1 // Copyright 2020 Arm Limited (or its affiliates). All rights reserved. 2 // Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. 3 // SPDX-License-Identifier: Apache-2.0 4 5 //! ARM PL031 Real Time Clock 6 //! 7 //! This module implements a PL031 Real Time Clock (RTC) that provides to provides long time base counter. 8 //! This is achieved by generating an interrupt signal after counting for a programmed number of cycles of 9 //! a real-time clock input. 10 //! 11 use crate::{read_le_u32, write_le_u32}; 12 use std::fmt; 13 use std::sync::{Arc, Barrier}; 14 use std::time::Instant; 15 use std::{io, result}; 16 use vm_device::interrupt::InterruptSourceGroup; 17 use vm_device::BusDevice; 18 19 // As you can see in https://static.docs.arm.com/ddi0224/c/real_time_clock_pl031_r1p3_technical_reference_manual_DDI0224C.pdf 20 // at section 3.2 Summary of RTC registers, the total size occupied by this device is 0x000 -> 0xFFC + 4 = 0x1000. 21 // From 0x0 to 0x1C we have following registers: 22 const RTCDR: u64 = 0x0; // Data Register. 23 const RTCMR: u64 = 0x4; // Match Register. 24 const RTCLR: u64 = 0x8; // Load Register. 25 const RTCCR: u64 = 0xc; // Control Register. 26 const RTCIMSC: u64 = 0x10; // Interrupt Mask Set or Clear Register. 27 const RTCRIS: u64 = 0x14; // Raw Interrupt Status. 28 const RTCMIS: u64 = 0x18; // Masked Interrupt Status. 29 const RTCICR: u64 = 0x1c; // Interrupt Clear Register. 30 // From 0x020 to 0xFDC => reserved space. 31 // From 0xFE0 to 0x1000 => Peripheral and PrimeCell Identification Registers which are Read Only registers. 32 // AMBA standard devices have CIDs (Cell IDs) and PIDs (Peripheral IDs). The linux kernel will look for these in order to assert the identity 33 // of these devices (i.e look at the `amba_device_try_add` function). 34 // We are putting the expected values (look at 'Reset value' column from above mentioned document) in an array. 35 const PL031_ID: [u8; 8] = [0x31, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]; 36 // We are only interested in the margins. 37 const AMBA_ID_LOW: u64 = 0xFE0; 38 const AMBA_ID_HIGH: u64 = 0x1000; 39 /// Constant to convert seconds to nanoseconds. 40 pub const NANOS_PER_SECOND: u64 = 1_000_000_000; 41 42 #[derive(Debug)] 43 pub enum Error { 44 BadWriteOffset(u64), 45 InterruptFailure(io::Error), 46 } 47 48 impl fmt::Display for Error { 49 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 50 match self { 51 Error::BadWriteOffset(offset) => write!(f, "Bad Write Offset: {offset}"), 52 Error::InterruptFailure(e) => write!(f, "Failed to trigger interrupt: {e}"), 53 } 54 } 55 } 56 57 type Result<T> = result::Result<T, Error>; 58 59 /// Wrapper over `libc::clockid_t` to specify Linux Kernel clock source. 60 pub enum ClockType { 61 /// Equivalent to `libc::CLOCK_MONOTONIC`. 62 Monotonic, 63 /// Equivalent to `libc::CLOCK_REALTIME`. 64 Real, 65 /// Equivalent to `libc::CLOCK_PROCESS_CPUTIME_ID`. 66 ProcessCpu, 67 /// Equivalent to `libc::CLOCK_THREAD_CPUTIME_ID`. 68 ThreadCpu, 69 } 70 71 impl From<ClockType> for libc::clockid_t { 72 fn from(ct: ClockType) -> libc::clockid_t { 73 match ct { 74 ClockType::Monotonic => libc::CLOCK_MONOTONIC, 75 ClockType::Real => libc::CLOCK_REALTIME, 76 ClockType::ProcessCpu => libc::CLOCK_PROCESS_CPUTIME_ID, 77 ClockType::ThreadCpu => libc::CLOCK_THREAD_CPUTIME_ID, 78 } 79 } 80 } 81 82 /// Structure representing the date in local time with nanosecond precision. 