1 // 2 // Copyright © 2020 Intel Corporation 3 // 4 // SPDX-License-Identifier: Apache-2.0 5 // 6 7 use crate::arch::emulator::{EmulationError, EmulationResult, PlatformEmulator, PlatformError}; 8 use crate::arch::x86::emulator::instructions::*; 9 use crate::arch::x86::regs::{CR0_PE, EFER_LMA}; 10 use crate::arch::x86::{ 11 segment_type_expand_down, segment_type_ro, Exception, SegmentRegister, SpecialRegisters, 12 StandardRegisters, 13 }; 14 use anyhow::Context; 15 use iced_x86::*; 16 17 #[macro_use] 18 mod instructions; 19 20 /// x86 CPU modes 21 #[derive(Debug, PartialEq, Eq)] 22 pub enum CpuMode { 23 /// Real mode 24 Real, 25 26 /// Virtual 8086 mode 27 Virtual8086, 28 29 /// 16-bit protected mode 30 Protected16, 31 32 /// 32-bit protected mode 33 Protected, 34 35 /// 64-bit mode, a.k.a. long mode 36 Long, 37 } 38 39 /// CpuStateManager manages an x86 CPU state. 40 /// 41 /// Instruction emulation handlers get a mutable reference to 42 /// a `CpuStateManager` implementation, representing the current state of the 43 /// CPU they have to emulate an instruction stream against. Usually those 44 /// handlers will modify the CPU state by modifying `CpuState` and it is up to 45 /// the handler caller to commit those changes back by invoking a 46 /// `PlatformEmulator` implementation `set_state()` method. 47 /// 48 pub trait CpuStateManager: Clone { 49 /// Reads a CPU register. 50 /// 51 /// # Arguments 52 /// 53 /// * `reg` - A general purpose, control or debug register. 54 fn read_reg(&self, reg: Register) -> Result<u64, PlatformError>; 55 56 /// Write to a CPU register. 57 /// 58 /// # Arguments 59 /// 60 /// * `reg` - A general purpose, control or debug register. 61 /// * `val` - The value to load. 62 fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError>; 63 64 /// Reads a segment register. 65 /// 66 /// # Arguments 67 /// 68 /// * `reg` - A segment register. 69 fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError>; 70 71 /// Write to a segment register. 72 /// 73 /// # Arguments 74 /// 75 /// * `reg` - A segment register. 76 /// * `segment_reg` - The segment register value to load. 77 fn write_segment( 78 &mut self, 79 reg: Register, 80 segment_reg: SegmentRegister, 81 ) -> Result<(), PlatformError>; 82 83 /// Get the CPU instruction pointer. 84 fn ip(&self) -> u64; 85 86 /// Set the CPU instruction pointer. 87 /// 88 /// # Arguments 89 /// 90 /// * `ip` - The CPU instruction pointer. 91 fn set_ip(&mut self, ip: u64); 92 93 /// Get the CPU Extended Feature Enable Register. 94 fn efer(&self) -> u64; 95 96 /// Set the CPU Extended Feature Enable Register. 97 /// 98 /// # Arguments 99 /// 100 /// * `efer` - The CPU EFER value. 101 fn set_efer(&mut self, efer: u64); 102 103 /// Get the CPU flags. 104 fn flags(&self) -> u64; 105 106 /// Set the CPU flags. 107 /// 108 /// # Arguments 109 /// 110 /// * `flags` - The CPU flags 111 fn set_flags(&mut self, flags: u64); 112 113 /// Get the CPU mode. 114 fn mode(&self) -> Result<CpuMode, PlatformError>; 115 116 /// Translate a logical (segmented) address into a linear (virtual) one. 117 /// 118 /// # Arguments 119 /// 120 /// * `segment` - Which segment to use for linearization 121 /// * `logical_addr` - The logical address to be translated 122 fn linearize( 123 &self, 124 segment: Register, 125 logical_addr: u64, 126 write: bool, 127 ) -> Result<u64, PlatformError> { 128 let segment_register = self.read_segment(segment)?; 129 let mode = self.mode()?; 130 131 match mode { 132 CpuMode::Long => { 133 // TODO Check that we got a canonical address. 