1 // 2 // Copyright © 2020 Intel Corporation 3 // 4 // SPDX-License-Identifier: Apache-2.0 5 // 6 7 extern crate iced_x86; 8 9 use crate::arch::emulator::{EmulationError, EmulationResult, PlatformEmulator, PlatformError}; 10 use crate::arch::x86::emulator::instructions::*; 11 use crate::arch::x86::regs::*; 12 use crate::arch::x86::*; 13 use crate::arch::x86::{Exception, SegmentRegisterOps}; 14 use crate::x86_64::{SegmentRegister, SpecialRegisters, StandardRegisters}; 15 use anyhow::Context; 16 use iced_x86::*; 17 18 #[macro_use] 19 mod instructions; 20 21 /// x86 CPU modes 22 #[derive(Debug, PartialEq)] 23 pub enum CpuMode { 24 /// Real mode 25 Real, 26 27 /// Virtual 8086 mode 28 Virtual8086, 29 30 /// 16-bit protected mode 31 Protected16, 32 33 /// 32-bit protected mode 34 Protected, 35 36 /// 64-bit mode, a.k.a. long mode 37 Long, 38 } 39 40 /// CpuStateManager manages an x86 CPU state. 41 /// 42 /// Instruction emulation handlers get a mutable reference to 43 /// a `CpuStateManager` implementation, representing the current state of the 44 /// CPU they have to emulate an instruction stream against. Usually those 45 /// handlers will modify the CPU state by modifying `CpuState` and it is up to 46 /// the handler caller to commit those changes back by invoking a 47 /// `PlatformEmulator` implementation `set_state()` method. 48 /// 49 pub trait CpuStateManager: Clone { 50 /// Reads a CPU register. 51 /// 52 /// # Arguments 53 /// 54 /// * `reg` - A general purpose, control or debug register. 55 fn read_reg(&self, reg: Register) -> Result<u64, PlatformError>; 56 57 /// Write to a CPU register. 58 /// 59 /// # Arguments 60 /// 61 /// * `reg` - A general purpose, control or debug register. 62 /// * `val` - The value to load. 63 fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError>; 64 65 /// Reads a segment register. 66 /// 67 /// # Arguments 68 /// 69 /// * `reg` - A segment register. 70 fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError>; 71 72 /// Write to a segment register. 73 /// 74 /// # Arguments 75 /// 76 /// * `reg` - A segment register. 77 /// * `segment_reg` - The segment register value to load. 78 fn write_segment( 79 &mut self, 80 reg: Register, 81 segment_reg: SegmentRegister, 82 ) -> Result<(), PlatformError>; 83 84 /// Get the CPU instruction pointer. 85 fn ip(&self) -> u64; 86 87 /// Set the CPU instruction pointer. 88 /// 89 /// # Arguments 90 /// 91 /// * `ip` - The CPU instruction pointer. 92 fn set_ip(&mut self, ip: u64); 93 94 /// Get the CPU Extended Feature Enable Register. 95 fn efer(&self) -> u64; 96 97 /// Set the CPU Extended Feature Enable Register. 98 /// 99 /// # Arguments 100 /// 101 /// * `efer` - The CPU EFER value. 102 fn set_efer(&mut self, efer: u64); 103 104 /// Get the CPU flags. 105 fn flags(&self) -> u64; 106 107 /// Set the CPU flags. 108 /// 109 /// # Arguments 110 /// 111 /// * `flags` - The CPU flags 112 fn set_flags(&mut self, flags: u64); 113 114 /// Get the CPU mode. 115 fn mode(&self) -> Result<CpuMode, PlatformError>; 116 117 /// Translate a logical (segmented) address into a linear (virtual) one. 118 /// 119 /// # Arguments 120 /// 121 /// * `segment` - Which segment to use for linearization 122 /// * `logical_addr` - The logical address to be translated 123 fn linearize( 124 &self, 125 segment: Register, 126 logical_addr: u64, 127 write: bool, 128 ) -> Result<u64, PlatformError> { 129 let segment_register = self.read_segment(segment)?; 130 let mode = self.mode()?; 131 132 match mode { 133 CpuMode::Long => { 134 // TODO Check that we got a canonical address. 