1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 #include "file-item.h"
16 #include "file.h"
17 #include "super.h"
18
19 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
20
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22 struct inode *inode,
23 u64 endoff,
24 const u64 destoff,
25 const u64 olen,
26 int no_time_update)
27 {
28 int ret;
29
30 inode_inc_iversion(inode);
31 if (!no_time_update) {
32 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33 }
34 /*
35 * We round up to the block size at eof when determining which
36 * extents to clone above, but shouldn't round up the file size.
37 */
38 if (endoff > destoff + olen)
39 endoff = destoff + olen;
40 if (endoff > inode->i_size) {
41 i_size_write(inode, endoff);
42 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43 }
44
45 ret = btrfs_update_inode(trans, BTRFS_I(inode));
46 if (ret) {
47 btrfs_abort_transaction(trans, ret);
48 btrfs_end_transaction(trans);
49 return ret;
50 }
51 return btrfs_end_transaction(trans);
52 }
53
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)54 static int copy_inline_to_page(struct btrfs_inode *inode,
55 const u64 file_offset,
56 char *inline_data,
57 const u64 size,
58 const u64 datal,
59 const u8 comp_type)
60 {
61 struct btrfs_fs_info *fs_info = inode->root->fs_info;
62 const u32 block_size = fs_info->sectorsize;
63 const u64 range_end = file_offset + block_size - 1;
64 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
65 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
66 struct extent_changeset *data_reserved = NULL;
67 struct folio *folio = NULL;
68 struct address_space *mapping = inode->vfs_inode.i_mapping;
69 int ret;
70
71 ASSERT(IS_ALIGNED(file_offset, block_size));
72
73 /*
74 * We have flushed and locked the ranges of the source and destination
75 * inodes, we also have locked the inodes, so we are safe to do a
76 * reservation here. Also we must not do the reservation while holding
77 * a transaction open, otherwise we would deadlock.
78 */
79 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
80 block_size);
81 if (ret)
82 goto out;
83
84 folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
85 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
86 btrfs_alloc_write_mask(mapping));
87 if (IS_ERR(folio)) {
88 ret = PTR_ERR(folio);
89 goto out_unlock;
90 }
91
92 ret = set_folio_extent_mapped(folio);
93 if (ret < 0)
94 goto out_unlock;
95
96 btrfs_clear_extent_bit(&inode->io_tree, file_offset, range_end,
97 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, NULL);
98 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
99 if (ret)
100 goto out_unlock;
101
102 /*
103 * After dirtying the page our caller will need to start a transaction,
104 * and if we are low on metadata free space, that can cause flushing of
105 * delalloc for all inodes in order to get metadata space released.
106 * However we are holding the range locked for the whole duration of
107 * the clone/dedupe operation, so we may deadlock if that happens and no
108 * other task releases enough space. So mark this inode as not being
109 * possible to flush to avoid such deadlock. We will clear that flag
110 * when we finish cloning all extents, since a transaction is started
111 * after finding each extent to clone.
112 */
113 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
114
115 if (comp_type == BTRFS_COMPRESS_NONE) {
116 memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
117 datal);
118 } else {
119 ret = btrfs_decompress(comp_type, data_start, folio,
120 offset_in_folio(folio, file_offset),
121 inline_size, datal);
122 if (ret)
123 goto out_unlock;
124 flush_dcache_folio(folio);
125 }
126
127 /*
128 * If our inline data is smaller then the block/page size, then the
129 * remaining of the block/page is equivalent to zeroes. We had something
130 * like the following done:
131 *
132 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
133 * $ sync # (or fsync)
134 * $ xfs_io -c "falloc 0 4K" file
135 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
136 *
137 * So what's in the range [500, 4095] corresponds to zeroes.
138 */
139 if (datal < block_size)
140 folio_zero_range(folio, datal, block_size - datal);
141
142 btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
143 btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
144 btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
145 out_unlock:
146 if (!IS_ERR(folio)) {
147 folio_unlock(folio);
148 folio_put(folio);
149 }
150 if (ret)
151 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
152 block_size, true);
153 btrfs_delalloc_release_extents(inode, block_size);
154 out:
155 extent_changeset_free(data_reserved);
156
157 return ret;
158 }
159
160 /*
161 * Deal with cloning of inline extents. We try to copy the inline extent from
162 * the source inode to destination inode when possible. When not possible we
163 * copy the inline extent's data into the respective page of the inode.