134 Ok(logical_addr 135 .checked_add(segment_register.base) 136 .ok_or_else(|| { 137 PlatformError::InvalidAddress(anyhow!( 138 "Logical address {:#x} cannot be linearized with segment {:#x?}", 139 logical_addr, 140 segment_register 141 )) 142 })?) 143 } 144 145 CpuMode::Protected | CpuMode::Real => { 146 let segment_type = segment_register.segment_type(); 147 148 // Must not write to a read-only segment. 149 if segment_type_ro(segment_type) && write { 150 return Err(PlatformError::InvalidAddress(anyhow!( 151 "Cannot write to a read-only segment" 152 ))); 153 } 154 155 let logical_addr = logical_addr & 0xffff_ffffu64; 156 let mut segment_limit: u32 = if segment_register.granularity() != 0 { 157 (segment_register.limit << 12) | 0xfff 158 } else { 159 segment_register.limit 160 }; 161 162 // Expand-down segment 163 if segment_type_expand_down(segment_type) { 164 if logical_addr >= segment_limit.into() { 165 return Err(PlatformError::InvalidAddress(anyhow!( 166 "{:#x} is off limits {:#x} (expand down)", 167 logical_addr, 168 segment_limit 169 ))); 170 } 171 172 if segment_register.db() != 0 { 173 segment_limit = 0xffffffff 174 } else { 175 segment_limit = 0xffff 176 } 177 } 178 179 if logical_addr > segment_limit.into() { 180 return Err(PlatformError::InvalidAddress(anyhow!( 181 "{:#x} is off limits {:#x}", 182 logical_addr, 183 segment_limit 184 ))); 185 } 186 187 Ok(logical_addr + segment_register.base) 188 } 189 190 _ => Err(PlatformError::UnsupportedCpuMode(anyhow!("{:?}", mode))), 191 } 192 } 193 } 194 195 const REGISTER_MASK_64: u64 = 0xffff_ffff_ffff_ffffu64; 196 const REGISTER_MASK_32: u64 = 0xffff_ffffu64; 197 const REGISTER_MASK_16: u64 = 0xffffu64; 198 const REGISTER_MASK_8: u64 = 0xffu64; 199 200 macro_rules! set_reg { 201 ($reg:expr, $mask:expr, $value:expr) => { 202 $reg = ($reg & $mask) | $value 203 }; 204 } 205 206 #[derive(Clone, Default, Debug)] 207 /// A minimal, emulated CPU state. 208 /// 209 /// Hypervisors needing x86 emulation can choose to either use their own 210 /// CPU state structures and implement the CpuStateManager interface for it, 211 /// or use `EmulatorCpuState`. The latter implies creating a new state 212 /// `EmulatorCpuState` instance for each platform `cpu_state()` call, which 213 /// might be less efficient. 214 pub struct EmulatorCpuState { 215 pub regs: StandardRegisters, 216 pub sregs: SpecialRegisters, 217 } 218 219 impl CpuStateManager for EmulatorCpuState { 220 fn read_reg(&self, reg: Register) -> Result<u64, PlatformError> { 221 let mut reg_value: u64 = match reg { 222 Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => { 223 self.regs.rax 224 } 225 Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => { 226 self.regs.rbx 227 } 228 Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => { 229 self.regs.rcx 230 } 231 Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => { 232 self.regs.rdx 233 } 234 Register::RSP | Register::ESP | Register::SP => self.regs.rsp, 235 Register::RBP | Register::EBP | Register::BP => self.regs.rbp, 236 Register::RSI | Register::ESI | Register::SI | Register::SIL => self.regs.rsi, 237 Register::RDI | Register::EDI | Register::DI | Register::DIL => self.regs.rdi, 238 Register::R8 | Register::R8D | Register::R8W | Register::R8L => self.regs.r8, 239 Register::R9 | Register::R9D | Register::R9W | Register::R9L => self.regs.r9, 240 Register::R10 | Register::R10D | Register::R10W | Register::R10L => self.regs.r10, 241 Register::R11 | Register::R11D | Register::R11W | Register::R11L => self.regs.r11, 242 Register::R12 | Register::R12D | Register::R12W | Register::R12L => self.regs.r12, 243 Register::R13 | Register::R13D | Register::R13W | Register::R13L => self.regs.r13, 244 Register::R14 | Register::R14D | Register::R14W | Register::R14L => self.regs.r14, 245 Register::R15 | Register::R15D | Register::R15W | Register::R15L => self.regs.r15, 246 Register::CR0 => self.sregs.cr0, 247 Register::CR2 => self.sregs.cr2, 248 Register::CR3 => self.sregs.cr3, 249 Register::CR4 => self.sregs.cr4, 250 Register::CR8 => self.sregs.cr8, 251 252 r => { 253 return Err(PlatformError::InvalidRegister(anyhow!