83 pub struct LocalTime { 84 /// Seconds in current minute. 85 sec: i32, 86 /// Minutes in current hour. 87 min: i32, 88 /// Hours in current day, 24H format. 89 hour: i32, 90 /// Days in current month. 91 mday: i32, 92 /// Months in current year. 93 mon: i32, 94 /// Years passed since 1900 BC. 95 year: i32, 96 /// Nanoseconds in current second. 97 nsec: i64, 98 } 99 100 impl LocalTime { 101 /// Returns the [LocalTime](struct.LocalTime.html) structure for the calling moment. 102 #[cfg(test)] 103 pub fn now() -> LocalTime { 104 let mut timespec = libc::timespec { 105 tv_sec: 0, 106 tv_nsec: 0, 107 }; 108 let mut tm: libc::tm = libc::tm { 109 tm_sec: 0, 110 tm_min: 0, 111 tm_hour: 0, 112 tm_mday: 0, 113 tm_mon: 0, 114 tm_year: 0, 115 tm_wday: 0, 116 tm_yday: 0, 117 tm_isdst: 0, 118 tm_gmtoff: 0, 119 tm_zone: std::ptr::null(), 120 }; 121 122 // SAFETY: the parameters are valid. 123 unsafe { 124 libc::clock_gettime(libc::CLOCK_REALTIME, &mut timespec); 125 libc::localtime_r(×pec.tv_sec, &mut tm); 126 } 127 128 LocalTime { 129 sec: tm.tm_sec, 130 min: tm.tm_min, 131 hour: tm.tm_hour, 132 mday: tm.tm_mday, 133 mon: tm.tm_mon, 134 year: tm.tm_year, 135 nsec: timespec.tv_nsec, 136 } 137 } 138 } 139 140 impl fmt::Display for LocalTime { 141 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 142 write!( 143 f, 144 "{}-{:02}-{:02}T{:02}:{:02}:{:02}.{:09}", 145 self.year + 1900, 146 self.mon + 1, 147 self.mday, 148 self.hour, 149 self.min, 150 self.sec, 151 self.nsec 152 ) 153 } 154 } 155 156 /// Returns a timestamp in nanoseconds based on the provided clock type. 157 /// 158 /// # Arguments 159 /// 160 /// * `clock_type` - Identifier of the Linux Kernel clock on which to act. 161 pub fn get_time(clock_type: ClockType) -> u64 { 162 let mut time_struct = libc::timespec { 163 tv_sec: 0, 164 tv_nsec: 0, 165 }; 166 // SAFETY: the parameters are valid. 167 unsafe { libc::clock_gettime(clock_type.into(), &mut time_struct) }; 168 seconds_to_nanoseconds(time_struct.tv_sec).unwrap() as u64 + (time_struct.tv_nsec as u64) 169 } 170 171 /// Converts a timestamp in seconds to an equivalent one in nanoseconds. 172 /// Returns `None` if the conversion overflows. 173 /// 174 /// # Arguments 175 /// 176 /// * `value` - Timestamp in seconds. 177 pub fn seconds_to_nanoseconds(value: i64) -> Option<i64> { 178 value.checked_mul(NANOS_PER_SECOND as i64) 179 } 180 181 /// A RTC device following the PL031 specification.. 182 pub struct Rtc { 183 previous_now: Instant, 184 tick_offset: i64, 185 // This is used for implementing the RTC alarm. However, in Firecracker we do not need it. 186 match_value: u32, 187 // Writes to this register load an update value into the RTC. 188 load: u32, 189 imsc: u32, 190 ris: u32, 191 interrupt: Arc<dyn InterruptSourceGroup>, 192 } 193 194 impl Rtc { 195 /// Constructs an AMBA PL031 RTC device. 196 pub fn new(interrupt: Arc<dyn InterruptSourceGroup>) -> Self { 197 Self { 198 // This is used only for duration measuring purposes. 