xref: /linux/block/blk-wbt.c (revision ee94b00c1a648530333d9734200be7a45e6e00cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * buffered writeback throttling. loosely based on CoDel. We can't drop
4  * packets for IO scheduling, so the logic is something like this:
5  *
6  * - Monitor latencies in a defined window of time.
7  * - If the minimum latency in the above window exceeds some target, increment
8  *   scaling step and scale down queue depth by a factor of 2x. The monitoring
9  *   window is then shrunk to 100 / sqrt(scaling step + 1).
10  * - For any window where we don't have solid data on what the latencies
11  *   look like, retain status quo.
12  * - If latencies look good, decrement scaling step.
13  * - If we're only doing writes, allow the scaling step to go negative. This
14  *   will temporarily boost write performance, snapping back to a stable
15  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
16  *   positive scaling steps where we shrink the monitoring window, a negative
17  *   scaling step retains the default step==0 window size.
18  *
19  * Copyright (C) 2016 Jens Axboe
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27 
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32 #include "blk.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/wbt.h>
36 
37 enum wbt_flags {
38 	WBT_TRACKED		= 1,	/* write, tracked for throttling */
39 	WBT_READ		= 2,	/* read */
40 	WBT_SWAP		= 4,	/* write, from swap_writeout() */
41 	WBT_DISCARD		= 8,	/* discard */
42 
43 	WBT_NR_BITS		= 4,	/* number of bits */
44 };
45 
46 enum {
47 	WBT_RWQ_BG		= 0,
48 	WBT_RWQ_SWAP,
49 	WBT_RWQ_DISCARD,
50 	WBT_NUM_RWQ,
51 };
52 
53 /*
54  * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
55  * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
56  * to WBT_STATE_OFF/ON_MANUAL.
57  */
58 enum {
59 	WBT_STATE_ON_DEFAULT	= 1,	/* on by default */
60 	WBT_STATE_ON_MANUAL	= 2,	/* on manually by sysfs */
61 	WBT_STATE_OFF_DEFAULT	= 3,	/* off by default */
62 	WBT_STATE_OFF_MANUAL	= 4,	/* off manually by sysfs */
63 };
64 
65 struct rq_wb {
66 	/*
67 	 * Settings that govern how we throttle
68 	 */
69 	unsigned int wb_background;		/* background writeback */
70 	unsigned int wb_normal;			/* normal writeback */
71 
72 	short enable_state;			/* WBT_STATE_* */
73 
74 	/*
75 	 * Number of consecutive periods where we don't have enough
76 	 * information to make a firm scale up/down decision.
77 	 */
78 	unsigned int unknown_cnt;
79 
80 	u64 win_nsec;				/* default window size */
81 	u64 cur_win_nsec;			/* current window size */
82 
83 	struct blk_stat_callback *cb;
84 
85 	u64 sync_issue;
86 	void *sync_cookie;
87 
88 	unsigned long last_issue;	/* issue time of last read rq */
89 	unsigned long last_comp;	/* completion time of last read rq */
90 	unsigned long min_lat_nsec;
91 	struct rq_qos rqos;
92 	struct rq_wait rq_wait[WBT_NUM_RWQ];
93 	struct rq_depth rq_depth;
94 };
95 
RQWB(struct rq_qos * rqos)96 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
97 {
98 	return container_of(rqos, struct rq_wb, rqos);
99 }
100 
wbt_clear_state(struct request * rq)101 static inline void wbt_clear_state(struct request *rq)
102 {
103 	rq->wbt_flags = 0;
104 }
105 
wbt_flags(struct request * rq)106 static inline enum wbt_flags wbt_flags(struct request *rq)
107 {
108 	return rq->wbt_flags;
109 }
110 
wbt_is_tracked(struct request * rq)111 static inline bool wbt_is_tracked(struct request *rq)
112 {
113 	return rq->wbt_flags & WBT_TRACKED;
114 }
115 
wbt_is_read(struct request * rq)116 static inline bool wbt_is_read(struct request *rq)
117 {
118 	return rq->wbt_flags & WBT_READ;
119 }
120 
121 enum {
122 	/*
123 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
124 	 * from here depending on device stats
125 	 */
126 	RWB_DEF_DEPTH	= 16,
127 
128 	/*
129 	 * 100msec window
130 	 */
131 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
132 
133 	/*
134 	 * Disregard stats, if we don't meet this minimum
135 	 */
136 	RWB_MIN_WRITE_SAMPLES	= 3,
137 
138 	/*
139 	 * If we have this number of consecutive windows without enough
140 	 * information to scale up or down, slowly return to center state
141 	 * (step == 0).