( 254 "read_reg invalid GPR {:?}", 255 r 256 ))) 257 } 258 }; 259 260 reg_value = if reg.is_gpr64() || reg.is_cr() { 261 reg_value 262 } else if reg.is_gpr32() { 263 reg_value & REGISTER_MASK_32 264 } else if reg.is_gpr16() { 265 reg_value & REGISTER_MASK_16 266 } else if reg.is_gpr8() { 267 if reg == Register::AH 268 || reg == Register::BH 269 || reg == Register::CH 270 || reg == Register::DH 271 { 272 (reg_value >> 8) & REGISTER_MASK_8 273 } else { 274 reg_value & REGISTER_MASK_8 275 } 276 } else { 277 return Err(PlatformError::InvalidRegister(anyhow!( 278 "read_reg invalid GPR {:?}", 279 reg 280 ))); 281 }; 282 283 debug!("Register read: {:#x} from {:?}", reg_value, reg); 284 285 Ok(reg_value) 286 } 287 288 fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError> { 289 debug!("Register write: {:#x} to {:?}", val, reg); 290 291 // SDM Vol 1 - 3.4.1.1 292 // 293 // 8-bit and 16-bit operands generate an 8-bit or 16-bit result. 294 // The upper 56 bits or 48 bits (respectively) of the destination 295 // general-purpose register are not modified by the operation. 296 let (reg_value, mask): (u64, u64) = if reg.is_gpr64() || reg.is_cr() { 297 (val, !REGISTER_MASK_64) 298 } else if reg.is_gpr32() { 299 (val & REGISTER_MASK_32, !REGISTER_MASK_64) 300 } else if reg.is_gpr16() { 301 (val & REGISTER_MASK_16, !REGISTER_MASK_16) 302 } else if reg.is_gpr8() { 303 if reg == Register::AH 304 || reg == Register::BH 305 || reg == Register::CH 306 || reg == Register::DH 307 { 308 ((val & REGISTER_MASK_8) << 8, !(REGISTER_MASK_8 << 8)) 309 } else { 310 (val & REGISTER_MASK_8, !REGISTER_MASK_8) 311 } 312 } else { 313 return Err(PlatformError::InvalidRegister(anyhow!( 314 "write_reg invalid register {:?}", 315 reg 316 ))); 317 }; 318 319 match reg { 320 Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => { 321 set_reg!(self.regs.rax, mask, reg_value); 322 } 323 Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => { 324 set_reg!(self.regs.rbx, mask, reg_value); 325 } 326 Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => { 327 set_reg!(self.regs.rcx, mask, reg_value); 328 } 329 Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => { 330 set_reg!(self.regs.rdx, mask, reg_value); 331 } 332 Register::RSP | Register::ESP | Register::SP => { 333 set_reg!(self.regs.rsp, mask, reg_value) 334 } 335 Register::RBP | Register::EBP | Register::BP => { 336 set_reg!(self.regs.rbp, mask, reg_value) 337 } 338 Register::RSI | Register::ESI | Register::SI | Register::SIL => { 339 set_reg!(self.regs.rsi, mask, reg_value) 340 } 341 Register::RDI | Register::EDI | Register::DI | Register::DIL => { 342 set_reg!(self.regs.rdi, mask, reg_value) 343 } 344 Register::R8 | Register::R8D | Register::R8W | Register::R8L => { 345 set_reg!(self.regs.r8, mask, reg_value) 346 } 347 Register::R9 | Register::R9D | Register::R9W | Register::R9L => { 348 set_reg!(self.regs.r9, mask, reg_value) 349 } 350 Register::R10 | Register::R10D | Register::R10W | Register::R10L => { 351 set_reg!