199 previous_now: Instant::now(), 200 tick_offset: get_time(ClockType::Real) as i64, 201 match_value: 0, 202 load: 0, 203 imsc: 0, 204 ris: 0, 205 interrupt, 206 } 207 } 208 209 fn trigger_interrupt(&mut self) -> Result<()> { 210 self.interrupt.trigger(0).map_err(Error::InterruptFailure)?; 211 Ok(()) 212 } 213 214 fn get_time(&self) -> u32 { 215 let ts = (self.tick_offset as i128) 216 + (Instant::now().duration_since(self.previous_now).as_nanos() as i128); 217 (ts / NANOS_PER_SECOND as i128) as u32 218 } 219 220 fn handle_write(&mut self, offset: u64, val: u32) -> Result<()> { 221 match offset { 222 RTCMR => { 223 // The MR register is used for implementing the RTC alarm. A real time clock alarm is 224 // a feature that can be used to allow a computer to 'wake up' after shut down to execute 225 // tasks every day or on a certain day. It can sometimes be found in the 'Power Management' 226 // section of a motherboard's BIOS setup. This is functionality that extends beyond 227 // Firecracker intended use. However, we increment a metric just in case. 228 self.match_value = val; 229 } 230 RTCLR => { 231 self.load = val; 232 self.previous_now = Instant::now(); 233 // If the unwrap fails, then the internal value of the clock has been corrupted and 234 // we want to terminate the execution of the process. 235 self.tick_offset = seconds_to_nanoseconds(i64::from(val)).unwrap(); 236 } 237 RTCIMSC => { 238 self.imsc = val & 1; 239 self.trigger_interrupt()?; 240 } 241 RTCICR => { 242 // As per above mentioned doc, the interrupt is cleared by writing any data value to 243 // the Interrupt Clear Register. 244 self.ris = 0; 245 self.trigger_interrupt()?; 246 } 247 RTCCR => (), // ignore attempts to turn off the timer. 248 o => { 249 return Err(Error::BadWriteOffset(o)); 250 } 251 } 252 Ok(()) 253 } 254 } 255 256 impl BusDevice for Rtc { 257 fn read(&mut self, _base: u64, offset: u64, data: &mut [u8]) { 258 let mut read_ok = true; 259 260 let v = if (AMBA_ID_LOW..AMBA_ID_HIGH).contains(&offset) { 261 let index = ((offset - AMBA_ID_LOW) >> 2) as usize; 262 u32::from(PL031_ID[index]) 263 } else { 264 match offset { 265 RTCDR => self.get_time(), 266 RTCMR => { 267 // Even though we are not implementing RTC alarm we return the last value 268 self.match_value 269 } 270 RTCLR => self.load, 271 RTCCR => 1, // RTC is always enabled. 272 RTCIMSC => self.imsc, 273 RTCRIS => self.ris, 274 RTCMIS => self.ris & self.imsc, 275 _ => { 276 read_ok = false; 277 0 278 } 279 } 280 }; 281 if read_ok && data.len() <= 4 { 282 write_le_u32(data, v); 283 } else { 284 warn!( 285 "Invalid RTC PL031 read: offset {}, data length {}", 286 offset, 287 data.len() 288 ); 289 } 290 } 291 292 fn write(&mut self, _base: u64, offset: u64, data: &[u8]) -> Option<Arc<Barrier>> { 293 if data.len() <= 4 { 294 let v = read_le_u32(data); 295 if let Err(e) = self.handle_write(offset, v) { 296 warn!("Failed to write to RTC PL031 device: {}", e); 297 } 298 } else { 299 warn!( 300 "Invalid RTC PL031 write: offset {}, data length {}", 301 offset, 302 data.len() 303 ); 304 } 305 306 None 307 } 308 } 309 310 #[cfg(test)] 311 mod tests { 312 use super::*; 313 use crate::{ 314 read_be_u16, read_be_u32, read_le_i32, read_le_u16, read_le_u64, write_be_u16, 315 write_be_u32, write_le_i32, write_le_u16, write_le_u64, 316 }; 317 use vm_device::interrupt::{InterruptIndex, InterruptSourceConfig}; 318 use vmm_sys_util::eventfd::EventFd; 319 320 const LEGACY_RTC_MAPPED_IO_START: u64 = 0x0901_0000; 321 322 #[test] 323 fn test_get_time() { 324 for _ in 0..1000 { 325 assert!(get_time(ClockType::Monotonic) <= get_time(ClockType::Monotonic)); 326 } 327 328 for _ in 0..1000 { 329 assert!(get_time(ClockType::ProcessCpu) <= get_time(ClockType::ProcessCpu)); 330 } 331 332 for _ in 0..1000 { 333 assert!