142 	 */
143 	RWB_UNKNOWN_BUMP	= 5,
144 };
145 
rwb_enabled(struct rq_wb * rwb)146 static inline bool rwb_enabled(struct rq_wb *rwb)
147 {
148 	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
149 		      rwb->enable_state != WBT_STATE_OFF_MANUAL;
150 }
151 
wb_timestamp(struct rq_wb * rwb,unsigned long * var)152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
153 {
154 	if (rwb_enabled(rwb)) {
155 		const unsigned long cur = jiffies;
156 
157 		if (cur != *var)
158 			*var = cur;
159 	}
160 }
161 
162 /*
163  * If a task was rate throttled in balance_dirty_pages() within the last
164  * second or so, use that to indicate a higher cleaning rate.
165  */
wb_recent_wait(struct rq_wb * rwb)166 static bool wb_recent_wait(struct rq_wb *rwb)
167 {
168 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
169 
170 	return time_before(jiffies, bdi->last_bdp_sleep + HZ);
171 }
172 
get_rq_wait(struct rq_wb * rwb,enum wbt_flags wb_acct)173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
174 					  enum wbt_flags wb_acct)
175 {
176 	if (wb_acct & WBT_SWAP)
177 		return &rwb->rq_wait[WBT_RWQ_SWAP];
178 	else if (wb_acct & WBT_DISCARD)
179 		return &rwb->rq_wait[WBT_RWQ_DISCARD];
180 
181 	return &rwb->rq_wait[WBT_RWQ_BG];
182 }
183 
rwb_wake_all(struct rq_wb * rwb)184 static void rwb_wake_all(struct rq_wb *rwb)
185 {
186 	int i;
187 
188 	for (i = 0; i < WBT_NUM_RWQ; i++) {
189 		struct rq_wait *rqw = &rwb->rq_wait[i];
190 
191 		if (wq_has_sleeper(&rqw->wait))
192 			wake_up_all(&rqw->wait);
193 	}
194 }
195 
wbt_rqw_done(struct rq_wb * rwb,struct rq_wait * rqw,enum wbt_flags wb_acct)196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
197 			 enum wbt_flags wb_acct)
198 {
199 	int inflight, limit;
200 
201 	inflight = atomic_dec_return(&rqw->inflight);
202 
203 	/*
204 	 * For discards, our limit is always the background. For writes, if
205 	 * the device does write back caching, drop further down before we
206 	 * wake people up.
207 	 */
208 	if (wb_acct & WBT_DISCARD)
209 		limit = rwb->wb_background;
210 	else if (blk_queue_write_cache(rwb->rqos.disk->queue) &&
211 		 !wb_recent_wait(rwb))
212 		limit = 0;
213 	else
214 		limit = rwb->wb_normal;
215 
216 	/*
217 	 * Don't wake anyone up if we are above the normal limit.
218 	 */
219 	if (inflight && inflight >= limit)
220 		return;
221 
222 	if (wq_has_sleeper(&rqw->wait)) {
223 		int diff = limit - inflight;
224 
225 		if (!inflight || diff >= rwb->wb_background / 2)
226 			wake_up_all(&rqw->wait);
227 	}
228 }
229 
__wbt_done(struct rq_qos * rqos,enum wbt_flags wb_acct)230 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
231 {
232 	struct rq_wb *rwb = RQWB(rqos);
233 	struct rq_wait *rqw;
234 
235 	if (!(wb_acct & WBT_TRACKED))
236 		return;
237 
238 	rqw = get_rq_wait(rwb, wb_acct);
239 	wbt_rqw_done(rwb, rqw, wb_acct);
240 }
241 
242 /*
243  * Called on completion of a request. Note that it's also called when
244  * a request is merged, when the request gets freed.