135 Ok(logical_addr 136 .checked_add(segment_register.base) 137 .ok_or_else(|| { 138 PlatformError::InvalidAddress(anyhow!( 139 "Logical address {:#x} can not be linearized with segment {:#x?}", 140 logical_addr, 141 segment_register 142 )) 143 })?) 144 } 145 146 CpuMode::Protected | CpuMode::Real => { 147 let segment_type = segment_register.segment_type(); 148 149 // Must not write to a read-only segment. 150 if segment_type_ro(segment_type) && write { 151 return Err(PlatformError::InvalidAddress(anyhow!( 152 "Can not write to a read-only segment" 153 ))); 154 } 155 156 let logical_addr = logical_addr & 0xffff_ffffu64; 157 let mut segment_limit: u32 = if segment_register.granularity() != 0 { 158 (segment_register.limit << 12) | 0xfff 159 } else { 160 segment_register.limit 161 }; 162 163 // Expand-down segment 164 if segment_type_expand_down(segment_type) { 165 if logical_addr >= segment_limit.into() { 166 return Err(PlatformError::InvalidAddress(anyhow!( 167 "{:#x} is off limits {:#x} (expand down)", 168 logical_addr, 169 segment_limit 170 ))); 171 } 172 173 if segment_register.db() != 0 { 174 segment_limit = 0xffffffff 175 } else { 176 segment_limit = 0xffff 177 } 178 } 179 180 if logical_addr > segment_limit.into() { 181 return Err(PlatformError::InvalidAddress(anyhow!( 182 "{:#x} is off limits {:#x}", 183 logical_addr, 184 segment_limit 185 ))); 186 } 187 188 Ok(logical_addr + segment_register.base) 189 } 190 191 _ => Err(PlatformError::UnsupportedCpuMode(anyhow!("{:?}", mode))), 192 } 193 } 194 } 195 196 const REGISTER_MASK_64: u64 = 0xffff_ffff_ffff_ffffu64; 197 const REGISTER_MASK_32: u64 = 0xffff_ffffu64; 198 const REGISTER_MASK_16: u64 = 0xffffu64; 199 const REGISTER_MASK_8: u64 = 0xffu64; 200 201 macro_rules! set_reg { 202 ($reg:expr, $mask:expr, $value:expr) => { 203 $reg = ($reg & $mask) | $value 204 }; 205 } 206 207 #[derive(Clone, Default, Debug)] 208 /// A minimal, emulated CPU state. 209 /// 210 /// Hypervisors needing x86 emulation can choose to either use their own 211 /// CPU state structures and implement the CpuStateManager interface for it, 212 /// or use `EmulatorCpuState`. The latter implies creating a new state 213 /// `EmulatorCpuState` instance for each platform `cpu_state()` call, which 214 /// might be less efficient. 215 pub struct EmulatorCpuState { 216 pub regs: StandardRegisters, 217 pub sregs: SpecialRegisters, 218 } 219 220 impl CpuStateManager for EmulatorCpuState { 221 fn read_reg(&self, reg: Register) -> Result<u64, PlatformError> { 222 let mut reg_value: u64 = match reg { 223 Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => { 224 self.regs.rax 225 } 226 Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => { 227 self.regs.rbx 228 } 229 Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => { 230 self.regs.rcx 231 } 232 Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => { 233 self.regs.rdx 234 } 235 Register::RSP | Register::ESP | Register::SP => self.regs.rsp, 236 Register::RBP | Register::EBP | Register::BP => self.regs.rbp, 237 Register::RSI | Register::ESI | Register::SI | Register::SIL => self.regs.rsi, 238 Register::RDI | Register::EDI | Register::DI | Register::DIL => self.regs.rdi, 239 Register::R8 | Register::R8D | Register::R8W | Register::R8L => self.regs.r8, 240 Register::R9 | Register::R9D | Register::R9W | Register::R9L => self.regs.r9, 241 Register::R10 | Register::R10D | Register::R10W | Register::R10L => self.regs.r10, 242 Register::R11 | Register::R11D | Register::R11W | Register::R11L => self.regs.r11, 243 Register::R12 | Register::R12D | Register::R12W | Register::R12L => self.regs.r12, 244 Register::R13 | Register::R13D | Register::R13W | Register::R13L => self.regs.r13, 245 Register::R14 | Register::R14D | Register::R14W | Register::R14L => self.regs.r14, 246 Register::R15 | Register::R15D | Register::R15W | Register::R15L => self.regs.r15, 247 Register::CR0 => self.sregs.cr0, 248 Register::CR2 => self.sregs.cr2, 249 Register::CR3 => self.sregs.cr3, 250 Register::CR4 => self.sregs.cr4, 251 Register::CR8 => self.sregs.cr8, 252 253 r => { 254 return Err(PlatformError::InvalidRegister(anyhow!