(self.regs.r10, mask, reg_value) 352 } 353 Register::R11 | Register::R11D | Register::R11W | Register::R11L => { 354 set_reg!(self.regs.r11, mask, reg_value) 355 } 356 Register::R12 | Register::R12D | Register::R12W | Register::R12L => { 357 set_reg!(self.regs.r12, mask, reg_value) 358 } 359 Register::R13 | Register::R13D | Register::R13W | Register::R13L => { 360 set_reg!(self.regs.r13, mask, reg_value) 361 } 362 Register::R14 | Register::R14D | Register::R14W | Register::R14L => { 363 set_reg!(self.regs.r14, mask, reg_value) 364 } 365 Register::R15 | Register::R15D | Register::R15W | Register::R15L => { 366 set_reg!(self.regs.r15, mask, reg_value) 367 } 368 Register::CR0 => set_reg!(self.sregs.cr0, mask, reg_value), 369 Register::CR2 => set_reg!(self.sregs.cr2, mask, reg_value), 370 Register::CR3 => set_reg!(self.sregs.cr3, mask, reg_value), 371 Register::CR4 => set_reg!(self.sregs.cr4, mask, reg_value), 372 Register::CR8 => set_reg!(self.sregs.cr8, mask, reg_value), 373 _ => { 374 return Err(PlatformError::InvalidRegister(anyhow!( 375 "write_reg invalid register {:?}", 376 reg 377 ))) 378 } 379 } 380 381 Ok(()) 382 } 383 384 fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError> { 385 if !reg.is_segment_register() { 386 return Err(PlatformError::InvalidRegister(anyhow!( 387 "read_segment {:?} is not a segment register", 388 reg 389 ))); 390 } 391 392 match reg { 393 Register::CS => Ok(self.sregs.cs), 394 Register::DS => Ok(self.sregs.ds), 395 Register::ES => Ok(self.sregs.es), 396 Register::FS => Ok(self.sregs.fs), 397 Register::GS => Ok(self.sregs.gs), 398 Register::SS => Ok(self.sregs.ss), 399 r => Err(PlatformError::InvalidRegister(anyhow!( 400 "read_segment invalid register {:?}", 401 r 402 ))), 403 } 404 } 405 406 fn write_segment( 407 &mut self, 408 reg: Register, 409 segment_register: SegmentRegister, 410 ) -> Result<(), PlatformError> { 411 if !reg.is_segment_register() { 412 return Err(PlatformError::InvalidRegister(anyhow!("{:?}", reg))); 413 } 414 415 match reg { 416 Register::CS => self.sregs.cs = segment_register, 417 Register::DS => self.sregs.ds = segment_register, 418 Register::ES => self.sregs.es = segment_register, 419 Register::FS => self.sregs.fs = segment_register, 420 Register::GS => self.sregs.gs = segment_register, 421 Register::SS => self.sregs.ss = segment_register, 422 r => return Err(PlatformError::InvalidRegister(anyhow!("{:?}", r))), 423 } 424 425 Ok(()) 426 } 427 428 fn ip(&self) -> u64 { 429 self.regs.rip 430 } 431 432 fn set_ip(&mut self, ip: u64) { 433 self.regs.rip = ip; 434 } 435 436 fn efer(&self) -> u64 { 437 self.sregs.efer 438 } 439 440 fn set_efer(&mut self, efer: u64) { 441 self.sregs.efer = efer 442 } 443 444 fn flags(&self) -> u64 { 445 self.regs.rflags 446 } 447 448 fn set_flags(&mut self, flags: u64) { 449 self.regs.rflags = flags; 450 } 451 452 fn mode(&self) -> Result<CpuMode, PlatformError> { 453 let efer = self.efer(); 454 let cr0 = self.read_reg(Register::CR0)?; 455 let mut mode = CpuMode::Real; 456 457 if (cr0 & CR0_PE) == CR0_PE { 458 mode = CpuMode::Protected; 459 } 460 461 if (efer & EFER_LMA) == EFER_LMA { 462 if mode != CpuMode::Protected { 463 return Err(PlatformError::InvalidState(anyhow!( 464 "Protection must be enabled in long mode" 465 ))); 466 } 467 468 mode = CpuMode::Long; 469 } 470 471 Ok(mode) 472 } 473 } 474 475 pub struct Emulator<'a, T: CpuStateManager> { 476 platform: &'a mut dyn PlatformEmulator<CpuState = T>, 477 } 478 479 // Reduce repetition, see its invocation in get_handler(). 