245  */
wbt_done(struct rq_qos * rqos,struct request * rq)246 static void wbt_done(struct rq_qos *rqos, struct request *rq)
247 {
248 	struct rq_wb *rwb = RQWB(rqos);
249 
250 	if (!wbt_is_tracked(rq)) {
251 		if (wbt_is_read(rq)) {
252 			if (rwb->sync_cookie == rq) {
253 				rwb->sync_issue = 0;
254 				rwb->sync_cookie = NULL;
255 			}
256 
257 			wb_timestamp(rwb, &rwb->last_comp);
258 		}
259 	} else {
260 		WARN_ON_ONCE(rq == rwb->sync_cookie);
261 		__wbt_done(rqos, wbt_flags(rq));
262 	}
263 	wbt_clear_state(rq);
264 }
265 
stat_sample_valid(struct blk_rq_stat * stat)266 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
267 {
268 	/*
269 	 * We need at least one read sample, and a minimum of
270 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
271 	 * that it's writes impacting us, and not just some sole read on
272 	 * a device that is in a lower power state.
273 	 */
274 	return (stat[READ].nr_samples >= 1 &&
275 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
276 }
277 
rwb_sync_issue_lat(struct rq_wb * rwb)278 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
279 {
280 	u64 issue = READ_ONCE(rwb->sync_issue);
281 
282 	if (!issue || !rwb->sync_cookie)
283 		return 0;
284 
285 	return blk_time_get_ns() - issue;
286 }
287 
wbt_inflight(struct rq_wb * rwb)288 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
289 {
290 	unsigned int i, ret = 0;
291 
292 	for (i = 0; i < WBT_NUM_RWQ; i++)
293 		ret += atomic_read(&rwb->rq_wait[i].inflight);
294 
295 	return ret;
296 }
297 
298 enum {
299 	LAT_OK = 1,
300 	LAT_UNKNOWN,
301 	LAT_UNKNOWN_WRITES,
302 	LAT_EXCEEDED,
303 };
304 
latency_exceeded(struct rq_wb * rwb,struct blk_rq_stat * stat)305 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
306 {
307 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
308 	struct rq_depth *rqd = &rwb->rq_depth;
309 	u64 thislat;
310 
311 	/*
312 	 * If our stored sync issue exceeds the window size, or it
313 	 * exceeds our min target AND we haven't logged any entries,
314 	 * flag the latency as exceeded. wbt works off completion latencies,
315 	 * but for a flooded device, a single sync IO can take a long time
316 	 * to complete after being issued. If this time exceeds our
317 	 * monitoring window AND we didn't see any other completions in that
318 	 * window, then count that sync IO as a violation of the latency.
319 	 */
320 	thislat = rwb_sync_issue_lat(rwb);
321 	if (thislat > rwb->cur_win_nsec ||
322 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
323 		trace_wbt_lat(bdi, thislat);
324 		return LAT_EXCEEDED;
325 	}
326 
327 	/*
328 	 * No read/write mix, if stat isn't valid
329 	 */
330 	if (!stat_sample_valid(stat)) {
331 		/*
332 		 * If we had writes in this stat window and the window is
333 		 * current, we're only doing writes. If a task recently
334 		 * waited or still has writes in flights, consider us doing
335 		 * just writes as well.
336 		 */
337 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
338 		    wbt_inflight(rwb))
339 			return LAT_UNKNOWN_WRITES;
340 		return LAT_UNKNOWN;
341 	}
342 
343 	/*
344 	 * If the 'min' latency exceeds our target, step down.