( 255 "read_reg invalid GPR {:?}", 256 r 257 ))) 258 } 259 }; 260 261 reg_value = if reg.is_gpr64() || reg.is_cr() { 262 reg_value 263 } else if reg.is_gpr32() { 264 reg_value & REGISTER_MASK_32 265 } else if reg.is_gpr16() { 266 reg_value & REGISTER_MASK_16 267 } else if reg.is_gpr8() { 268 if reg == Register::AH 269 || reg == Register::BH 270 || reg == Register::CH 271 || reg == Register::DH 272 { 273 (reg_value >> 8) & REGISTER_MASK_8 274 } else { 275 reg_value & REGISTER_MASK_8 276 } 277 } else { 278 return Err(PlatformError::InvalidRegister(anyhow!( 279 "read_reg invalid GPR {:?}", 280 reg 281 ))); 282 }; 283 284 debug!("Register read: {:#x} from {:?}", reg_value, reg); 285 286 Ok(reg_value) 287 } 288 289 fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError> { 290 debug!("Register write: {:#x} to {:?}", val, reg); 291 292 // SDM Vol 1 - 3.4.1.1 293 // 294 // 8-bit and 16-bit operands generate an 8-bit or 16-bit result. 295 // The upper 56 bits or 48 bits (respectively) of the destination 296 // general-purpose register are not modified by the operation. 297 let (reg_value, mask): (u64, u64) = if reg.is_gpr64() || reg.is_cr() { 298 (val, !REGISTER_MASK_64) 299 } else if reg.is_gpr32() { 300 (val & REGISTER_MASK_32, !REGISTER_MASK_64) 301 } else if reg.is_gpr16() { 302 (val & REGISTER_MASK_16, !REGISTER_MASK_16) 303 } else if reg.is_gpr8() { 304 if reg == Register::AH 305 || reg == Register::BH 306 || reg == Register::CH 307 || reg == Register::DH 308 { 309 ((val & REGISTER_MASK_8) << 8, !(REGISTER_MASK_8 << 8)) 310 } else { 311 (val & REGISTER_MASK_8, !REGISTER_MASK_8) 312 } 313 } else { 314 return Err(PlatformError::InvalidRegister(anyhow!( 315 "write_reg invalid register {:?}", 316 reg 317 ))); 318 }; 319 320 match reg { 321 Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => { 322 set_reg!(self.regs.rax, mask, reg_value); 323 } 324 Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => { 325 set_reg!(self.regs.rbx, mask, reg_value); 326 } 327 Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => { 328 set_reg!(self.regs.rcx, mask, reg_value); 329 } 330 Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => { 331 set_reg!(self.regs.rdx, mask, reg_value); 332 } 333 Register::RSP | Register::ESP | Register::SP => { 334 set_reg!(self.regs.rsp, mask, reg_value) 335 } 336 Register::RBP | Register::EBP | Register::BP => { 337 set_reg!(self.regs.rbp, mask, reg_value) 338 } 339 Register::RSI | Register::ESI | Register::SI | Register::SIL => { 340 set_reg!(self.regs.rsi, mask, reg_value) 341 } 342 Register::RDI | Register::EDI | Register::DI | Register::DIL => { 343 set_reg!(self.regs.rdi, mask, reg_value) 344 } 345 Register::R8 | Register::R8D | Register::R8W | Register::R8L => { 346 set_reg!(self.regs.r8, mask, reg_value) 347 } 348 Register::R9 | Register::R9D | Register::R9W | Register::R9L => { 349 set_reg!(self.regs.r9, mask, reg_value) 350 } 351 Register::R10 | Register::R10D | Register::R10W | Register::R10L => { 352 set_reg!(self.regs.r10, mask, reg_value) 353 } 354 Register::R11 | Register::R11D | Register::R11W | Register::R11L => { 355 set_reg!