xref: /cloud-hypervisor/hypervisor/src/arch/x86/emulator/mod.rs (revision ab89b48143db758a97784407f09feda65ec7c151)
1 //
2 // Copyright © 2020 Intel Corporation
3 //
4 // SPDX-License-Identifier: Apache-2.0
5 //
6 
7 extern crate iced_x86;
8 
9 use crate::arch::emulator::{EmulationError, EmulationResult, PlatformEmulator, PlatformError};
10 use crate::arch::x86::emulator::instructions::*;
11 use crate::arch::x86::regs::*;
12 use crate::arch::x86::*;
13 use crate::arch::x86::{Exception, SegmentRegisterOps};
14 use crate::x86_64::{SegmentRegister, SpecialRegisters, StandardRegisters};
15 use anyhow::Context;
16 use iced_x86::*;
17 
18 #[macro_use]
19 mod instructions;
20 
21 /// x86 CPU modes
22 #[derive(Debug, PartialEq)]
23 pub enum CpuMode {
24     /// Real mode
25     Real,
26 
27     /// Virtual 8086 mode
28     Virtual8086,
29 
30     /// 16-bit protected mode
31     Protected16,
32 
33     /// 32-bit protected mode
34     Protected,
35 
36     /// 64-bit mode, a.k.a. long mode
37     Long,
38 }
39 
40 /// CpuStateManager manages an x86 CPU state.
41 ///
42 /// Instruction emulation handlers get a mutable reference to
43 /// a `CpuStateManager` implementation, representing the current state of the
44 /// CPU they have to emulate an instruction stream against. Usually those
45 /// handlers will modify the CPU state by modifying `CpuState` and it is up to
46 /// the handler caller to commit those changes back by invoking a
47 /// `PlatformEmulator` implementation `set_state()` method.
48 ///
49 pub trait CpuStateManager: Clone {
50     /// Reads a CPU register.
51     ///
52     /// # Arguments
53     ///
54     /// * `reg` - A general purpose, control or debug register.
55     fn read_reg(&self, reg: Register) -> Result<u64, PlatformError>;
56 
57     /// Write to a CPU register.
58     ///
59     /// # Arguments
60     ///
61     /// * `reg` - A general purpose, control or debug register.
62     /// * `val` - The value to load.
63     fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError>;
64 
65     /// Reads a segment register.
66     ///
67     /// # Arguments
68     ///
69     /// * `reg` - A segment register.
70     fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError>;
71 
72     /// Write to a segment register.
73     ///
74     /// # Arguments
75     ///
76     /// * `reg` - A segment register.
77     /// * `segment_reg` - The segment register value to load.
78     fn write_segment(
79         &mut self,
80         reg: Register,
81         segment_reg: SegmentRegister,
82     ) -> Result<(), PlatformError>;
83 
84     /// Get the CPU instruction pointer.
85     fn ip(&self) -> u64;
86 
87     /// Set the CPU instruction pointer.
88     ///
89     /// # Arguments
90     ///
91     /// * `ip` - The CPU instruction pointer.
92     fn set_ip(&mut self, ip: u64);
93 
94     /// Get the CPU Extended Feature Enable Register.
95     fn efer(&self) -> u64;
96 
97     /// Set the CPU Extended Feature Enable Register.
98     ///
99     /// # Arguments
100     ///
101     /// * `efer` - The CPU EFER value.
102     fn set_efer(&mut self, efer: u64);
103 
104     /// Get the CPU flags.
105     fn flags(&self) -> u64;
106 
107     /// Set the CPU flags.
108     ///
109     /// # Arguments
110     ///
111     /// * `flags` - The CPU flags
112     fn set_flags(&mut self, flags: u64);
113 
114     /// Get the CPU mode.
115     fn mode(&self) -> Result<CpuMode, PlatformError>;
116 
117     /// Translate a logical (segmented) address into a linear (virtual) one.