345 	 */
346 	if (stat[READ].min > rwb->min_lat_nsec) {
347 		trace_wbt_lat(bdi, stat[READ].min);
348 		trace_wbt_stat(bdi, stat);
349 		return LAT_EXCEEDED;
350 	}
351 
352 	if (rqd->scale_step)
353 		trace_wbt_stat(bdi, stat);
354 
355 	return LAT_OK;
356 }
357 
rwb_trace_step(struct rq_wb * rwb,const char * msg)358 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
359 {
360 	struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
361 	struct rq_depth *rqd = &rwb->rq_depth;
362 
363 	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
364 			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
365 }
366 
calc_wb_limits(struct rq_wb * rwb)367 static void calc_wb_limits(struct rq_wb *rwb)
368 {
369 	if (rwb->min_lat_nsec == 0) {
370 		rwb->wb_normal = rwb->wb_background = 0;
371 	} else if (rwb->rq_depth.max_depth <= 2) {
372 		rwb->wb_normal = rwb->rq_depth.max_depth;
373 		rwb->wb_background = 1;
374 	} else {
375 		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
376 		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
377 	}
378 }
379 
scale_up(struct rq_wb * rwb)380 static void scale_up(struct rq_wb *rwb)
381 {
382 	if (!rq_depth_scale_up(&rwb->rq_depth))
383 		return;
384 	calc_wb_limits(rwb);
385 	rwb->unknown_cnt = 0;
386 	rwb_wake_all(rwb);
387 	rwb_trace_step(rwb, tracepoint_string("scale up"));
388 }
389 
scale_down(struct rq_wb * rwb,bool hard_throttle)390 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
391 {
392 	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
393 		return;
394 	calc_wb_limits(rwb);
395 	rwb->unknown_cnt = 0;
396 	rwb_trace_step(rwb, tracepoint_string("scale down"));
397 }
398 
rwb_arm_timer(struct rq_wb * rwb)399 static void rwb_arm_timer(struct rq_wb *rwb)
400 {
401 	struct rq_depth *rqd = &rwb->rq_depth;
402 
403 	if (rqd->scale_step > 0) {
404 		/*
405 		 * We should speed this up, using some variant of a fast
406 		 * integer inverse square root calculation. Since we only do
407 		 * this for every window expiration, it's not a huge deal,
408 		 * though.
409 		 */
410 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
411 					int_sqrt((rqd->scale_step + 1) << 8));
412 	} else {
413 		/*
414 		 * For step < 0, we don't want to increase/decrease the
415 		 * window size.
416 		 */
417 		rwb->cur_win_nsec = rwb->win_nsec;
418 	}
419 
420 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
421 }
422 
wb_timer_fn(struct blk_stat_callback * cb)423 static void wb_timer_fn(struct blk_stat_callback *cb)
424 {
425 	struct rq_wb *rwb = cb->data;
426 	struct rq_depth *rqd = &rwb->rq_depth;
427 	unsigned int inflight = wbt_inflight(rwb);
428 	int status;
429 
430 	if (!rwb->rqos.disk)
431 		return;
432 
433 	status = latency_exceeded(rwb, cb->stat);
434 
435 	trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
436 
437 	/*
438 	 * If we exceeded the latency target, step down. If we did not,
439 	 * step one level up. If we don't know enough to say either exceeded
440 	 * or ok, then don't do anything.
441 	 */
442 	switch (status) {
443 	case LAT_EXCEEDED:
444 		scale_down(rwb, true);
445 		break;
446 	case LAT_OK:
447 		scale_up(rwb);
448 		break;
449 	case LAT_UNKNOWN_WRITES:
450 		/*
451 		 * We don't have a valid read/write sample, but we do have
452 		 * writes going on. Allow step to go negative, to increase
453 		 * write performance.
454 		 */
455 		scale_up(rwb);
456 		break;
457 	case LAT_UNKNOWN:
458 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
459 			break;
460 		/*
461 		 * We get here when previously scaled reduced depth, and we
462 		 * currently don't have a valid read/write sample. For that
463 		 * case, slowly return to center state (step == 0).