480 macro_rules! gen_handler_match { 481 ($value: ident, $( ($module:ident, $code:ident) ),* ) => { 482 match $value { 483 $( 484 Code::$code => Some(Box::new($module::$code)), 485 )* 486 _ => None, 487 } 488 }; 489 } 490 491 impl<'a, T: CpuStateManager> Emulator<'a, T> { 492 pub fn new(platform: &mut dyn PlatformEmulator<CpuState = T>) -> Emulator<T> { 493 Emulator { platform } 494 } 495 496 fn get_handler(code: Code) -> Option<Box<dyn InstructionHandler<T>>> { 497 let handler: Option<Box<dyn InstructionHandler<T>>> = gen_handler_match!( 498 code, 499 // CMP 500 (cmp, Cmp_rm32_r32), 501 (cmp, Cmp_rm8_r8), 502 (cmp, Cmp_rm32_imm8), 503 (cmp, Cmp_rm64_r64), 504 // MOV 505 (mov, Mov_r8_rm8), 506 (mov, Mov_r8_imm8), 507 (mov, Mov_r16_imm16), 508 (mov, Mov_r16_rm16), 509 (mov, Mov_r32_imm32), 510 (mov, Mov_r32_rm32), 511 (mov, Mov_r64_imm64), 512 (mov, Mov_r64_rm64), 513 (mov, Mov_rm8_imm8), 514 (mov, Mov_rm8_r8), 515 (mov, Mov_rm16_imm16), 516 (mov, Mov_rm16_r16), 517 (mov, Mov_rm32_imm32), 518 (mov, Mov_rm32_r32), 519 (mov, Mov_rm64_imm32), 520 (mov, Mov_rm64_r64), 521 // MOVZX 522 (mov, Movzx_r16_rm8), 523 (mov, Movzx_r32_rm8), 524 (mov, Movzx_r64_rm8), 525 (mov, Movzx_r32_rm16), 526 (mov, Movzx_r64_rm16), 527 // MOV MOFFS 528 (mov, Mov_moffs16_AX), 529 (mov, Mov_AX_moffs16), 530 (mov, Mov_moffs32_EAX), 531 (mov, Mov_EAX_moffs32), 532 (mov, Mov_moffs64_RAX), 533 (mov, Mov_RAX_moffs64), 534 // MOVS 535 (movs, Movsd_m32_m32), 536 (movs, Movsw_m16_m16), 537 (movs, Movsb_m8_m8), 538 // OR 539 (or, Or_rm8_r8), 540 // STOS 541 (stos, Stosb_m8_AL), 542 (stos, Stosw_m16_AX), 543 (stos, Stosd_m32_EAX), 544 (stos, Stosq_m64_RAX) 545 ); 546 547 handler 548 } 549 550 fn emulate_insn_stream( 551 &mut self, 552 cpu_id: usize, 553 insn_stream: &[u8], 554 num_insn: Option<usize>, 555 ) -> EmulationResult<T, Exception> { 556 let mut state = self 557 .platform 558 .cpu_state(cpu_id) 559 .map_err(EmulationError::PlatformEmulationError)?; 560 let mut decoder = Decoder::new(64, insn_stream, DecoderOptions::NONE); 561 let mut insn = Instruction::default(); 562 let mut num_insn_emulated: usize = 0; 563 let mut fetched_insn_stream: [u8; 16] = [0; 16]; 564 let mut last_decoded_ip: u64 = state.ip(); 565 let mut stop_emulation: bool = false; 566 567 decoder.set_ip(state.ip()); 568 569 while !stop_emulation { 570 decoder.decode_out(&mut insn); 571 572 if decoder.last_error() == DecoderError::NoMoreBytes { 573 // The decoder is missing some bytes to decode the current 574 // instruction, for example because the instruction stream 575 // crosses a page boundary. 576 // We fetch 16 more bytes from the instruction segment, 577 // decode and emulate the failing instruction and terminate 578 // the emulation loop. 579 debug!( 580 "Fetching {} bytes from {:#x}", 581 fetched_insn_stream.len(), 582 last_decoded_ip 583 ); 584 585 // fetched_insn_stream is 16 bytes long, enough to contain 586 // any complete x86 instruction. 587 self.platform 588 .fetch(last_decoded_ip, &mut fetched_insn_stream) 589 .map_err(EmulationError::PlatformEmulationError)?; 590 591 debug!("Fetched {:x?}", fetched_insn_stream); 592 593 // Once we have the new stream, we must create a new decoder 594 // and emulate one last instruction from the last decoded IP. 595 decoder = Decoder::new(64, &fetched_insn_stream, DecoderOptions::NONE); 596 decoder.set_ip(last_decoded_ip); 597 decoder.decode_out(&mut insn); 598 if decoder.last_error() != DecoderError::None { 599 return Err(EmulationError::InstructionFetchingError(anyhow!( 600 "{:#x?}", 601 insn_format!(insn) 602 ))); 603 } 604 } 605 606 // Emulate the decoded instruction 607 Emulator::get_handler(insn.code()) 608 .ok_or_else(|| { 609 EmulationError::UnsupportedInstruction(anyhow!