164 */
clone_copy_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)165 static int clone_copy_inline_extent(struct btrfs_inode *inode,
166 struct btrfs_path *path,
167 struct btrfs_key *new_key,
168 const u64 drop_start,
169 const u64 datal,
170 const u64 size,
171 const u8 comp_type,
172 char *inline_data,
173 struct btrfs_trans_handle **trans_out)
174 {
175 struct btrfs_root *root = inode->root;
176 struct btrfs_fs_info *fs_info = root->fs_info;
177 const u64 aligned_end = ALIGN(new_key->offset + datal,
178 fs_info->sectorsize);
179 struct btrfs_trans_handle *trans = NULL;
180 struct btrfs_drop_extents_args drop_args = { 0 };
181 int ret;
182 struct btrfs_key key;
183
184 if (new_key->offset > 0) {
185 ret = copy_inline_to_page(inode, new_key->offset,
186 inline_data, size, datal, comp_type);
187 goto out;
188 }
189
190 key.objectid = btrfs_ino(inode);
191 key.type = BTRFS_EXTENT_DATA_KEY;
192 key.offset = 0;
193 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
194 if (ret < 0) {
195 return ret;
196 } else if (ret > 0) {
197 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
198 ret = btrfs_next_leaf(root, path);
199 if (ret < 0)
200 return ret;
201 else if (ret > 0)
202 goto copy_inline_extent;
203 }
204 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
205 if (key.objectid == btrfs_ino(inode) &&
206 key.type == BTRFS_EXTENT_DATA_KEY) {
207 /*
208 * There's an implicit hole at file offset 0, copy the
209 * inline extent's data to the page.
210 */
211 ASSERT(key.offset > 0);
212 goto copy_to_page;
213 }
214 } else if (i_size_read(&inode->vfs_inode) <= datal) {
215 struct btrfs_file_extent_item *ei;
216
217 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
218 struct btrfs_file_extent_item);
219 /*
220 * If it's an inline extent replace it with the source inline
221 * extent, otherwise copy the source inline extent data into
222 * the respective page at the destination inode.
223 */
224 if (btrfs_file_extent_type(path->nodes[0], ei) ==
225 BTRFS_FILE_EXTENT_INLINE)
226 goto copy_inline_extent;
227
228 goto copy_to_page;
229 }
230
231 copy_inline_extent:
232 /*
233 * We have no extent items, or we have an extent at offset 0 which may
234 * or may not be inlined. All these cases are dealt the same way.
235 */
236 if (i_size_read(&inode->vfs_inode) > datal) {
237 /*
238 * At the destination offset 0 we have either a hole, a regular
239 * extent or an inline extent larger then the one we want to
240 * clone. Deal with all these cases by copying the inline extent
241 * data into the respective page at the destination inode.
242 */
243 goto copy_to_page;
244 }
245
246 /*
247 * Release path before starting a new transaction so we don't hold locks
248 * that would confuse lockdep.
249 */
250 btrfs_release_path(path);
251 /*
252 * If we end up here it means were copy the inline extent into a leaf
253 * of the destination inode. We know we will drop or adjust at most one
254 * extent item in the destination root.
255 *
256 * 1 unit - adjusting old extent (we may have to split it)
257 * 1 unit - add new extent
258 * 1 unit - inode update
259 */
260 trans = btrfs_start_transaction(root, 3);
261 if (IS_ERR(trans)) {
262 ret = PTR_ERR(trans);
263 trans = NULL;
264 goto out;
265 }
266 drop_args.path = path;
267 drop_args.start = drop_start;
268 drop_args.end = aligned_end;
269 drop_args.drop_cache = true;
270 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
271 if (ret) {
272 btrfs_abort_transaction(trans, ret);
273 goto out;
274 }
275 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276 if (ret) {
277 btrfs_abort_transaction(trans, ret);
278 goto out;
279 }
280
281 write_extent_buffer(path->nodes[0], inline_data,
282 btrfs_item_ptr_offset(path->nodes[0],
283 path->slots[0]),
284 size);
285 btrfs_update_inode_bytes(inode, datal, drop_args.bytes_found);
286 btrfs_set_inode_full_sync(inode);
287 ret = btrfs_inode_set_file_extent_range(inode, 0, aligned_end);
288 if (ret)
289 btrfs_abort_transaction(trans, ret);
290 out:
291 if (!ret && !trans) {
292 /*
293 * No transaction here means we copied the inline extent into a
294 * page of the destination inode.