(get_time(ClockType::ThreadCpu) <= get_time(ClockType::ThreadCpu)); 334 } 335 336 assert_ne!(get_time(ClockType::Real), 0); 337 } 338 339 #[test] 340 fn test_local_time_display() { 341 let local_time = LocalTime { 342 sec: 30, 343 min: 15, 344 hour: 10, 345 mday: 4, 346 mon: 6, 347 year: 119, 348 nsec: 123_456_789, 349 }; 350 assert_eq!( 351 String::from("2019-07-04T10:15:30.123456789"), 352 local_time.to_string() 353 ); 354 355 let local_time = LocalTime { 356 sec: 5, 357 min: 5, 358 hour: 5, 359 mday: 23, 360 mon: 7, 361 year: 44, 362 nsec: 123, 363 }; 364 assert_eq!( 365 String::from("1944-08-23T05:05:05.000000123"), 366 local_time.to_string() 367 ); 368 369 let local_time = LocalTime::now(); 370 assert!(local_time.mon >= 0 && local_time.mon <= 11); 371 } 372 373 #[test] 374 fn test_seconds_to_nanoseconds() { 375 assert_eq!( 376 seconds_to_nanoseconds(100).unwrap() as u64, 377 100 * NANOS_PER_SECOND 378 ); 379 380 assert!(seconds_to_nanoseconds(9_223_372_037).is_none()); 381 } 382 383 struct TestInterrupt { 384 event_fd: EventFd, 385 } 386 387 impl InterruptSourceGroup for TestInterrupt { 388 fn trigger(&self, _index: InterruptIndex) -> result::Result<(), std::io::Error> { 389 self.event_fd.write(1) 390 } 391 392 fn update( 393 &self, 394 _index: InterruptIndex, 395 _config: InterruptSourceConfig, 396 _masked: bool, 397 _set_gsi: bool, 398 ) -> result::Result<(), std::io::Error> { 399 Ok(()) 400 } 401 402 fn set_gsi(&self) -> result::Result<(), std::io::Error> { 403 Ok(()) 404 } 405 406 fn notifier(&self, _index: InterruptIndex) -> Option<EventFd> { 407 Some(self.event_fd.try_clone().unwrap()) 408 } 409 } 410 411 impl TestInterrupt { 412 fn new(event_fd: EventFd) -> Self { 413 TestInterrupt { event_fd } 414 } 415 } 416 417 #[test] 418 fn test_rtc_read_write_and_event() { 419 let intr_evt = EventFd::new(libc::EFD_NONBLOCK).unwrap(); 420 421 let mut rtc = Rtc::new(Arc::new(TestInterrupt::new(intr_evt.try_clone().unwrap()))); 422 let mut data = [0; 4]; 423 424 // Read and write to the MR register. 425 write_le_u32(&mut data, 123); 426 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCMR, &data); 427 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCMR, &mut data); 428 let v = read_le_u32(&data); 429 assert_eq!(v, 123); 430 431 // Read and write to the LR register. 432 let v = get_time(ClockType::Real); 433 write_le_u32(&mut data, (v / NANOS_PER_SECOND) as u32); 434 let previous_now_before = rtc.previous_now; 435 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCLR, &data); 436 437 assert!(rtc.previous_now > previous_now_before); 438 439 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCLR, &mut data); 440 let v_read = read_le_u32(&data); 441 assert_eq!((v / NANOS_PER_SECOND) as u32, v_read); 442 443 // Read and write to IMSC register. 444 // Test with non zero value. 445 let non_zero = 1; 446 write_le_u32(&mut data, non_zero); 447 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCIMSC, &data); 448 // The interrupt line should be on. 449 assert!(rtc.interrupt.notifier(0).unwrap().read().unwrap() == 1); 450 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCIMSC, &mut data); 451 let v = read_le_u32(&data); 452 assert_eq!(non_zero & 1, v); 453 454 // Now test with 0. 455 write_le_u32(&mut data, 0); 456 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCIMSC, &data); 457 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCIMSC, &mut data); 458 let v = read_le_u32(&data); 459 assert_eq!