( 610 "{:#x?} {:?} {:?}", 611 insn_format!(insn), 612 insn.mnemonic(), 613 insn.code() 614 )) 615 })? 616 .emulate(&insn, &mut state, self.platform) 617 .context(anyhow!("Failed to emulate {:#x?}", insn_format!(insn)))?; 618 619 last_decoded_ip = decoder.ip(); 620 num_insn_emulated += 1; 621 622 if let Some(num_insn) = num_insn { 623 if num_insn_emulated >= num_insn { 624 // Exit the decoding loop, do not decode the next instruction. 625 stop_emulation = true; 626 } 627 } 628 } 629 630 state.set_ip(decoder.ip()); 631 Ok(state) 632 } 633 634 /// Emulate all instructions from the instructions stream. 635 pub fn emulate(&mut self, cpu_id: usize, insn_stream: &[u8]) -> EmulationResult<T, Exception> { 636 self.emulate_insn_stream(cpu_id, insn_stream, None) 637 } 638 639 /// Only emulate the first instruction from the stream. 640 /// 641 /// This is useful for cases where we get readahead instruction stream 642 /// but implicitly must only emulate the first instruction, and then return 643 /// to the guest. 644 pub fn emulate_first_insn( 645 &mut self, 646 cpu_id: usize, 647 insn_stream: &[u8], 648 ) -> EmulationResult<T, Exception> { 649 self.emulate_insn_stream(cpu_id, insn_stream, Some(1)) 650 } 651 } 652 653 #[cfg(test)] 654 mod mock_vmm { 655 use super::*; 656 use crate::arch::x86::emulator::EmulatorCpuState as CpuState; 657 use crate::arch::x86::gdt::{gdt_entry, segment_from_gdt}; 658 use std::sync::{Arc, Mutex}; 659 660 #[derive(Debug, Clone)] 661 pub struct MockVmm { 662 memory: Vec<u8>, 663 state: Arc<Mutex<CpuState>>, 664 } 665 666 pub type MockResult = Result<(), EmulationError<Exception>>; 667 668 impl MockVmm { 669 pub fn new(ip: u64, regs: Vec<(Register, u64)>, memory: Option<(u64, &[u8])>) -> MockVmm { 670 let _ = env_logger::try_init(); 671 let cs_reg = segment_from_gdt(gdt_entry(0xc09b, 0, 0xffffffff), 1); 672 let ds_reg = segment_from_gdt(gdt_entry(0xc093, 0, 0xffffffff), 2); 673 let es_reg = segment_from_gdt(gdt_entry(0xc093, 0, 0xffffffff), 3); 674 let mut initial_state = CpuState::default(); 675 initial_state.set_ip(ip); 676 initial_state.write_segment(Register::CS, cs_reg).unwrap(); 677 initial_state.write_segment(Register::DS, ds_reg).unwrap(); 678 initial_state.write_segment(Register::ES, es_reg).unwrap(); 679 for (reg, value) in regs { 680 initial_state.write_reg(reg, value).unwrap(); 681 } 682 683 let mut vmm = MockVmm { 684 memory: vec![0; 8192], 685 state: Arc::new(Mutex::new(initial_state)), 686 }; 687 688 if let Some(mem) = memory { 689 vmm.write_memory(mem.0, mem.1).unwrap(); 690 } 691 692 vmm 693 } 694 695 pub fn emulate_insn( 696 &mut self, 697 cpu_id: usize, 698 insn: &[u8], 699 num_insn: Option<usize>, 700 ) -> MockResult { 701 let ip = self.cpu_state(cpu_id).unwrap().ip(); 702 let mut emulator = Emulator::new(self); 703 704 let new_state = emulator.emulate_insn_stream(cpu_id, insn, num_insn)?; 705 if num_insn.is_none() { 706 assert_eq!(ip + insn.len() as u64, new_state.ip()); 707 } 708 709 self.set_cpu_state(cpu_id, new_state).unwrap(); 710 711 Ok(()) 712 } 713 714 pub fn emulate_first_insn(&mut self, cpu_id: usize, insn: &[u8]) -> MockResult { 715 self.emulate_insn(cpu_id, insn, Some(1)) 716 } 717 } 718 719 impl PlatformEmulator for MockVmm { 720 type CpuState = CpuState; 721 722 fn read_memory(&self, gva: u64, data: &mut [u8]) -> Result<(), PlatformError> { 723 debug!( 724 "Memory read {} bytes from [{:#x} -> {:#x}]", 725 data.len(), 726 gva, 727 gva + data.len() as u64 - 1 728 ); 729 data.copy_from_slice(&self.memory[gva as usize..gva as usize + data.len()]); 730 Ok(()) 731 } 732 733 fn write_memory(&mut self, gva: u64, data: &[u8]) -> Result<(), PlatformError> { 734 debug!