464 		 */
465 		if (rqd->scale_step > 0)
466 			scale_up(rwb);
467 		else if (rqd->scale_step < 0)
468 			scale_down(rwb, false);
469 		break;
470 	default:
471 		break;
472 	}
473 
474 	/*
475 	 * Re-arm timer, if we have IO in flight
476 	 */
477 	if (rqd->scale_step || inflight)
478 		rwb_arm_timer(rwb);
479 }
480 
wbt_update_limits(struct rq_wb * rwb)481 static void wbt_update_limits(struct rq_wb *rwb)
482 {
483 	struct rq_depth *rqd = &rwb->rq_depth;
484 
485 	rqd->scale_step = 0;
486 	rqd->scaled_max = false;
487 
488 	rq_depth_calc_max_depth(rqd);
489 	calc_wb_limits(rwb);
490 
491 	rwb_wake_all(rwb);
492 }
493 
wbt_disabled(struct request_queue * q)494 bool wbt_disabled(struct request_queue *q)
495 {
496 	struct rq_qos *rqos = wbt_rq_qos(q);
497 
498 	return !rqos || !rwb_enabled(RQWB(rqos));
499 }
500 
wbt_get_min_lat(struct request_queue * q)501 u64 wbt_get_min_lat(struct request_queue *q)
502 {
503 	struct rq_qos *rqos = wbt_rq_qos(q);
504 	if (!rqos)
505 		return 0;
506 	return RQWB(rqos)->min_lat_nsec;
507 }
508 
wbt_set_min_lat(struct request_queue * q,u64 val)509 void wbt_set_min_lat(struct request_queue *q, u64 val)
510 {
511 	struct rq_qos *rqos = wbt_rq_qos(q);
512 	if (!rqos)
513 		return;
514 
515 	RQWB(rqos)->min_lat_nsec = val;
516 	if (val)
517 		RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
518 	else
519 		RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
520 
521 	wbt_update_limits(RQWB(rqos));
522 }
523 
524 
close_io(struct rq_wb * rwb)525 static bool close_io(struct rq_wb *rwb)
526 {
527 	const unsigned long now = jiffies;
528 
529 	return time_before(now, rwb->last_issue + HZ / 10) ||
530 		time_before(now, rwb->last_comp + HZ / 10);
531 }
532 
533 #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO | REQ_SWAP)
534 
get_limit(struct rq_wb * rwb,blk_opf_t opf)535 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
536 {
537 	unsigned int limit;
538 
539 	if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
540 		return rwb->wb_background;
541 
542 	/*
543 	 * At this point we know it's a buffered write. If this is
544 	 * swap trying to free memory, or REQ_SYNC is set, then
545 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
546 	 * that. If the write is marked as a background write, then use
547 	 * the idle limit, or go to normal if we haven't had competing
548 	 * IO for a bit.
549 	 */
550 	if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb))
551 		limit = rwb->rq_depth.max_depth;
552 	else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
553 		/*
554 		 * If less than 100ms since we completed unrelated IO,
555 		 * limit us to half the depth for background writeback.
556 		 */
557 		limit = rwb->wb_background;
558 	} else
559 		limit = rwb->wb_normal;
560 
561 	return limit;
562 }
563 
564 struct wbt_wait_data {
565 	struct rq_wb *rwb;
566 	enum wbt_flags wb_acct;
567 	blk_opf_t opf;
568 };
569 
wbt_inflight_cb(struct rq_wait * rqw,void * private_data)570 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
571 {
572 	struct wbt_wait_data *data = private_data;
573 	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
574 }
575 
wbt_cleanup_cb(struct rq_wait * rqw,void * private_data)576 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
577 {
578 	struct wbt_wait_data *data = private_data;
579 	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
580 }
581 
582 /*
583  * Block if we will exceed our limit, or if we are currently waiting for
584  * the timer to kick off queuing again.
