1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_ag.h"
23
24 static struct kmem_cache *xfs_allocbt_cur_cache;
25
26 STATIC struct xfs_btree_cur *
xfs_bnobt_dup_cursor(struct xfs_btree_cur * cur)27 xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29 {
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 to_perag(cur->bc_group));
32 }
33
34 STATIC struct xfs_btree_cur *
xfs_cntbt_dup_cursor(struct xfs_btree_cur * cur)35 xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37 {
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 to_perag(cur->bc_group));
40 }
41
42 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)43 xfs_allocbt_set_root(
44 struct xfs_btree_cur *cur,
45 const union xfs_btree_ptr *ptr,
46 int inc)
47 {
48 struct xfs_perag *pag = to_perag(cur->bc_group);
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65 }
66
67 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)68 xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73 {
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95 }
96
97 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)98 xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101 {
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108 agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116 }
117
118 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)119 xfs_allocbt_get_minrecs(
120 struct xfs_btree_cur *cur,
121 int level)
122 {
123 return cur->bc_mp->m_alloc_mnr[level != 0];
124 }
125
126 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)127 xfs_allocbt_get_maxrecs(
128 struct xfs_btree_cur *cur,
129 int level)
130 {
131 return cur->bc_mp->m_alloc_mxr[level != 0];
132 }
133
134 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)135 xfs_allocbt_init_key_from_rec(
136 union xfs_btree_key *key,
137 const union xfs_btree_rec *rec)
138 {
139 key->alloc.ar_startblock = rec->alloc.ar_startblock;
140 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141 }
142
143 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)144 xfs_bnobt_init_high_key_from_rec(
145 union xfs_btree_key *key,
146 const union xfs_btree_rec *rec)
147 {
148 __u32 x;
149
150 x = be32_to_cpu(rec->alloc.ar_startblock);
151 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152 key->alloc.ar_startblock = cpu_to_be32(x);
153 key->alloc.ar_blockcount = 0;
154 }
155
156 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)157 xfs_cntbt_init_high_key_from_rec(
158 union xfs_btree_key *key,
159 const union xfs_btree_rec *rec)
160 {
161 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162 key->alloc.ar_startblock = 0;
163 }
164
165 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)166 xfs_allocbt_init_rec_from_cur(
167 struct xfs_btree_cur *cur,
168 union xfs_btree_rec *rec)
169 {
170 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172 }
173
174 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)175 xfs_allocbt_init_ptr_from_cur(
176 struct xfs_btree_cur *cur,
177 union xfs_btree_ptr *ptr)
178 {
179 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
180
181 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
182
183 if (xfs_btree_is_bno(cur->bc_ops))
184 ptr->s = agf->agf_bno_root;
185 else
186 ptr->s = agf->agf_cnt_root;
187 }
188
189 STATIC int
xfs_bnobt_cmp_key_with_cur(struct xfs_btree_cur * cur,const union xfs_btree_key * key)190 xfs_bnobt_cmp_key_with_cur(
191 struct xfs_btree_cur *cur,
192 const union xfs_btree_key *key)
193 {
194 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
195 const struct xfs_alloc_rec *kp = &key->alloc;
196
197 return cmp_int(be32_to_cpu(kp->ar_startblock),
198 rec->ar_startblock);
199 }
200
201 STATIC int
xfs_cntbt_cmp_key_with_cur(struct xfs_btree_cur * cur,const union xfs_btree_key * key)202 xfs_cntbt_cmp_key_with_cur(
203 struct xfs_btree_cur *cur,
204 const union xfs_btree_key *key)
205 {
206 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
207 const struct xfs_alloc_rec *kp = &key->alloc;
208
209 return cmp_int(be32_to_cpu(kp->ar_blockcount), rec->ar_blockcount) ?:
210 cmp_int(be32_to_cpu(kp->ar_startblock), rec->ar_startblock);
211 }