( 735 "Memory write {} bytes at [{:#x} -> {:#x}]", 736 data.len(), 737 gva, 738 gva + data.len() as u64 - 1 739 ); 740 self.memory[gva as usize..gva as usize + data.len()].copy_from_slice(data); 741 742 Ok(()) 743 } 744 745 fn cpu_state(&self, _cpu_id: usize) -> Result<CpuState, PlatformError> { 746 Ok(self.state.lock().unwrap().clone()) 747 } 748 749 fn set_cpu_state( 750 &self, 751 _cpu_id: usize, 752 state: Self::CpuState, 753 ) -> Result<(), PlatformError> { 754 *self.state.lock().unwrap() = state; 755 Ok(()) 756 } 757 758 fn fetch(&self, ip: u64, instruction_bytes: &mut [u8]) -> Result<(), PlatformError> { 759 let rip = self 760 .state 761 .lock() 762 .unwrap() 763 .linearize(Register::CS, ip, false)?; 764 self.read_memory(rip, instruction_bytes) 765 } 766 } 767 } 768 769 #[cfg(test)] 770 mod tests { 771 use super::*; 772 use crate::arch::x86::emulator::mock_vmm::*; 773 774 #[test] 775 // Emulate executing an empty stream. Instructions should be fetched from 776 // memory. 777 // 778 // mov rax, 0x1000 779 // mov rbx, qword ptr [rax+10h] 780 fn test_empty_instruction_stream() { 781 let target_rax: u64 = 0x1000; 782 let target_rbx: u64 = 0x1234567812345678; 783 let ip: u64 = 0x1000; 784 let cpu_id = 0; 785 let memory = [ 786 // Code at IP 787 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 788 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 789 // Padding 790 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 791 // Data at IP + 0x10 (0x1234567812345678 in LE) 792 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 793 ]; 794 795 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 796 assert!(vmm.emulate_insn(cpu_id, &[], Some(2)).is_ok()); 797 798 let rax: u64 = vmm 799 .cpu_state(cpu_id) 800 .unwrap() 801 .read_reg(Register::RAX) 802 .unwrap(); 803 assert_eq!(rax, target_rax); 804 805 let rbx: u64 = vmm 806 .cpu_state(cpu_id) 807 .unwrap() 808 .read_reg(Register::RBX) 809 .unwrap(); 810 assert_eq!(rbx, target_rbx); 811 } 812 813 #[test] 814 // Emulate executing an empty stream. Instructions should be fetched from 815 // memory. The emulation should abort. 816 // 817 // mov rax, 0x1000 818 // mov rbx, qword ptr [rax+10h] 819 // ... garbage ... 820 fn test_empty_instruction_stream_bad() { 821 let ip: u64 = 0x1000; 822 let cpu_id = 0; 823 let memory = [ 824 // Code at IP 825 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 826 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 827 // Padding 828 0xff, 0xff, 0xff, 0xff, 0xff, // Garbage 829 // Data at IP + 0x10 (0x1234567812345678 in LE) 830 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 831 ]; 832 833 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 834 assert!(vmm.emulate_insn(cpu_id, &[], None).is_err()); 835 } 836 837 #[test] 838 // Emulate truncated instruction stream, which should cause a fetch. 839 // 840 // mov rax, 0x1000 841 // mov rbx, qword ptr [rax+10h] 842 // Test with a first instruction truncated. 843 fn test_fetch_first_instruction() { 844 let target_rax: u64 = 0x1000; 845 let ip: u64 = 0x1000; 846 let cpu_id = 0; 847 let memory = [ 848 // Code at IP 849 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 850 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 851 // Padding 852 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 853 // Data at IP + 0x10 (0x1234567812345678 in LE) 854 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 855 ]; 856 let insn = [ 857 // First instruction is truncated 858 0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00, 859 ]; 860 861 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 862 assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok()); 863 864 let rax: u64 = vmm 865 .cpu_state(cpu_id) 866 .unwrap() 867 .read_reg(Register::RAX) 868 .unwrap(); 869 assert_eq!