118     ///
119     /// # Arguments
120     ///
121     /// * `segment` - Which segment to use for linearization
122     /// * `logical_addr` - The logical address to be translated
123     fn linearize(
124         &self,
125         segment: Register,
126         logical_addr: u64,
127         write: bool,
128     ) -> Result<u64, PlatformError> {
129         let segment_register = self.read_segment(segment)?;
130         let mode = self.mode()?;
131 
132         match mode {
133             CpuMode::Long => {
134                 // TODO Check that we got a canonical address.
135                 Ok(logical_addr
136                     .checked_add(segment_register.base)
137                     .ok_or_else(|| {
138                         PlatformError::InvalidAddress(anyhow!(
139                             "Logical address {:#x} can not be linearized with segment {:#x?}",
140                             logical_addr,
141                             segment_register
142                         ))
143                     })?)
144             }
145 
146             CpuMode::Protected | CpuMode::Real => {
147                 let segment_type = segment_register.segment_type();
148 
149                 // Must not write to a read-only segment.
150                 if segment_type_ro(segment_type) && write {
151                     return Err(PlatformError::InvalidAddress(anyhow!(
152                         "Can not write to a read-only segment"
153                     )));
154                 }
155 
156                 let logical_addr = logical_addr & 0xffff_ffffu64;
157                 let mut segment_limit: u32 = if segment_register.granularity() != 0 {
158                     (segment_register.limit << 12) | 0xfff
159                 } else {
160                     segment_register.limit
161                 };
162 
163                 // Expand-down segment
164                 if segment_type_expand_down(segment_type) {
165                     if logical_addr >= segment_limit.into() {
166                         return Err(PlatformError::InvalidAddress(anyhow!(
167                             "{:#x} is off limits {:#x} (expand down)",
168                             logical_addr,
169                             segment_limit
170                         )));
171                     }
172 
173                     if segment_register.db() != 0 {
174                         segment_limit = 0xffffffff
175                     } else {
176                         segment_limit = 0xffff
177                     }
178                 }
179 
180                 if logical_addr > segment_limit.into() {
181                     return Err(PlatformError::InvalidAddress(anyhow!(
182                         "{:#x} is off limits {:#x}",
183                         logical_addr,
184                         segment_limit
185                     )));
186                 }
187 
188                 Ok(logical_addr + segment_register.base)
189             }
190 
191             _ => Err(PlatformError::UnsupportedCpuMode(anyhow!("{:?}", mode))),
192         }
193     }
194 }
195 
196 const REGISTER_MASK_64: u64 = 0xffff_ffff_ffff_ffffu64;
197 const REGISTER_MASK_32: u64 = 0xffff_ffffu64;
198 const REGISTER_MASK_16: u64 = 0xffffu64;
199 const REGISTER_MASK_8: u64 = 0xffu64;
200 
201 macro_rules! set_reg {
202     ($reg:expr, $mask:expr, $value:expr) => {
203         $reg = ($reg & $mask) | $value
204     };
205 }
206 
207 #[derive(Clone, Default, Debug)]
208 /// A minimal, emulated CPU state.
209 ///
210 /// Hypervisors needing x86 emulation can choose to either use their own
211 /// CPU state structures and implement the CpuStateManager interface for it,
212 /// or use `EmulatorCpuState`. The latter implies creating a new state
213 /// `EmulatorCpuState` instance for each platform `cpu_state()` call, which
214 /// might be less efficient.