212
213 STATIC int
xfs_bnobt_cmp_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)214 xfs_bnobt_cmp_two_keys(
215 struct xfs_btree_cur *cur,
216 const union xfs_btree_key *k1,
217 const union xfs_btree_key *k2,
218 const union xfs_btree_key *mask)
219 {
220 ASSERT(!mask || mask->alloc.ar_startblock);
221
222 return cmp_int(be32_to_cpu(k1->alloc.ar_startblock),
223 be32_to_cpu(k2->alloc.ar_startblock));
224 }
225
226 STATIC int
xfs_cntbt_cmp_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)227 xfs_cntbt_cmp_two_keys(
228 struct xfs_btree_cur *cur,
229 const union xfs_btree_key *k1,
230 const union xfs_btree_key *k2,
231 const union xfs_btree_key *mask)
232 {
233 ASSERT(!mask || (mask->alloc.ar_blockcount &&
234 mask->alloc.ar_startblock));
235
236 return cmp_int(be32_to_cpu(k1->alloc.ar_blockcount),
237 be32_to_cpu(k2->alloc.ar_blockcount)) ?:
238 cmp_int(be32_to_cpu(k1->alloc.ar_startblock),
239 be32_to_cpu(k2->alloc.ar_startblock));
240 }
241
242 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)243 xfs_allocbt_verify(
244 struct xfs_buf *bp)
245 {
246 struct xfs_mount *mp = bp->b_mount;
247 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
248 struct xfs_perag *pag = bp->b_pag;
249 xfs_failaddr_t fa;
250 unsigned int level;
251
252 if (!xfs_verify_magic(bp, block->bb_magic))
253 return __this_address;
254
255 if (xfs_has_crc(mp)) {
256 fa = xfs_btree_agblock_v5hdr_verify(bp);
257 if (fa)
258 return fa;
259 }
260
261 /*
262 * The perag may not be attached during grow operations or fully
263 * initialized from the AGF during log recovery. Therefore we can only
264 * check against maximum tree depth from those contexts.
265 *
266 * Otherwise check against the per-tree limit. Peek at one of the
267 * verifier magic values to determine the type of tree we're verifying
268 * against.
269 */
270 level = be16_to_cpu(block->bb_level);
271 if (pag && xfs_perag_initialised_agf(pag)) {
272 unsigned int maxlevel, repair_maxlevel = 0;
273
274 /*
275 * Online repair could be rewriting the free space btrees, so
276 * we'll validate against the larger of either tree while this
277 * is going on.
278 */
279 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
280 maxlevel = pag->pagf_cnt_level;
281 #ifdef CONFIG_XFS_ONLINE_REPAIR
282 repair_maxlevel = pag->pagf_repair_cnt_level;
283 #endif
284 } else {
285 maxlevel = pag->pagf_bno_level;
286 #ifdef CONFIG_XFS_ONLINE_REPAIR
287 repair_maxlevel = pag->pagf_repair_bno_level;
288 #endif
289 }
290
291 if (level >= max(maxlevel, repair_maxlevel))
292 return __this_address;
293 } else if (level >= mp->m_alloc_maxlevels)
294 return __this_address;
295
296 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
297 }
298
299 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)300 xfs_allocbt_read_verify(
301 struct xfs_buf *bp)
302 {
303 xfs_failaddr_t fa;
304
305 if (!xfs_btree_agblock_verify_crc(bp))
306 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
307 else {
308 fa = xfs_allocbt_verify(bp);
309 if (fa)
310 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
311 }
312
313 if (bp->b_error)
314 trace_xfs_btree_corrupt(bp, _RET_IP_);
315 }
316
317 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)318 xfs_allocbt_write_verify(
319 struct xfs_buf *bp)
320 {
321 xfs_failaddr_t fa;
322
323 fa = xfs_allocbt_verify(bp);
324 if (fa) {
325 trace_xfs_btree_corrupt(bp, _RET_IP_);
326 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
327 return;
328 }
329 xfs_btree_agblock_calc_crc(bp);
330
331 }
332
333 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
334 .name = "xfs_bnobt",
335 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
336 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
337 .verify_read = xfs_allocbt_read_verify,
338 .verify_write = xfs_allocbt_write_verify,
339 .verify_struct = xfs_allocbt_verify,
340 };
341
342 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
343 .name = "xfs_cntbt",
344 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
345 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
346 .verify_read = xfs_allocbt_read_verify,