585  */
__wbt_wait(struct rq_wb * rwb,enum wbt_flags wb_acct,blk_opf_t opf)586 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
587 		       blk_opf_t opf)
588 {
589 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
590 	struct wbt_wait_data data = {
591 		.rwb = rwb,
592 		.wb_acct = wb_acct,
593 		.opf = opf,
594 	};
595 
596 	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
597 }
598 
wbt_should_throttle(struct bio * bio)599 static inline bool wbt_should_throttle(struct bio *bio)
600 {
601 	switch (bio_op(bio)) {
602 	case REQ_OP_WRITE:
603 		/*
604 		 * Don't throttle WRITE_ODIRECT
605 		 */
606 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
607 		    (REQ_SYNC | REQ_IDLE))
608 			return false;
609 		fallthrough;
610 	case REQ_OP_DISCARD:
611 		return true;
612 	default:
613 		return false;
614 	}
615 }
616 
bio_to_wbt_flags(struct rq_wb * rwb,struct bio * bio)617 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
618 {
619 	enum wbt_flags flags = 0;
620 
621 	if (!rwb_enabled(rwb))
622 		return 0;
623 
624 	if (bio_op(bio) == REQ_OP_READ) {
625 		flags = WBT_READ;
626 	} else if (wbt_should_throttle(bio)) {
627 		if (bio->bi_opf & REQ_SWAP)
628 			flags |= WBT_SWAP;
629 		if (bio_op(bio) == REQ_OP_DISCARD)
630 			flags |= WBT_DISCARD;
631 		flags |= WBT_TRACKED;
632 	}
633 	return flags;
634 }
635 
wbt_cleanup(struct rq_qos * rqos,struct bio * bio)636 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
637 {
638 	struct rq_wb *rwb = RQWB(rqos);
639 	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
640 	__wbt_done(rqos, flags);
641 }
642 
643 /* May sleep, if we have exceeded the writeback limits. */
wbt_wait(struct rq_qos * rqos,struct bio * bio)644 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
645 {
646 	struct rq_wb *rwb = RQWB(rqos);
647 	enum wbt_flags flags;
648 
649 	flags = bio_to_wbt_flags(rwb, bio);
650 	if (!(flags & WBT_TRACKED)) {
651 		if (flags & WBT_READ)
652 			wb_timestamp(rwb, &rwb->last_issue);
653 		return;
654 	}
655 
656 	__wbt_wait(rwb, flags, bio->bi_opf);
657 
658 	if (!blk_stat_is_active(rwb->cb))
659 		rwb_arm_timer(rwb);
660 }
661 
wbt_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)662 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
663 {
664 	struct rq_wb *rwb = RQWB(rqos);
665 	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
666 }
667 
wbt_issue(struct rq_qos * rqos,struct request * rq)668 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
669 {
670 	struct rq_wb *rwb = RQWB(rqos);
671 
672 	if (!rwb_enabled(rwb))
673 		return;
674 
675 	/*
676 	 * Track sync issue, in case it takes a long time to complete. Allows us
677 	 * to react quicker, if a sync IO takes a long time to complete. Note
678 	 * that this is just a hint. The request can go away when it completes,
679 	 * so it's important we never dereference it. We only use the address to
680 	 * compare with, which is why we store the sync_issue time locally.