215 pub struct EmulatorCpuState {
216     pub regs: StandardRegisters,
217     pub sregs: SpecialRegisters,
218 }
219 
220 impl CpuStateManager for EmulatorCpuState {
221     fn read_reg(&self, reg: Register) -> Result<u64, PlatformError> {
222         let mut reg_value: u64 = match reg {
223             Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => {
224                 self.regs.rax
225             }
226             Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => {
227                 self.regs.rbx
228             }
229             Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => {
230                 self.regs.rcx
231             }
232             Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => {
233                 self.regs.rdx
234             }
235             Register::RSP | Register::ESP | Register::SP => self.regs.rsp,
236             Register::RBP | Register::EBP | Register::BP => self.regs.rbp,
237             Register::RSI | Register::ESI | Register::SI | Register::SIL => self.regs.rsi,
238             Register::RDI | Register::EDI | Register::DI | Register::DIL => self.regs.rdi,
239             Register::R8 | Register::R8D | Register::R8W | Register::R8L => self.regs.r8,
240             Register::R9 | Register::R9D | Register::R9W | Register::R9L => self.regs.r9,
241             Register::R10 | Register::R10D | Register::R10W | Register::R10L => self.regs.r10,
242             Register::R11 | Register::R11D | Register::R11W | Register::R11L => self.regs.r11,
243             Register::R12 | Register::R12D | Register::R12W | Register::R12L => self.regs.r12,
244             Register::R13 | Register::R13D | Register::R13W | Register::R13L => self.regs.r13,
245             Register::R14 | Register::R14D | Register::R14W | Register::R14L => self.regs.r14,
246             Register::R15 | Register::R15D | Register::R15W | Register::R15L => self.regs.r15,
247             Register::CR0 => self.sregs.cr0,
248             Register::CR2 => self.sregs.cr2,
249             Register::CR3 => self.sregs.cr3,
250             Register::CR4 => self.sregs.cr4,
251             Register::CR8 => self.sregs.cr8,
252 
253             r => {
254                 return Err(PlatformError::InvalidRegister(anyhow!(
255                     "read_reg invalid GPR {:?}",
256                     r
257                 )))
258             }
259         };
260 
261         reg_value = if reg.is_gpr64() || reg.is_cr() {
262             reg_value
263         } else if reg.is_gpr32() {
264             reg_value & REGISTER_MASK_32
265         } else if reg.is_gpr16() {
266             reg_value & REGISTER_MASK_16
267         } else if reg.is_gpr8() {
268             if reg == Register::AH
269                 || reg == Register::BH
270                 || reg == Register::CH
271                 || reg == Register::DH
272             {
273                 (reg_value >> 8) & REGISTER_MASK_8
274             } else {
275                 reg_value & REGISTER_MASK_8
276             }
277         } else {
278             return Err(PlatformError::InvalidRegister(anyhow!(
279                 "read_reg invalid GPR {:?}",
280                 reg
281             )));
282         };
283 
284         debug!("Register read: {:#x} from {:?}", reg_value, reg);
285 
286         Ok(reg_value)
287     }
288 
289     fn write_reg(&mut self, reg: Register, val: u64) -> Result<(), PlatformError> {
290         debug!("Register write: {:#x} to {:?}", val, reg);
291 
292         // SDM Vol 1 - 3.4.1.1
293         //
294         // 8-bit and 16-bit operands generate an 8-bit or 16-bit result.
295         // The upper 56 bits or 48 bits (respectively) of the destination
296         // general-purpose register are not modified by the operation.
297         let (reg_value, mask): (u64, u64) = if reg.is_gpr64() || reg.is_cr() {
298             (val, !REGISTER_MASK_64)
299         } else if reg.is_gpr32() {
300             (val & REGISTER_MASK_32, !REGISTER_MASK_64)
301         } else if reg.is_gpr16() {
302             (val & REGISTER_MASK_16, !REGISTER_MASK_16)
303         } else if reg.is_gpr8() {
304             if reg == Register::AH
305                 || reg == Register::BH
306                 || reg == Register::CH
307                 || reg == Register::DH
308             {
309                 ((val & REGISTER_MASK_8) << 8, !(REGISTER_MASK_8 << 8))
310             } else {
311                 (val & REGISTER_MASK_8, !REGISTER_MASK_8)
312             }
313         } else {