295 *
296 * 1 unit to update inode item
297 */
298 trans = btrfs_start_transaction(root, 1);
299 if (IS_ERR(trans)) {
300 ret = PTR_ERR(trans);
301 trans = NULL;
302 }
303 }
304 if (ret && trans)
305 btrfs_end_transaction(trans);
306 if (!ret)
307 *trans_out = trans;
308
309 return ret;
310
311 copy_to_page:
312 /*
313 * Release our path because we don't need it anymore and also because
314 * copy_inline_to_page() needs to reserve data and metadata, which may
315 * need to flush delalloc when we are low on available space and
316 * therefore cause a deadlock if writeback of an inline extent needs to
317 * write to the same leaf or an ordered extent completion needs to write
318 * to the same leaf.
319 */
320 btrfs_release_path(path);
321
322 ret = copy_inline_to_page(inode, new_key->offset,
323 inline_data, size, datal, comp_type);
324 goto out;
325 }
326
327 /*
328 * Clone a range from inode file to another.
329 *
330 * @src: Inode to clone from
331 * @inode: Inode to clone to
332 * @off: Offset within source to start clone from
333 * @olen: Original length, passed by user, of range to clone
334 * @olen_aligned: Block-aligned value of olen
335 * @destoff: Offset within @inode to start clone
336 * @no_time_update: Whether to update mtime/ctime on the target inode
337 */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)338 static int btrfs_clone(struct inode *src, struct inode *inode,
339 const u64 off, const u64 olen, const u64 olen_aligned,
340 const u64 destoff, int no_time_update)
341 {
342 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
343 struct btrfs_path *path = NULL;
344 struct extent_buffer *leaf;
345 struct btrfs_trans_handle *trans;
346 char *buf = NULL;
347 struct btrfs_key key;
348 u32 nritems;
349 int slot;
350 int ret;
351 const u64 len = olen_aligned;
352 u64 last_dest_end = destoff;
353 u64 prev_extent_end = off;
354
355 ret = -ENOMEM;
356 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
357 if (!buf)
358 return ret;
359
360 path = btrfs_alloc_path();
361 if (!path) {
362 kvfree(buf);
363 return ret;
364 }
365
366 path->reada = READA_FORWARD;
367 /* Clone data */
368 key.objectid = btrfs_ino(BTRFS_I(src));
369 key.type = BTRFS_EXTENT_DATA_KEY;
370 key.offset = off;
371
372 while (1) {
373 struct btrfs_file_extent_item *extent;
374 u64 extent_gen;
375 int type;
376 u32 size;
377 struct btrfs_key new_key;
378 u64 disko = 0, diskl = 0;
379 u64 datao = 0, datal = 0;
380 u8 comp;
381 u64 drop_start;
382
383 /* Note the key will change type as we walk through the tree */
384 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
385 0, 0);
386 if (ret < 0)
387 goto out;
388 /*
389 * First search, if no extent item that starts at offset off was
390 * found but the previous item is an extent item, it's possible
391 * it might overlap our target range, therefore process it.
392 */
393 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
394 btrfs_item_key_to_cpu(path->nodes[0], &key,
395 path->slots[0] - 1);
396 if (key.type == BTRFS_EXTENT_DATA_KEY)
397 path->slots[0]--;
398 }
399
400 nritems = btrfs_header_nritems(path->nodes[0]);
401 process_slot:
402 if (path->slots[0] >= nritems) {
403 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
404 if (ret < 0)
405 goto out;
406 if (ret > 0)
407 break;
408 nritems = btrfs_header_nritems(path->nodes[0]);
409 }
410 leaf = path->nodes[0];
411 slot = path->slots[0];
412
413 btrfs_item_key_to_cpu(leaf, &key, slot);
414 if (key.type > BTRFS_EXTENT_DATA_KEY ||
415 key.objectid != btrfs_ino(BTRFS_I(src)))
416 break;
417
418 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
419
420 extent = btrfs_item_ptr(leaf, slot,
421 struct btrfs_file_extent_item);
422 extent_gen = btrfs_file_extent_generation(leaf, extent);
423 comp = btrfs_file_extent_compression(leaf, extent);
424 type = btrfs_file_extent_type(leaf, extent);
425 if (type == BTRFS_FILE_EXTENT_REG ||
426 type == BTRFS_FILE_EXTENT_PREALLOC) {
427 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
428 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
429 datao = btrfs_file_extent_offset(leaf, extent);
430 datal = btrfs_file_extent_num_bytes(leaf, extent);
431 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
432 /* Take upper bound, may be compressed */
433 datal = btrfs_file_extent_ram_bytes(leaf, extent);
434 }
435
436 /*
437 * The first search might have left us at an extent item that
438 * ends before our target range's start, can happen if we have
439 * holes and NO_HOLES feature enabled.
440 *
441 * Subsequent searches may leave us on a file range we have
442 * processed before - this happens due to a race with ordered
443 * extent completion for a file range that is outside our source
444 * range, but that range was part of a file extent item that
445 * also covered a leading part of our source range.
