAddr, Box<dyn DataLinkSender>, Box<dyn DataLinkReceiver>) {
571         let interface_name_matches = |iface: &NetworkInterface| iface.name == ifname;
572 
573         // Find the network interface with the provided name.
574         let interfaces = pnet_datalink::interfaces();
575         let interface = interfaces.into_iter().find(interface_name_matches).unwrap();
576 
577         if let Ok(Ethernet(tx, rx)) = pnet_datalink::channel(&interface, Default::default()) {
578             (interface.mac.unwrap(), tx, rx)
579         } else {
580             panic!("datalink channel error or unhandled channel type");
581         }
582     }
583 
584     #[test]
585     fn test_tap_create() {
586         let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
587 
588         let t = Tap::new(1).unwrap();
589         println!("created tap: {:?}", t);
590     }
591 
592     #[test]
593     fn test_tap_from_fd() {
594         let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
595 
596         let orig_tap = Tap::new(1).unwrap();
597         let fd = orig_tap.as_raw_fd();
598         let _new_tap = Tap::from_tap_fd(fd, 1).unwrap();
599     }
600 
601     #[test]
602     fn test_tap_configure() {
603         // This should be the first thing to be called inside the function, so everything else
604         // is torn down by the time the mutex is automatically released. Also, we should
605         // explicitly bind the MutexGuard to a variable via let, the make sure it lives until
606         // the end of the function.
607         let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
608 
609         let tap = Tap::new(1).unwrap();
610         let ip_addr: net::Ipv4Addr = (*tap_ip_guard).parse().unwrap();
611         let netmask: net::Ipv4Addr = SUBNET_MASK.parse().unwrap();
612 
613         let ret = tap.set_ip_addr(ip_addr);
614         assert!(ret.is_ok());
615         let ret = tap.set_netmask(netmask);
616         assert!(ret.is_ok());
617     }
618 
619     #[test]
620     fn test_set_options() {
621         let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
622 
623         // This line will fail to provide an initialized FD if the test is not run as root.
624         let tap = Tap::new(1).unwrap();
625         tap.set_vnet_hdr_size(16).unwrap();
626         tap.set_offload(0).unwrap();
627     }
628 
629     #[test]
630     fn test_tap_enable() {
631         let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
632 
633         let tap = Tap::new(1).unwrap();
634         let ret = tap.enable();
635         assert!(ret.is_ok());
636     }
637 
638     #[test]
639     fn test_raw_fd() {
640         let _tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
641 
642         let tap = Tap::new(1).unwrap();
643         assert_eq!(tap.as_raw_fd(), tap.tap_file.as_raw_fd());
644     }
645 
646     #[test]
647     fn test_read() {
648         let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
649 
650         let mut tap = Tap::new(1).unwrap();
651         tap.set_ip_addr((*tap_ip_guard).parse().unwrap()).unwrap();
652         tap.set_netmask(SUBNET_MASK.parse().unwrap()).unwrap();
653         tap.enable().unwrap();
654 
655         // Send a packet to the interface. We expect to be able to receive it on the associated fd.
656         pnet_send_packet(tap_name_to_string(&tap));
657 
658         let mut buf = [0u8; 4096];
659 
660         let mut found_packet_sz = None;
661 
662         // In theory, this could actually loop forever if something keeps sending data through the
663         // tap interface, but it's highly unlikely.
664         while found_packet_sz.is_none() {
665             let result = tap.read(&mut buf);
666             assert!(result.is_ok());
667 
668             let size = result.unwrap();
669 
670             // We skip the first 10 bytes because the IFF_VNET_HDR flag is set when the interface
671             // is created, and the legacy header is 10 bytes long without a certain flag which
672             // is not set in Tap::new().
673             let eth_bytes = &buf[10..size];
674 
675             let packet = EthernetPacket::new(eth_bytes).unwrap();
676             if packet.get_ethertype() != EtherTypes::Ipv4 {
677                 // not an IPv4 packet
678                 continue;
679             }
680 
681             let ipv4_bytes = &eth_bytes[14..];
682             let packet = Ipv4Packet::new(ipv4_bytes).unwrap();
683 
684             // Our packet should carry an UDP payload, and not contain IP options.
685             if packet.get_next_level_protocol() != IpNextHeaderProtocols::Udp
686                 && packet.get_header_length() != 5
687             {
688                 continue;
689             }
690 
691             let udp_bytes = &ipv4_bytes[20..];
692 
693             let udp_len = UdpPacket::new(udp_bytes).unwrap().get_length() as usize;
694 
695             // Skip the header bytes.
696             let inner_string = str::from_utf8(&udp_bytes[8..udp_len]).unwrap();
697 
698             if inner_string.eq(DATA_STRING) {
699                 found_packet_sz = Some(size);
700                 break;
701             }
702         }
703 
704         assert!(found_packet_sz.is_some());
705     }
706 
707     #[test]
708     fn test_write() {
709         let tap_ip_guard = TAP_IP_LOCK.lock().unwrap();
710 
711         let mut tap = Tap::new(1).unwrap();
712         tap.set_ip_addr((*tap_ip_guard).parse().unwrap()).unwrap();
713         tap.set_netmask(SUBNET_MASK.parse().unwrap()).unwrap();
714         tap.enable().unwrap();
715 
716         let (mac, _, mut rx) = pnet_get_mac_tx_rx(tap_name_to_string(&tap));
717 
718         let payload = DATA_STRING.as_bytes();
719 
720         // vnet hdr + eth hdr + ip hdr + udp hdr + payload len
721         let buf_size = 10 + 14 + 20 + 8 + payload.len();
722 
723         let mut buf = vec![0u8; buf_size];
724         // leave the vnet hdr as is
725         pnet_build_packet(&mut buf[10..], mac, payload);
726 
727         assert!(tap.write(&buf[..]).is_ok());
728         assert!(tap.flush().is_ok());
729 
730         let (channel_tx, channel_rx) = mpsc::channel();
731 
732         // We use a separate thread to wait for the test packet because the API exposed by pnet is
733         // blocking. This thread will be killed when the main thread exits.
734         let _handle = thread::spawn(move || loop {
735             let buf = rx.next().unwrap();
736             let p = ParsedPkt::new(buf);
737             p.print();
738 
739             if let Some(ref udp) = p.udp {
740                 if payload == udp.payload() {
741                     channel_tx.send(true).unwrap();
742                     break;
743                 }
744             }
745         });
746 
747         // We wait for at most SLEEP_MILLIS * SLEEP_ITERS milliseconds for the reception of the
748         // test packet to be detected.
749         static SLEEP_MILLIS: u64 = 500;
750         static SLEEP_ITERS: u32 = 6;
751 
752         let mut found_test_packet = false;
753 
754         for _ in 0..SLEEP_ITERS {
755             thread::sleep(Duration::from_millis(SLEEP_MILLIS));
756             if let Ok(true) = channel_rx.try_recv() {
757                 found_test_packet = true;
758                 break;
759             }
760         }
761 
762         assert!(found_test_packet);
763     }
764 }
765