(rax, target_rax); 870 } 871 872 #[test] 873 // Emulate truncated instruction stream, which should cause a fetch. 874 // 875 // mov rax, 0x1000 876 // mov rbx, qword ptr [rax+10h] 877 // Test with a 2nd instruction truncated. 878 fn test_fetch_second_instruction() { 879 let target_rax: u64 = 0x1234567812345678; 880 let ip: u64 = 0x1000; 881 let cpu_id = 0; 882 let memory = [ 883 // Code at IP 884 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 885 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 886 // Padding 887 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 888 // Data at IP + 0x10 (0x1234567812345678 in LE) 889 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 890 ]; 891 let insn = [ 892 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 893 0x48, 0x8b, // Truncated mov rbx, qword ptr [rax+10h] -- missing [0x58, 0x10] 894 ]; 895 896 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 897 assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok()); 898 899 let rbx: u64 = vmm 900 .cpu_state(cpu_id) 901 .unwrap() 902 .read_reg(Register::RBX) 903 .unwrap(); 904 assert_eq!(rbx, target_rax); 905 } 906 907 #[test] 908 // Emulate only one instruction. 909 // 910 // mov rax, 0x1000 911 // mov rbx, qword ptr [rax+10h] 912 // The emulation should stop after the first instruction. 913 fn test_emulate_one_instruction() { 914 let target_rax: u64 = 0x1000; 915 let ip: u64 = 0x1000; 916 let cpu_id = 0; 917 let memory = [ 918 // Code at IP 919 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 920 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 921 // Padding 922 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 923 // Data at IP + 0x10 (0x1234567812345678 in LE) 924 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 925 ]; 926 let insn = [ 927 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 928 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 929 ]; 930 931 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 932 assert!(vmm.emulate_insn(cpu_id, &insn, Some(1)).is_ok()); 933 934 let new_ip: u64 = vmm.cpu_state(cpu_id).unwrap().ip(); 935 assert_eq!(new_ip, ip + 0x7 /* length of mov rax,0x1000 */); 936 937 let rax: u64 = vmm 938 .cpu_state(cpu_id) 939 .unwrap() 940 .read_reg(Register::RAX) 941 .unwrap(); 942 assert_eq!(rax, target_rax); 943 944 // The second instruction is not executed so RBX should be zero. 945 let rbx: u64 = vmm 946 .cpu_state(cpu_id) 947 .unwrap() 948 .read_reg(Register::RBX) 949 .unwrap(); 950 assert_eq!(rbx, 0); 951 } 952 953 #[test] 954 // Emulate truncated instruction stream, which should cause a fetch. 955 // 956 // mov rax, 0x1000 957 // Test with a first instruction truncated and a bad fetched instruction. 958 // Verify that the instruction emulation returns an error. 959 fn test_fetch_bad_insn() { 960 let ip: u64 = 0x1000; 961 let cpu_id = 0; 962 let memory = [ 963 // Code at IP 964 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 965 0xff, 0xff, 966 ]; 967 let insn = [ 968 // First instruction is truncated 969 0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00, 970 ]; 971 972 let mut vmm = MockVmm::new(ip, vec![], Some((ip, &memory))); 973 assert!(vmm.emulate_first_insn(cpu_id, &insn).is_err()); 974 } 975 } 976