(self.regs.r11, mask, reg_value) 356 } 357 Register::R12 | Register::R12D | Register::R12W | Register::R12L => { 358 set_reg!(self.regs.r12, mask, reg_value) 359 } 360 Register::R13 | Register::R13D | Register::R13W | Register::R13L => { 361 set_reg!(self.regs.r13, mask, reg_value) 362 } 363 Register::R14 | Register::R14D | Register::R14W | Register::R14L => { 364 set_reg!(self.regs.r14, mask, reg_value) 365 } 366 Register::R15 | Register::R15D | Register::R15W | Register::R15L => { 367 set_reg!(self.regs.r15, mask, reg_value) 368 } 369 Register::CR0 => set_reg!(self.sregs.cr0, mask, reg_value), 370 Register::CR2 => set_reg!(self.sregs.cr2, mask, reg_value), 371 Register::CR3 => set_reg!(self.sregs.cr3, mask, reg_value), 372 Register::CR4 => set_reg!(self.sregs.cr4, mask, reg_value), 373 Register::CR8 => set_reg!(self.sregs.cr8, mask, reg_value), 374 _ => { 375 return Err(PlatformError::InvalidRegister(anyhow!( 376 "write_reg invalid register {:?}", 377 reg 378 ))) 379 } 380 } 381 382 Ok(()) 383 } 384 385 fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError> { 386 if !reg.is_segment_register() { 387 return Err(PlatformError::InvalidRegister(anyhow!( 388 "read_segment {:?} is not a segment register", 389 reg 390 ))); 391 } 392 393 match reg { 394 Register::CS => Ok(self.sregs.cs), 395 Register::DS => Ok(self.sregs.ds), 396 Register::ES => Ok(self.sregs.es), 397 Register::FS => Ok(self.sregs.fs), 398 Register::GS => Ok(self.sregs.gs), 399 Register::SS => Ok(self.sregs.ss), 400 r => Err(PlatformError::InvalidRegister(anyhow!( 401 "read_segment invalid register {:?}", 402 r 403 ))), 404 } 405 } 406 407 fn write_segment( 408 &mut self, 409 reg: Register, 410 segment_register: SegmentRegister, 411 ) -> Result<(), PlatformError> { 412 if !reg.is_segment_register() { 413 return Err(PlatformError::InvalidRegister(anyhow!("{:?}", reg))); 414 } 415 416 match reg { 417 Register::CS => self.sregs.cs = segment_register, 418 Register::DS => self.sregs.ds = segment_register, 419 Register::ES => self.sregs.es = segment_register, 420 Register::FS => self.sregs.fs = segment_register, 421 Register::GS => self.sregs.gs = segment_register, 422 Register::SS => self.sregs.ss = segment_register, 423 r => return Err(PlatformError::InvalidRegister(anyhow!("{:?}", r))), 424 } 425 426 Ok(()) 427 } 428 429 fn ip(&self) -> u64 { 430 self.regs.rip 431 } 432 433 fn set_ip(&mut self, ip: u64) { 434 self.regs.rip = ip; 435 } 436 437 fn efer(&self) -> u64 { 438 self.sregs.efer 439 } 440 441 fn set_efer(&mut self, efer: u64) { 442 self.sregs.efer = efer 443 } 444 445 fn flags(&self) -> u64 { 446 self.regs.rflags 447 } 448 449 fn set_flags(&mut self, flags: u64) { 450 self.regs.rflags = flags; 451 } 452 453 fn mode(&self) -> Result<CpuMode, PlatformError> { 454 let efer = self.efer(); 455 let cr0 = self.read_reg(Register::CR0)?; 456 let mut mode = CpuMode::Real; 457 458 if (cr0 & CR0_PE) == CR0_PE { 459 mode = CpuMode::Protected; 460 } 461 462 if (efer & EFER_LMA) == EFER_LMA { 463 if mode != CpuMode::Protected { 464 return Err(PlatformError::InvalidState(anyhow!( 465 "Protection must be enabled in long mode" 466 ))); 467 } 468 469 mode = CpuMode::Long; 470 } 471 472 Ok(mode) 473 } 474 } 475 476 pub struct Emulator<'a, T: CpuStateManager> { 477 platform: &'a mut dyn PlatformEmulator<CpuState = T>, 478 } 479 480 // Reduce repetition, see its invocation in get_handler(). 