347 .verify_write = xfs_allocbt_write_verify,
348 .verify_struct = xfs_allocbt_verify,
349 };
350
351 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)352 xfs_bnobt_keys_inorder(
353 struct xfs_btree_cur *cur,
354 const union xfs_btree_key *k1,
355 const union xfs_btree_key *k2)
356 {
357 return be32_to_cpu(k1->alloc.ar_startblock) <
358 be32_to_cpu(k2->alloc.ar_startblock);
359 }
360
361 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)362 xfs_bnobt_recs_inorder(
363 struct xfs_btree_cur *cur,
364 const union xfs_btree_rec *r1,
365 const union xfs_btree_rec *r2)
366 {
367 return be32_to_cpu(r1->alloc.ar_startblock) +
368 be32_to_cpu(r1->alloc.ar_blockcount) <=
369 be32_to_cpu(r2->alloc.ar_startblock);
370 }
371
372 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)373 xfs_cntbt_keys_inorder(
374 struct xfs_btree_cur *cur,
375 const union xfs_btree_key *k1,
376 const union xfs_btree_key *k2)
377 {
378 return be32_to_cpu(k1->alloc.ar_blockcount) <
379 be32_to_cpu(k2->alloc.ar_blockcount) ||
380 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
381 be32_to_cpu(k1->alloc.ar_startblock) <
382 be32_to_cpu(k2->alloc.ar_startblock));
383 }
384
385 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)386 xfs_cntbt_recs_inorder(
387 struct xfs_btree_cur *cur,
388 const union xfs_btree_rec *r1,
389 const union xfs_btree_rec *r2)
390 {
391 return be32_to_cpu(r1->alloc.ar_blockcount) <
392 be32_to_cpu(r2->alloc.ar_blockcount) ||
393 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
394 be32_to_cpu(r1->alloc.ar_startblock) <
395 be32_to_cpu(r2->alloc.ar_startblock));
396 }
397
398 STATIC enum xbtree_key_contig
xfs_allocbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)399 xfs_allocbt_keys_contiguous(
400 struct xfs_btree_cur *cur,
401 const union xfs_btree_key *key1,
402 const union xfs_btree_key *key2,
403 const union xfs_btree_key *mask)
404 {
405 ASSERT(!mask || mask->alloc.ar_startblock);
406
407 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
408 be32_to_cpu(key2->alloc.ar_startblock));
409 }
410
411 const struct xfs_btree_ops xfs_bnobt_ops = {
412 .name = "bno",
413 .type = XFS_BTREE_TYPE_AG,
414
415 .rec_len = sizeof(xfs_alloc_rec_t),
416 .key_len = sizeof(xfs_alloc_key_t),
417 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
418
419 .lru_refs = XFS_ALLOC_BTREE_REF,
420 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
421 .sick_mask = XFS_SICK_AG_BNOBT,
422
423 .dup_cursor = xfs_bnobt_dup_cursor,
424 .set_root = xfs_allocbt_set_root,
425 .alloc_block = xfs_allocbt_alloc_block,
426 .free_block = xfs_allocbt_free_block,
427 .get_minrecs = xfs_allocbt_get_minrecs,
428 .get_maxrecs = xfs_allocbt_get_maxrecs,
429 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
430 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
431 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
432 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
433 .cmp_key_with_cur = xfs_bnobt_cmp_key_with_cur,
434 .buf_ops = &xfs_bnobt_buf_ops,
435 .cmp_two_keys = xfs_bnobt_cmp_two_keys,
436 .keys_inorder = xfs_bnobt_keys_inorder,
437 .recs_inorder = xfs_bnobt_recs_inorder,
438 .keys_contiguous = xfs_allocbt_keys_contiguous,
439 };
440
441 const struct xfs_btree_ops xfs_cntbt_ops = {
442 .name = "cnt",
443 .type = XFS_BTREE_TYPE_AG,
444
445 .rec_len = sizeof(xfs_alloc_rec_t),
446 .key_len = sizeof(xfs_alloc_key_t),
447 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
448
449 .lru_refs = XFS_ALLOC_BTREE_REF,
450 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
451 .sick_mask = XFS_SICK_AG_CNTBT,
452
453 .dup_cursor = xfs_cntbt_dup_cursor,
454 .set_root = xfs_allocbt_set_root,
455 .alloc_block = xfs_allocbt_alloc_block,
456 .free_block = xfs_allocbt_free_block,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .cmp_key_with_cur = xfs_cntbt_cmp_key_with_cur,
464 .buf_ops = &xfs_cntbt_buf_ops,
465 .cmp_two_keys = xfs_cntbt_cmp_two_keys,
466 .keys_inorder = xfs_cntbt_keys_inorder,
467 .recs_inorder = xfs_cntbt_recs_inorder,
468 .keys_contiguous = NULL, /* not needed right now */
469 };
470
471 /*
472 * Allocate a new bnobt cursor.