314             return Err(PlatformError::InvalidRegister(anyhow!(
315                 "write_reg invalid register {:?}",
316                 reg
317             )));
318         };
319 
320         match reg {
321             Register::RAX | Register::EAX | Register::AX | Register::AL | Register::AH => {
322                 set_reg!(self.regs.rax, mask, reg_value);
323             }
324             Register::RBX | Register::EBX | Register::BX | Register::BL | Register::BH => {
325                 set_reg!(self.regs.rbx, mask, reg_value);
326             }
327             Register::RCX | Register::ECX | Register::CX | Register::CL | Register::CH => {
328                 set_reg!(self.regs.rcx, mask, reg_value);
329             }
330             Register::RDX | Register::EDX | Register::DX | Register::DL | Register::DH => {
331                 set_reg!(self.regs.rdx, mask, reg_value);
332             }
333             Register::RSP | Register::ESP | Register::SP => {
334                 set_reg!(self.regs.rsp, mask, reg_value)
335             }
336             Register::RBP | Register::EBP | Register::BP => {
337                 set_reg!(self.regs.rbp, mask, reg_value)
338             }
339             Register::RSI | Register::ESI | Register::SI | Register::SIL => {
340                 set_reg!(self.regs.rsi, mask, reg_value)
341             }
342             Register::RDI | Register::EDI | Register::DI | Register::DIL => {
343                 set_reg!(self.regs.rdi, mask, reg_value)
344             }
345             Register::R8 | Register::R8D | Register::R8W | Register::R8L => {
346                 set_reg!(self.regs.r8, mask, reg_value)
347             }
348             Register::R9 | Register::R9D | Register::R9W | Register::R9L => {
349                 set_reg!(self.regs.r9, mask, reg_value)
350             }
351             Register::R10 | Register::R10D | Register::R10W | Register::R10L => {
352                 set_reg!(self.regs.r10, mask, reg_value)
353             }
354             Register::R11 | Register::R11D | Register::R11W | Register::R11L => {
355                 set_reg!(self.regs.r11, mask, reg_value)
356             }
357             Register::R12 | Register::R12D | Register::R12W | Register::R12L => {
358                 set_reg!(self.regs.r12, mask, reg_value)
359             }
360             Register::R13 | Register::R13D | Register::R13W | Register::R13L => {
361                 set_reg!(self.regs.r13, mask, reg_value)
362             }
363             Register::R14 | Register::R14D | Register::R14W | Register::R14L => {
364                 set_reg!(self.regs.r14, mask, reg_value)
365             }
366             Register::R15 | Register::R15D | Register::R15W | Register::R15L => {
367                 set_reg!(self.regs.r15, mask, reg_value)
368             }
369             Register::CR0 => set_reg!(self.sregs.cr0, mask, reg_value),
370             Register::CR2 => set_reg!(self.sregs.cr2, mask, reg_value),
371             Register::CR3 => set_reg!(self.sregs.cr3, mask, reg_value),
372             Register::CR4 => set_reg!(self.sregs.cr4, mask, reg_value),
373             Register::CR8 => set_reg!(self.sregs.cr8, mask, reg_value),
374             _ => {
375                 return Err(PlatformError::InvalidRegister(anyhow!(
376                     "write_reg invalid register {:?}",
377                     reg
378                 )))
379             }
380         }
381 
382         Ok(())
383     }
384 
385     fn read_segment(&self, reg: Register) -> Result<SegmentRegister, PlatformError> {
386         if !reg.is_segment_register() {
387             return Err(PlatformError::InvalidRegister(anyhow!(
388                 "read_segment {:?} is not a segment register",
389                 reg
390             )));
391         }
392 
393         match reg {
394             Register::CS => Ok(self.sregs.cs),
395             Register::DS => Ok(self.sregs.ds),
396             Register::ES => Ok(self.sregs.es),
397             Register::FS => Ok(self.sregs.fs),
398             Register::GS => Ok(self.sregs.gs),
399             Register::SS => Ok(self.sregs.ss),
400             r => Err(PlatformError::InvalidRegister(anyhow!(
401                 "read_segment invalid register {:?}",
402                 r
403             ))),
404         }
405     }
406 
407     fn write_segment(
408         &mut self,
409         reg: Register,
410         segment_register: SegmentRegister,
411     ) -> Result<(), PlatformError> {