481 macro_rules! gen_handler_match { 482 ($value: ident, $( ($module:ident, $code:ident) ),* ) => { 483 match $value { 484 $( 485 Code::$code => Some(Box::new($module::$code {})), 486 )* 487 _ => None, 488 } 489 }; 490 } 491 492 impl<'a, T: CpuStateManager> Emulator<'a, T> { 493 pub fn new(platform: &mut dyn PlatformEmulator<CpuState = T>) -> Emulator<T> { 494 Emulator { platform } 495 } 496 497 fn get_handler(code: Code) -> Option<Box<dyn InstructionHandler<T>>> { 498 let handler: Option<Box<dyn InstructionHandler<T>>> = gen_handler_match!( 499 code, 500 (mov, Mov_r8_rm8), 501 (mov, Mov_r8_imm8), 502 (mov, Mov_r16_imm16), 503 (mov, Mov_r16_rm16), 504 (mov, Mov_r32_imm32), 505 (mov, Mov_r32_rm32), 506 (mov, Mov_r64_imm64), 507 (mov, Mov_r64_rm64), 508 (mov, Mov_rm8_imm8), 509 (mov, Mov_rm8_r8), 510 (mov, Mov_rm16_imm16), 511 (mov, Mov_rm16_r16), 512 (mov, Mov_rm32_imm32), 513 (mov, Mov_rm32_r32), 514 (mov, Mov_rm64_imm32), 515 (mov, Mov_rm64_r64) 516 ); 517 518 handler 519 } 520 521 fn emulate_insn_stream( 522 &mut self, 523 cpu_id: usize, 524 insn_stream: &[u8], 525 num_insn: Option<usize>, 526 ) -> EmulationResult<T, Exception> { 527 let mut state = self 528 .platform 529 .cpu_state(cpu_id) 530 .map_err(EmulationError::PlatformEmulationError)?; 531 let mut decoder = Decoder::new(64, insn_stream, DecoderOptions::NONE); 532 let mut insn = Instruction::default(); 533 let mut num_insn_emulated: usize = 0; 534 let mut fetched_insn_stream: [u8; 16] = [0; 16]; 535 let mut last_decoded_ip: u64 = state.ip(); 536 let mut stop_emulation: bool = false; 537 538 decoder.set_ip(state.ip()); 539 540 while decoder.can_decode() && !stop_emulation { 541 decoder.decode_out(&mut insn); 542 543 if decoder.last_error() == DecoderError::NoMoreBytes { 544 // The decoder is missing some bytes to decode the current 545 // instruction, for example because the instruction stream 546 // crosses a page boundary. 547 // We fetch 16 more bytes from the instruction segment, 548 // decode and emulate the failing instruction and terminate 549 // the emulation loop. 550 debug!( 551 "Fetching {} bytes from {:#x}", 552 fetched_insn_stream.len(), 553 last_decoded_ip 554 ); 555 556 // fetched_insn_stream is 16 bytes long, enough to contain 557 // any complete x86 instruction. 558 self.platform 559 .fetch(last_decoded_ip, &mut fetched_insn_stream) 560 .map_err(EmulationError::PlatformEmulationError)?; 561 562 debug!("Fetched {:x?}", fetched_insn_stream); 563 564 // Once we have the new stream, we must create a new decoder 565 // and emulate one last instruction from the last decoded IP. 566 decoder = Decoder::new(64, &fetched_insn_stream, DecoderOptions::NONE); 567 decoder.decode_out(&mut insn); 568 if decoder.last_error() != DecoderError::None { 569 return Err(EmulationError::InstructionFetchingError(anyhow!( 570 "{:#x?}", 571 insn_format!(insn) 572 ))); 573 } 574 575 stop_emulation = true; 576 } 577 578 // Emulate the decoded instruction 579 Emulator::get_handler(insn.code()) 580 .ok_or_else(|| { 581 EmulationError::UnsupportedInstruction(anyhow!( 582 "{:#x?} {:?} {:?}", 583 insn_format!(insn), 584 insn.mnemonic(), 585 insn.code() 586 )) 587 })? 588 .emulate(&insn, &mut state, self.platform) 589 .context(anyhow!("Failed to emulate {:#x?}", insn_format!(insn)))?; 590 591 last_decoded_ip = decoder.ip(); 592 num_insn_emulated += 1; 593 594 if let Some(num_insn) = num_insn { 595 if num_insn_emulated >= num_insn { 596 // Exit the decoding loop, do not decode the next instruction. 597 stop_emulation = true; 598 } 599 } 600 } 601 602 state.set_ip(decoder.ip()); 603 Ok(state) 604 } 605 606 /// Emulate all instructions from the instructions stream. 