681 	 */
682 	if (wbt_is_read(rq) && !rwb->sync_issue) {
683 		rwb->sync_cookie = rq;
684 		rwb->sync_issue = rq->io_start_time_ns;
685 	}
686 }
687 
wbt_requeue(struct rq_qos * rqos,struct request * rq)688 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
689 {
690 	struct rq_wb *rwb = RQWB(rqos);
691 	if (!rwb_enabled(rwb))
692 		return;
693 	if (rq == rwb->sync_cookie) {
694 		rwb->sync_issue = 0;
695 		rwb->sync_cookie = NULL;
696 	}
697 }
698 
699 /*
700  * Enable wbt if defaults are configured that way
701  */
wbt_enable_default(struct gendisk * disk)702 void wbt_enable_default(struct gendisk *disk)
703 {
704 	struct request_queue *q = disk->queue;
705 	struct rq_qos *rqos;
706 	bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
707 
708 	mutex_lock(&disk->rqos_state_mutex);
709 
710 	if (blk_queue_disable_wbt(q))
711 		enable = false;
712 
713 	/* Throttling already enabled? */
714 	rqos = wbt_rq_qos(q);
715 	if (rqos) {
716 		if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
717 			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
718 		mutex_unlock(&disk->rqos_state_mutex);
719 		return;
720 	}
721 	mutex_unlock(&disk->rqos_state_mutex);
722 
723 	/* Queue not registered? Maybe shutting down... */
724 	if (!blk_queue_registered(q))
725 		return;
726 
727 	if (queue_is_mq(q) && enable)
728 		wbt_init(disk);
729 }
730 EXPORT_SYMBOL_GPL(wbt_enable_default);
731 
wbt_default_latency_nsec(struct request_queue * q)732 u64 wbt_default_latency_nsec(struct request_queue *q)
733 {
734 	/*
735 	 * We default to 2msec for non-rotational storage, and 75msec
736 	 * for rotational storage.
737 	 */
738 	if (blk_queue_nonrot(q))
739 		return 2000000ULL;
740 	else
741 		return 75000000ULL;
742 }
743 
wbt_data_dir(const struct request * rq)744 static int wbt_data_dir(const struct request *rq)
745 {
746 	const enum req_op op = req_op(rq);
747 
748 	if (op == REQ_OP_READ)
749 		return READ;
750 	else if (op_is_write(op))
751 		return WRITE;
752 
753 	/* don't account */
754 	return -1;
755 }
756 
wbt_queue_depth_changed(struct rq_qos * rqos)757 static void wbt_queue_depth_changed(struct rq_qos *rqos)
758 {
759 	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
760 	wbt_update_limits(RQWB(rqos));
761 }
762 
wbt_exit(struct rq_qos * rqos)763 static void wbt_exit(struct rq_qos *rqos)
764 {
765 	struct rq_wb *rwb = RQWB(rqos);
766 
767 	blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
768 	blk_stat_free_callback(rwb->cb);
769 	kfree(rwb);
770 }
771 
772 /*
773  * Disable wbt, if enabled by default.
774  */
wbt_disable_default(struct gendisk * disk)775 void wbt_disable_default(struct gendisk *disk)
776 {
777 	struct rq_qos *rqos = wbt_rq_qos(disk->queue);
778 	struct rq_wb *rwb;
779 	if (!rqos)
780 		return;
781 	mutex_lock(&disk->rqos_state_mutex);
782 	rwb = RQWB(rqos);
783 	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
784 		blk_stat_deactivate(rwb->cb);
785 		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
786 	}
787 	mutex_unlock(&disk->rqos_state_mutex);
788 }
789 EXPORT_SYMBOL_GPL(wbt_disable_default);
790 
791 #ifdef CONFIG_BLK_DEBUG_FS
wbt_curr_win_nsec_show(void * data,struct seq_file * m)792 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
793 {
794 	struct rq_qos *rqos = data;
795 	struct rq_wb *rwb = RQWB(rqos);
796 
797 	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
798 	return 0;
799 }
800 
wbt_enabled_show(void * data,struct seq_file * m)801 static int wbt_enabled_show(void *data, struct seq_file *m)
802 {
803 	struct rq_qos *rqos = data;
804 	struct rq_wb *rwb = RQWB(rqos);
805 
806 	seq_printf(m, "%d\n", rwb->enable_state);
807 	return 0;
808 }
809 