412         if !reg.is_segment_register() {
413             return Err(PlatformError::InvalidRegister(anyhow!("{:?}", reg)));
414         }
415 
416         match reg {
417             Register::CS => self.sregs.cs = segment_register,
418             Register::DS => self.sregs.ds = segment_register,
419             Register::ES => self.sregs.es = segment_register,
420             Register::FS => self.sregs.fs = segment_register,
421             Register::GS => self.sregs.gs = segment_register,
422             Register::SS => self.sregs.ss = segment_register,
423             r => return Err(PlatformError::InvalidRegister(anyhow!("{:?}", r))),
424         }
425 
426         Ok(())
427     }
428 
429     fn ip(&self) -> u64 {
430         self.regs.rip
431     }
432 
433     fn set_ip(&mut self, ip: u64) {
434         self.regs.rip = ip;
435     }
436 
437     fn efer(&self) -> u64 {
438         self.sregs.efer
439     }
440 
441     fn set_efer(&mut self, efer: u64) {
442         self.sregs.efer = efer
443     }
444 
445     fn flags(&self) -> u64 {
446         self.regs.rflags
447     }
448 
449     fn set_flags(&mut self, flags: u64) {
450         self.regs.rflags = flags;
451     }
452 
453     fn mode(&self) -> Result<CpuMode, PlatformError> {
454         let efer = self.efer();
455         let cr0 = self.read_reg(Register::CR0)?;
456         let mut mode = CpuMode::Real;
457 
458         if (cr0 & CR0_PE) == CR0_PE {
459             mode = CpuMode::Protected;
460         }
461 
462         if (efer & EFER_LMA) == EFER_LMA {
463             if mode != CpuMode::Protected {
464                 return Err(PlatformError::InvalidState(anyhow!(
465                     "Protection must be enabled in long mode"
466                 )));
467             }
468 
469             mode = CpuMode::Long;
470         }
471 
472         Ok(mode)
473     }
474 }
475 
476 pub struct Emulator<'a, T: CpuStateManager> {
477     platform: &'a mut dyn PlatformEmulator<CpuState = T>,
478 }
479 
480 // Reduce repetition, see its invocation in get_handler().
481 macro_rules! gen_handler_match {
482     ($value: ident, $( ($module:ident, $code:ident) ),* ) => {
483         match $value {
484             $(
485                 Code::$code => Some(Box::new($module::$code {})),
486             )*
487             _ => None,
488         }
489     };
490 }
491 
492 impl<'a, T: CpuStateManager> Emulator<'a, T> {
493     pub fn new(platform: &mut dyn PlatformEmulator<CpuState = T>) -> Emulator<T> {
494         Emulator { platform }
495     }
496 
497     fn get_handler(code: Code) -> Option<Box<dyn InstructionHandler<T>>> {
498         let handler: Option<Box<dyn InstructionHandler<T>>> = gen_handler_match!(
499             code,
500             (mov, Mov_r8_rm8),
501             (mov, Mov_r8_imm8),
502             (mov, Mov_r16_imm16),
503             (mov, Mov_r16_rm16),
504             (mov, Mov_r32_imm32),
505             (mov, Mov_r32_rm32),
506             (mov, Mov_r64_imm64),
507             (mov, Mov_r64_rm64),
508             (mov, Mov_rm8_imm8),
509             (mov, Mov_rm8_r8),
510             (mov, Mov_rm16_imm16),
511             (mov, Mov_rm16_r16),
512             (mov, Mov_rm32_imm32),
513             (mov, Mov_rm32_r32),
514             (mov, Mov_rm64_imm32),
515             (mov, Mov_rm64_r64)
516         );
517 
518         handler
519     }
520 
521     fn emulate_insn_stream(
522         &mut self,
523         cpu_id: usize,
524         insn_stream: &[u8],
525         num_insn: Option<usize>,
526     ) -> EmulationResult<T, Exception> {
527         let mut state = self
528             .platform
529             .cpu_state(cpu_id)
530             .map_err(EmulationError::PlatformEmulationError)?;
531         let mut decoder = Decoder::new(64, insn_stream, DecoderOptions::NONE);
532         let mut insn = Instruction::default();
533         let mut num_insn_emulated: usize = 0;
534         let mut fetched_insn_stream: [u8; 16] = [0; 16];
535         let mut last_decoded_ip: u64 = state.ip();
536         let mut stop_emulation: bool = false;
537 
538         decoder.set_ip(state.ip());
539 
540         while decoder.can_decode() && !stop_emulation {
541             decoder.decode_out(&mut insn);
542 
543             if decoder.last_error() == DecoderError::NoMoreBytes {
544                 // The decoder is missing some bytes to decode the current
545                 // instruction, for example because the instruction stream
546                 // crosses a page boundary.