607 pub fn emulate(&mut self, cpu_id: usize, insn_stream: &[u8]) -> EmulationResult<T, Exception> { 608 self.emulate_insn_stream(cpu_id, insn_stream, None) 609 } 610 611 /// Only emulate the first instruction from the stream. 612 /// 613 /// This is useful for cases where we get readahead instruction stream 614 /// but implicitly must only emulate the first instruction, and then return 615 /// to the guest. 616 pub fn emulate_first_insn( 617 &mut self, 618 cpu_id: usize, 619 insn_stream: &[u8], 620 ) -> EmulationResult<T, Exception> { 621 self.emulate_insn_stream(cpu_id, insn_stream, Some(1)) 622 } 623 } 624 625 #[cfg(test)] 626 mod mock_vmm { 627 #![allow(unused_mut)] 628 629 extern crate env_logger; 630 631 use super::*; 632 use crate::arch::emulator::{EmulationError, PlatformEmulator}; 633 use crate::arch::x86::emulator::{Emulator, EmulatorCpuState as CpuState}; 634 use crate::arch::x86::gdt::{gdt_entry, segment_from_gdt}; 635 use crate::arch::x86::Exception; 636 use std::collections::HashMap; 637 use std::sync::{Arc, Mutex}; 638 639 #[derive(Debug, Clone)] 640 pub struct MockVMM { 641 memory: Vec<u8>, 642 state: Arc<Mutex<CpuState>>, 643 } 644 645 unsafe impl Sync for MockVMM {} 646 647 pub type MockResult = Result<(), EmulationError<Exception>>; 648 649 impl MockVMM { 650 pub fn new(ip: u64, regs: HashMap<Register, u64>, memory: Option<(u64, &[u8])>) -> MockVMM { 651 let _ = env_logger::try_init(); 652 let cs_reg = segment_from_gdt(gdt_entry(0xc09b, 0, 0xffffffff), 1); 653 let ds_reg = segment_from_gdt(gdt_entry(0xc093, 0, 0xffffffff), 2); 654 let mut initial_state = CpuState::default(); 655 initial_state.set_ip(ip); 656 initial_state.write_segment(Register::CS, cs_reg).unwrap(); 657 initial_state.write_segment(Register::DS, ds_reg).unwrap(); 658 for (reg, value) in regs { 659 initial_state.write_reg(reg, value).unwrap(); 660 } 661 662 let mut vmm = MockVMM { 663 memory: vec![0; 8192], 664 state: Arc::new(Mutex::new(initial_state)), 665 }; 666 667 if let Some(mem) = memory { 668 vmm.write_memory(mem.0, &mem.1).unwrap(); 669 } 670 671 vmm 672 } 673 674 pub fn emulate_insn( 675 &mut self, 676 cpu_id: usize, 677 insn: &[u8], 678 num_insn: Option<usize>, 679 ) -> MockResult { 680 let ip = self.cpu_state(cpu_id).unwrap().ip(); 681 let mut emulator = Emulator::new(self); 682 683 let new_state = emulator.emulate_insn_stream(cpu_id, &insn, num_insn)?; 684 if num_insn.is_none() { 685 assert_eq!(ip + insn.len() as u64, new_state.ip()); 686 } 687 688 self.set_cpu_state(cpu_id, new_state).unwrap(); 689 690 Ok(()) 691 } 692 693 pub fn emulate_first_insn(&mut self, cpu_id: usize, insn: &[u8]) -> MockResult { 694 self.emulate_insn(cpu_id, insn, Some(1)) 695 } 696 } 697 698 impl PlatformEmulator for MockVMM { 699 type CpuState = CpuState; 700 701 fn read_memory(&self, gva: u64, data: &mut [u8]) -> Result<(), PlatformError> { 702 debug!( 703 "Memory read {} bytes from [{:#x} -> {:#x}]", 704 data.len(), 705 gva, 706 gva 707 ); 708 data.copy_from_slice(&self.memory[gva as usize..gva as usize + data.len()]); 709 Ok(()) 710 } 711 712 fn write_memory(&mut self, gva: u64, data: &[u8]) -> Result<(), PlatformError> { 713 debug!