(0, v); 460 461 // Read and write to the ICR register. 462 write_le_u32(&mut data, 1); 463 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCICR, &data); 464 // The interrupt line should be on. 465 assert!(rtc.interrupt.notifier(0).unwrap().read().unwrap() > 1); 466 let v_before = read_le_u32(&data); 467 468 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCICR, &mut data); 469 let v = read_le_u32(&data); 470 // ICR is a write only register. Data received should stay equal to data sent. 471 assert_eq!(v, v_before); 472 473 // Attempts to turn off the RTC should not go through. 474 write_le_u32(&mut data, 0); 475 rtc.write(LEGACY_RTC_MAPPED_IO_START, RTCCR, &data); 476 rtc.read(LEGACY_RTC_MAPPED_IO_START, RTCCR, &mut data); 477 let v = read_le_u32(&data); 478 assert_eq!(v, 1); 479 480 // Attempts to write beyond the writable space. Using here the space used to read 481 // the CID and PID from. 482 write_le_u32(&mut data, 0); 483 rtc.write(LEGACY_RTC_MAPPED_IO_START, AMBA_ID_LOW, &data); 484 // However, reading from the AMBA_ID_LOW should succeed upon read. 485 486 let mut data = [0; 4]; 487 rtc.read(LEGACY_RTC_MAPPED_IO_START, AMBA_ID_LOW, &mut data); 488 let index = AMBA_ID_LOW + 3; 489 assert_eq!(data[0], PL031_ID[((index - AMBA_ID_LOW) >> 2) as usize]); 490 } 491 492 macro_rules! byte_order_test_read_write { 493 ($test_name: ident, $write_fn_name: ident, $read_fn_name: ident, $is_be: expr, $data_type: ty) => { 494 #[test] 495 fn $test_name() { 496 let test_cases = [ 497 ( 498 0x0123_4567_89AB_CDEF as u64, 499 [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef], 500 ), 501 ( 502 0x0000_0000_0000_0000 as u64, 503 [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], 504 ), 505 ( 506 0x1923_2345_ABF3_CCD4 as u64, 507 [0x19, 0x23, 0x23, 0x45, 0xAB, 0xF3, 0xCC, 0xD4], 508 ), 509 ( 510 0x0FF0_0FF0_0FF0_0FF0 as u64, 511 [0x0F, 0xF0, 0x0F, 0xF0, 0x0F, 0xF0, 0x0F, 0xF0], 512 ), 513 ( 514 0xFFFF_FFFF_FFFF_FFFF as u64, 515 [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], 516 ), 517 ( 518 0x89AB_12D4_C2D2_09BB as u64, 519 [0x89, 0xAB, 0x12, 0xD4, 0xC2, 0xD2, 0x09, 0xBB], 520 ), 521 ]; 522 523 let type_size = std::mem::size_of::<$data_type>(); 524 for (test_val, v_arr) in &test_cases { 525 let v = *test_val as $data_type; 526 let cmp_iter: Box<dyn Iterator<Item = _>> = if $is_be { 527 Box::new(v_arr[(8 - type_size)..].iter()) 528 } else { 529 Box::new(v_arr.iter().rev()) 530 }; 531 // test write 532 let mut write_arr = vec![Default::default(); type_size]; 533 $write_fn_name(&mut write_arr, v); 534 for (cmp, cur) in cmp_iter.zip(write_arr.iter()) { 535 assert_eq!(*cmp, *cur as u8) 536 } 537 // test read 538 let read_val = $read_fn_name(&write_arr); 539 assert_eq!(v, read_val); 540 } 541 } 542 }; 543 } 544 545 byte_order_test_read_write!(test_le_u16, write_le_u16, read_le_u16, false, u16); 546 byte_order_test_read_write!(test_le_u32, write_le_u32, read_le_u32, false, u32); 547 byte_order_test_read_write!(test_le_u64, write_le_u64, read_le_u64, false, u64); 548 byte_order_test_read_write!(test_le_i32, write_le_i32, read_le_i32, false, i32); 549 byte_order_test_read_write!(test_be_u16, write_be_u16, read_be_u16, true, u16); 550 byte_order_test_read_write!(test_be_u32, write_be_u32, read_be_u32, true, u32); 551 } 552