547                 // We fetch 16 more bytes from the instruction segment,
548                 // decode and emulate the failing instruction and terminate
549                 // the emulation loop.
550                 debug!(
551                     "Fetching {} bytes from {:#x}",
552                     fetched_insn_stream.len(),
553                     last_decoded_ip
554                 );
555 
556                 // fetched_insn_stream is 16 bytes long, enough to contain
557                 // any complete x86 instruction.
558                 self.platform
559                     .fetch(last_decoded_ip, &mut fetched_insn_stream)
560                     .map_err(EmulationError::PlatformEmulationError)?;
561 
562                 debug!("Fetched {:x?}", fetched_insn_stream);
563 
564                 // Once we have the new stream, we must create a new decoder
565                 // and emulate one last instruction from the last decoded IP.
566                 decoder = Decoder::new(64, &fetched_insn_stream, DecoderOptions::NONE);
567                 decoder.decode_out(&mut insn);
568                 if decoder.last_error() != DecoderError::None {
569                     return Err(EmulationError::InstructionFetchingError(anyhow!(
570                         "{:#x?}",
571                         insn_format!(insn)
572                     )));
573                 }
574 
575                 stop_emulation = true;
576             }
577 
578             // Emulate the decoded instruction
579             Emulator::get_handler(insn.code())
580                 .ok_or_else(|| {
581                     EmulationError::UnsupportedInstruction(anyhow!(
582                         "{:#x?} {:?} {:?}",
583                         insn_format!(insn),
584                         insn.mnemonic(),
585                         insn.code()
586                     ))
587                 })?
588                 .emulate(&insn, &mut state, self.platform)
589                 .context(anyhow!("Failed to emulate {:#x?}", insn_format!(insn)))?;
590 
591             last_decoded_ip = decoder.ip();
592             num_insn_emulated += 1;
593 
594             if let Some(num_insn) = num_insn {
595                 if num_insn_emulated >= num_insn {
596                     // Exit the decoding loop, do not decode the next instruction.
597                     stop_emulation = true;
598                 }
599             }
600         }
601 
602         state.set_ip(decoder.ip());
603         Ok(state)
604     }
605 
606     /// Emulate all instructions from the instructions stream.
607     pub fn emulate(&mut self, cpu_id: usize, insn_stream: &[u8]) -> EmulationResult<T, Exception> {
608         self.emulate_insn_stream(cpu_id, insn_stream, None)
609     }
610 
611     /// Only emulate the first instruction from the stream.
612     ///
613     /// This is useful for cases where we get readahead instruction stream
614     /// but implicitly must only emulate the first instruction, and then return
615     /// to the guest.