473 *
474 * For staging cursors tp and agbp are NULL.
475 */
476 struct xfs_btree_cur *
xfs_bnobt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)477 xfs_bnobt_init_cursor(
478 struct xfs_mount *mp,
479 struct xfs_trans *tp,
480 struct xfs_buf *agbp,
481 struct xfs_perag *pag)
482 {
483 struct xfs_btree_cur *cur;
484
485 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
486 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
487 cur->bc_group = xfs_group_hold(pag_group(pag));
488 cur->bc_ag.agbp = agbp;
489 if (agbp) {
490 struct xfs_agf *agf = agbp->b_addr;
491
492 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
493 }
494 return cur;
495 }
496
497 /*
498 * Allocate a new cntbt cursor.
499 *
500 * For staging cursors tp and agbp are NULL.
501 */
502 struct xfs_btree_cur *
xfs_cntbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)503 xfs_cntbt_init_cursor(
504 struct xfs_mount *mp,
505 struct xfs_trans *tp,
506 struct xfs_buf *agbp,
507 struct xfs_perag *pag)
508 {
509 struct xfs_btree_cur *cur;
510
511 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
512 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
513 cur->bc_group = xfs_group_hold(pag_group(pag));
514 cur->bc_ag.agbp = agbp;
515 if (agbp) {
516 struct xfs_agf *agf = agbp->b_addr;
517
518 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
519 }
520 return cur;
521 }
522
523 /*
524 * Install a new free space btree root. Caller is responsible for invalidating
525 * and freeing the old btree blocks.
526 */
527 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)528 xfs_allocbt_commit_staged_btree(
529 struct xfs_btree_cur *cur,
530 struct xfs_trans *tp,
531 struct xfs_buf *agbp)
532 {
533 struct xfs_agf *agf = agbp->b_addr;
534 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
535
536 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537
538 if (xfs_btree_is_bno(cur->bc_ops)) {
539 agf->agf_bno_root = cpu_to_be32(afake->af_root);
540 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
541 } else {
542 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
543 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
544 }
545 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
546
547 xfs_btree_commit_afakeroot(cur, tp, agbp);
548 }
549
550 /* Calculate number of records in an alloc btree block. */
551 static inline unsigned int
xfs_allocbt_block_maxrecs(unsigned int blocklen,bool leaf)552 xfs_allocbt_block_maxrecs(
553 unsigned int blocklen,
554 bool leaf)
555 {
556 if (leaf)
557 return blocklen / sizeof(xfs_alloc_rec_t);
558 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
559 }
560
561 /*
562 * Calculate number of records in an alloc btree block.
563 */
564 unsigned int
xfs_allocbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)565 xfs_allocbt_maxrecs(
566 struct xfs_mount *mp,
567 unsigned int blocklen,
568 bool leaf)
569 {
570 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
571 return xfs_allocbt_block_maxrecs(blocklen, leaf);
572 }
573
574 /* Free space btrees are at their largest when every other block is free. */
575 #define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
576
577 /* Compute the max possible height for free space btrees. */
578 unsigned int
xfs_allocbt_maxlevels_ondisk(void)579 xfs_allocbt_maxlevels_ondisk(void)
580 {
581 unsigned int minrecs[2];
582 unsigned int blocklen;
583
584 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
585 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
586
587 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
588 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
589
590 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
591 }
592
593 /* Calculate the freespace btree size for some records. */
594 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)595 xfs_allocbt_calc_size(
596 struct xfs_mount *mp,
597 unsigned long long len)
598 {
599 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
600 }
601
602 int __init
xfs_allocbt_init_cur_cache(void)603 xfs_allocbt_init_cur_cache(void)
604 {
605 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
606 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
607 0, 0, NULL);
608
609 if (!xfs_allocbt_cur_cache)
610 return -ENOMEM;
611 return 0;
612 }
613
614 void
xfs_allocbt_destroy_cur_cache(void)615 xfs_allocbt_destroy_cur_cache(void)
616 {
617 kmem_cache_destroy(xfs_allocbt_cur_cache);
618 xfs_allocbt_cur_cache = NULL;
619 }
620