( 714 "Memory write {} bytes at [{:#x} -> {:#x}]", 715 data.len(), 716 gva, 717 gva 718 ); 719 self.memory[gva as usize..gva as usize + data.len()].copy_from_slice(data); 720 721 Ok(()) 722 } 723 724 fn cpu_state(&self, _cpu_id: usize) -> Result<CpuState, PlatformError> { 725 Ok(self.state.lock().unwrap().clone()) 726 } 727 728 fn set_cpu_state( 729 &self, 730 _cpu_id: usize, 731 state: Self::CpuState, 732 ) -> Result<(), PlatformError> { 733 *self.state.lock().unwrap() = state; 734 Ok(()) 735 } 736 737 fn gva_to_gpa(&self, gva: u64) -> Result<u64, PlatformError> { 738 Ok(gva) 739 } 740 741 fn fetch(&self, ip: u64, instruction_bytes: &mut [u8]) -> Result<(), PlatformError> { 742 let rip = self 743 .state 744 .lock() 745 .unwrap() 746 .linearize(Register::CS, ip, false)?; 747 self.read_memory(rip, instruction_bytes) 748 } 749 } 750 } 751 752 #[cfg(test)] 753 mod tests { 754 #![allow(unused_mut)] 755 use super::*; 756 use crate::arch::x86::emulator::mock_vmm::*; 757 758 macro_rules! hashmap { 759 ($( $key: expr => $val: expr ),*) => {{ 760 let mut map = ::std::collections::HashMap::new(); 761 $( map.insert($key, $val); )* 762 map 763 }} 764 } 765 766 #[test] 767 // Emulate truncated instruction stream, which should cause a fetch. 768 // 769 // mov rax, 0x1000 770 // Test with a first instruction truncated. 771 fn test_fetch_first_instruction() -> MockResult { 772 let ip: u64 = 0x1000; 773 let cpu_id = 0; 774 let memory = [ 775 // Code at IP 776 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 777 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 778 // Padding 779 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 780 // Data at IP + 0x10 (0x1234567812345678 in LE) 781 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 782 ]; 783 let insn = [ 784 // First instruction is truncated 785 0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00, 786 ]; 787 788 let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory))); 789 assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok()); 790 791 let rax: u64 = vmm 792 .cpu_state(cpu_id) 793 .unwrap() 794 .read_reg(Register::RAX) 795 .unwrap(); 796 assert_eq!(rax, ip); 797 798 Ok(()) 799 } 800 801 #[test] 802 // Emulate truncated instruction stream, which should cause a fetch. 803 // 804 // mov rax, 0x1000 805 // mov rbx, qword ptr [rax+10h] 806 // Test with a 2nd instruction truncated. 807 fn test_fetch_second_instruction() -> MockResult { 808 let target_rax: u64 = 0x1234567812345678; 809 let ip: u64 = 0x1000; 810 let cpu_id = 0; 811 let memory = [ 812 // Code at IP 813 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 814 0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h] 815 // Padding 816 0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes 817 // Data at IP + 0x10 (0x1234567812345678 in LE) 818 0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12, 819 ]; 820 let insn = [ 821 0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000 822 0x48, 0x8b, // Truncated mov rbx, qword ptr [rax+10h] -- missing [0x58, 0x10] 823 ]; 824 825 let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory))); 826 assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok()); 827 828 let rbx: u64 = vmm 829 .cpu_state(cpu_id) 830 .unwrap() 831 .read_reg(Register::RBX) 832 .unwrap(); 833 assert_eq!(rbx, target_rax); 834 835 Ok(()) 836 } 837 838 #[test] 839 // Emulate truncated instruction stream, which should cause a fetch. 840 // 841 // mov rax, 0x1000 842 // Test with a first instruction truncated and a bad fetched instruction. 843 // Verify that the instruction emulation returns an error. 844 fn test_fetch_bad_insn() -> MockResult { 845 let ip: u64 = 0x1000; 846 let cpu_id = 0; 847 let memory = [ 848 // Code at IP 849 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 850 0xff, 0xff, 851 ]; 852 let insn = [ 853 // First instruction is truncated 854 0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00, 855 ]; 856 857 let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory))); 858 assert!(vmm.emulate_first_insn(cpu_id, &insn).is_err()); 859 860 Ok(()) 861 } 862 } 863