616     pub fn emulate_first_insn(
617         &mut self,
618         cpu_id: usize,
619         insn_stream: &[u8],
620     ) -> EmulationResult<T, Exception> {
621         self.emulate_insn_stream(cpu_id, insn_stream, Some(1))
622     }
623 }
624 
625 #[cfg(test)]
626 mod mock_vmm {
627     #![allow(unused_mut)]
628 
629     extern crate env_logger;
630 
631     use super::*;
632     use crate::arch::emulator::{EmulationError, PlatformEmulator};
633     use crate::arch::x86::emulator::{Emulator, EmulatorCpuState as CpuState};
634     use crate::arch::x86::gdt::{gdt_entry, segment_from_gdt};
635     use crate::arch::x86::Exception;
636     use std::collections::HashMap;
637     use std::sync::{Arc, Mutex};
638 
639     #[derive(Debug, Clone)]
640     pub struct MockVMM {
641         memory: Vec<u8>,
642         state: Arc<Mutex<CpuState>>,
643     }
644 
645     unsafe impl Sync for MockVMM {}
646 
647     pub type MockResult = Result<(), EmulationError<Exception>>;
648 
649     impl MockVMM {
650         pub fn new(ip: u64, regs: HashMap<Register, u64>, memory: Option<(u64, &[u8])>) -> MockVMM {
651             let _ = env_logger::try_init();
652             let cs_reg = segment_from_gdt(gdt_entry(0xc09b, 0, 0xffffffff), 1);
653             let ds_reg = segment_from_gdt(gdt_entry(0xc093, 0, 0xffffffff), 2);
654             let mut initial_state = CpuState::default();
655             initial_state.set_ip(ip);
656             initial_state.write_segment(Register::CS, cs_reg).unwrap();
657             initial_state.write_segment(Register::DS, ds_reg).unwrap();
658             for (reg, value) in regs {
659                 initial_state.write_reg(reg, value).unwrap();
660             }
661 
662             let mut vmm = MockVMM {
663                 memory: vec![0; 8192],
664                 state: Arc::new(Mutex::new(initial_state)),
665             };
666 
667             if let Some(mem) = memory {
668                 vmm.write_memory(mem.0, &mem.1).unwrap();
669             }
670 
671             vmm
672         }
673 
674         pub fn emulate_insn(
675             &mut self,
676             cpu_id: usize,
677             insn: &[u8],
678             num_insn: Option<usize>,
679         ) -> MockResult {
680             let ip = self.cpu_state(cpu_id).unwrap().ip();
681             let mut emulator = Emulator::new(self);
682 
683             let new_state = emulator.emulate_insn_stream(cpu_id, &insn, num_insn)?;
684             if num_insn.is_none() {
685                 assert_eq!(ip + insn.len() as u64, new_state.ip());
686             }
687 
688             self.set_cpu_state(cpu_id, new_state).unwrap();
689 
690             Ok(())
691         }
692 
693         pub fn emulate_first_insn(&mut self, cpu_id: usize, insn: &[u8]) -> MockResult {
694             self.emulate_insn(cpu_id, insn, Some(1))
695         }
696     }
697 
698     impl PlatformEmulator for MockVMM {
699         type CpuState = CpuState;
700 
701         fn read_memory(&self, gva: u64, data: &mut [u8]) -> Result<(), PlatformError> {
702             debug!(
703                 "Memory read {} bytes from [{:#x} -> {:#x}]",
704                 data.len(),
705                 gva,
706                 gva
707             );
708             data.copy_from_slice(&self.memory[gva as usize..gva as usize + data.len()]);
709             Ok(())
710         }
711 
712         fn write_memory(&mut self, gva: u64, data: &[u8]) -> Result<(), PlatformError> {
713             debug!(
714                 "Memory write {} bytes at [{:#x} -> {:#x}]",
715                 data.len(),
716                 gva,
717                 gva
718             );
719             self.memory[gva as usize..gva as usize + data.len()].copy_from_slice(data);
720 
721             Ok(())
722         }
723 
724         fn cpu_state(&self, _cpu_id: usize) -> Result<CpuState, PlatformError> {
725             Ok(self.state.lock().unwrap().clone())
726         }
727 
728         fn set_cpu_state(
729             &self,
730             _cpu_id: usize,
731             state: Self::CpuState,
732         ) -> Result<(), PlatformError> {
733             *self.state.lock().unwrap() = state;
734             Ok(())
735         }
736 
737         fn gva_to_gpa(&self, gva: u64) -> Result<u64, PlatformError> {
738             Ok(gva)
739         }
740 
741         fn fetch(&self, ip: u64, instruction_bytes: &mut [u8]) -> Result<(), PlatformError> {
742             let rip = self
743                 .state
744                 .lock()
745                 .unwrap()
746                 .linearize(Register::CS, ip, false)?;
747             self.read_memory(rip, instruction_bytes)
748         }
749     }
750 }
751 
752 #[cfg(test)]
753 mod tests {
754     #![allow(unused_mut)]
755     use super::*;
756     use crate::arch::x86::emulator::mock_vmm::*;
757 
758     macro_rules! hashmap {
759         ($( $key: expr => $val: expr ),*) => {{
760             let mut map = ::std::collections::HashMap::new();
761             $( map.insert($key, $val); )*
762                 map
763         }}
764     }
765 
766     #[test]
767     // Emulate truncated instruction stream, which should cause a fetch.