wbt_id_show(void * data,struct seq_file * m)810 static int wbt_id_show(void *data, struct seq_file *m)
811 {
812 	struct rq_qos *rqos = data;
813 
814 	seq_printf(m, "%u\n", rqos->id);
815 	return 0;
816 }
817 
wbt_inflight_show(void * data,struct seq_file * m)818 static int wbt_inflight_show(void *data, struct seq_file *m)
819 {
820 	struct rq_qos *rqos = data;
821 	struct rq_wb *rwb = RQWB(rqos);
822 	int i;
823 
824 	for (i = 0; i < WBT_NUM_RWQ; i++)
825 		seq_printf(m, "%d: inflight %d\n", i,
826 			   atomic_read(&rwb->rq_wait[i].inflight));
827 	return 0;
828 }
829 
wbt_min_lat_nsec_show(void * data,struct seq_file * m)830 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
831 {
832 	struct rq_qos *rqos = data;
833 	struct rq_wb *rwb = RQWB(rqos);
834 
835 	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
836 	return 0;
837 }
838 
wbt_unknown_cnt_show(void * data,struct seq_file * m)839 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
840 {
841 	struct rq_qos *rqos = data;
842 	struct rq_wb *rwb = RQWB(rqos);
843 
844 	seq_printf(m, "%u\n", rwb->unknown_cnt);
845 	return 0;
846 }
847 
wbt_normal_show(void * data,struct seq_file * m)848 static int wbt_normal_show(void *data, struct seq_file *m)
849 {
850 	struct rq_qos *rqos = data;
851 	struct rq_wb *rwb = RQWB(rqos);
852 
853 	seq_printf(m, "%u\n", rwb->wb_normal);
854 	return 0;
855 }
856 
wbt_background_show(void * data,struct seq_file * m)857 static int wbt_background_show(void *data, struct seq_file *m)
858 {
859 	struct rq_qos *rqos = data;
860 	struct rq_wb *rwb = RQWB(rqos);
861 
862 	seq_printf(m, "%u\n", rwb->wb_background);
863 	return 0;
864 }
865 
866 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
867 	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
868 	{"enabled", 0400, wbt_enabled_show},
869 	{"id", 0400, wbt_id_show},
870 	{"inflight", 0400, wbt_inflight_show},
871 	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
872 	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
873 	{"wb_normal", 0400, wbt_normal_show},
874 	{"wb_background", 0400, wbt_background_show},
875 	{},
876 };
877 #endif
878 
879 static const struct rq_qos_ops wbt_rqos_ops = {
880 	.throttle = wbt_wait,
881 	.issue = wbt_issue,
882 	.track = wbt_track,
883 	.requeue = wbt_requeue,
884 	.done = wbt_done,
885 	.cleanup = wbt_cleanup,
886 	.queue_depth_changed = wbt_queue_depth_changed,
887 	.exit = wbt_exit,
888 #ifdef CONFIG_BLK_DEBUG_FS
889 	.debugfs_attrs = wbt_debugfs_attrs,
890 #endif
891 };
892 
wbt_init(struct gendisk * disk)893 int wbt_init(struct gendisk *disk)
894 {
895 	struct request_queue *q = disk->queue;
896 	struct rq_wb *rwb;
897 	int i;
898 	int ret;
899 
900 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
901 	if (!rwb)
902 		return -ENOMEM;
903 
904 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
905 	if (!rwb->cb) {
906 		kfree(rwb);
907 		return -ENOMEM;
908 	}
909 
910 	for (i = 0; i < WBT_NUM_RWQ; i++)
911 		rq_wait_init(&rwb->rq_wait[i]);
912 
913 	rwb->last_comp = rwb->last_issue = jiffies;
914 	rwb->win_nsec = RWB_WINDOW_NSEC;
915 	rwb->enable_state = WBT_STATE_ON_DEFAULT;
916 	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
917 	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
918 	rwb->rq_depth.queue_depth = blk_queue_depth(q);
919 	wbt_update_limits(rwb);
920 
921 	/*
922 	 * Assign rwb and add the stats callback.
923 	 */
924 	mutex_lock(&q->rq_qos_mutex);
925 	ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
926 	mutex_unlock(&q->rq_qos_mutex);
927 	if (ret)
928 		goto err_free;
929 
930 	blk_stat_add_callback(q, rwb->cb);
931 
932 	return 0;
933 
934 err_free:
935 	blk_stat_free_callback(rwb->cb);
936 	kfree(rwb);
937 	return ret;
938 
939 }
940