768     //
769     // mov rax, 0x1000
770     // Test with a first instruction truncated.
771     fn test_fetch_first_instruction() -> MockResult {
772         let ip: u64 = 0x1000;
773         let cpu_id = 0;
774         let memory = [
775             // Code at IP
776             0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000
777             0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h]
778             // Padding
779             0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes
780             // Data at IP + 0x10 (0x1234567812345678 in LE)
781             0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12,
782         ];
783         let insn = [
784             // First instruction is truncated
785             0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00,
786         ];
787 
788         let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory)));
789         assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok());
790 
791         let rax: u64 = vmm
792             .cpu_state(cpu_id)
793             .unwrap()
794             .read_reg(Register::RAX)
795             .unwrap();
796         assert_eq!(rax, ip);
797 
798         Ok(())
799     }
800 
801     #[test]
802     // Emulate truncated instruction stream, which should cause a fetch.
803     //
804     // mov rax, 0x1000
805     // mov rbx, qword ptr [rax+10h]
806     // Test with a 2nd instruction truncated.
807     fn test_fetch_second_instruction() -> MockResult {
808         let target_rax: u64 = 0x1234567812345678;
809         let ip: u64 = 0x1000;
810         let cpu_id = 0;
811         let memory = [
812             // Code at IP
813             0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000
814             0x48, 0x8b, 0x58, 0x10, // mov rbx, qword ptr [rax+10h]
815             // Padding
816             0x00, 0x00, 0x00, 0x00, 0x00, // Padding is all zeroes
817             // Data at IP + 0x10 (0x1234567812345678 in LE)
818             0x78, 0x56, 0x34, 0x12, 0x78, 0x56, 0x34, 0x12,
819         ];
820         let insn = [
821             0x48, 0xc7, 0xc0, 0x00, 0x10, 0x00, 0x00, // mov rax, 0x1000
822             0x48, 0x8b, // Truncated mov rbx, qword ptr [rax+10h] -- missing [0x58, 0x10]
823         ];
824 
825         let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory)));
826         assert!(vmm.emulate_insn(cpu_id, &insn, Some(2)).is_ok());
827 
828         let rbx: u64 = vmm
829             .cpu_state(cpu_id)
830             .unwrap()
831             .read_reg(Register::RBX)
832             .unwrap();
833         assert_eq!(rbx, target_rax);
834 
835         Ok(())
836     }
837 
838     #[test]
839     // Emulate truncated instruction stream, which should cause a fetch.
840     //
841     // mov rax, 0x1000
842     // Test with a first instruction truncated and a bad fetched instruction.
843     // Verify that the instruction emulation returns an error.
844     fn test_fetch_bad_insn() -> MockResult {
845         let ip: u64 = 0x1000;
846         let cpu_id = 0;
847         let memory = [
848             // Code at IP
849             0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
850             0xff, 0xff,
851         ];
852         let insn = [
853             // First instruction is truncated
854             0x48, 0xc7, 0xc0, 0x00, // mov rax, 0x1000 -- Missing bytes: 0x00, 0x10, 0x00, 0x00,
855         ];
856 
857         let mut vmm = MockVMM::new(ip, hashmap![], Some((ip, &memory)));
858         assert!(vmm.emulate_first_insn(cpu_id, &insn).is_err());
859 
860         Ok(())
861     }
862 }
863