446 */
447 if (key.offset + datal <= prev_extent_end) {
448 path->slots[0]++;
449 goto process_slot;
450 } else if (key.offset >= off + len) {
451 break;
452 }
453
454 prev_extent_end = key.offset + datal;
455 size = btrfs_item_size(leaf, slot);
456 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
457 size);
458
459 btrfs_release_path(path);
460
461 memcpy(&new_key, &key, sizeof(new_key));
462 new_key.objectid = btrfs_ino(BTRFS_I(inode));
463 if (off <= key.offset)
464 new_key.offset = key.offset + destoff - off;
465 else
466 new_key.offset = destoff;
467
468 /*
469 * Deal with a hole that doesn't have an extent item that
470 * represents it (NO_HOLES feature enabled).
471 * This hole is either in the middle of the cloning range or at
472 * the beginning (fully overlaps it or partially overlaps it).
473 */
474 if (new_key.offset != last_dest_end)
475 drop_start = last_dest_end;
476 else
477 drop_start = new_key.offset;
478
479 if (type == BTRFS_FILE_EXTENT_REG ||
480 type == BTRFS_FILE_EXTENT_PREALLOC) {
481 struct btrfs_replace_extent_info clone_info;
482
483 /*
484 * a | --- range to clone ---| b
485 * | ------------- extent ------------- |
486 */
487
488 /* Subtract range b */
489 if (key.offset + datal > off + len)
490 datal = off + len - key.offset;
491
492 /* Subtract range a */
493 if (off > key.offset) {
494 datao += off - key.offset;
495 datal -= off - key.offset;
496 }
497
498 clone_info.disk_offset = disko;
499 clone_info.disk_len = diskl;
500 clone_info.data_offset = datao;
501 clone_info.data_len = datal;
502 clone_info.file_offset = new_key.offset;
503 clone_info.extent_buf = buf;
504 clone_info.is_new_extent = false;
505 clone_info.update_times = !no_time_update;
506 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
507 drop_start, new_key.offset + datal - 1,
508 &clone_info, &trans);
509 if (ret)
510 goto out;
511 } else {
512 ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
513 /*
514 * Inline extents always have to start at file offset 0
515 * and can never be bigger then the sector size. We can
516 * never clone only parts of an inline extent, since all
517 * reflink operations must start at a sector size aligned
518 * offset, and the length must be aligned too or end at
519 * the i_size (which implies the whole inlined data).
520 */
521 ASSERT(key.offset == 0);
522 ASSERT(datal <= fs_info->sectorsize);
523 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
524 WARN_ON(key.offset != 0) ||
525 WARN_ON(datal > fs_info->sectorsize)) {
526 ret = -EUCLEAN;
527 goto out;
528 }
529
530 ret = clone_copy_inline_extent(BTRFS_I(inode), path, &new_key,
531 drop_start, datal, size,
532 comp, buf, &trans);
533 if (ret)
534 goto out;
535 }
536
537 btrfs_release_path(path);
538
539 /*
540 * Whenever we share an extent we update the last_reflink_trans
541 * of each inode to the current transaction. This is needed to
542 * make sure fsync does not log multiple checksum items with
543 * overlapping ranges (because some extent items might refer
544 * only to sections of the original extent). For the destination
545 * inode we do this regardless of the generation of the extents
546 * or even if they are inline extents or explicit holes, to make
547 * sure a full fsync does not skip them. For the source inode,
548 * we only need to update last_reflink_trans in case it's a new
549 * extent that is not a hole or an inline extent, to deal with
550 * the checksums problem on fsync.
551 */
552 if (extent_gen == trans->transid && disko > 0)
553 BTRFS_I(src)->last_reflink_trans = trans->transid;
554
555 BTRFS_I(inode)->last_reflink_trans = trans->transid;
556
557 last_dest_end = ALIGN(new_key.offset + datal,
558 fs_info->sectorsize);
559 ret = clone_finish_inode_update(trans, inode, last_dest_end,
560 destoff, olen, no_time_update);
561 if (ret)
562 goto out;
563 if (new_key.offset + datal >= destoff + len)
564 break;
565
566 btrfs_release_path(path);
567 key.offset = prev_extent_end;
568
569 if (fatal_signal_pending(current)) {
570 ret = -EINTR;
571 goto out;
572 }
573
574 cond_resched();
575 }
576 ret = 0;
577
578 if (last_dest_end < destoff + len) {
579 /*
580 * We have an implicit hole that fully or partially overlaps our
581 * cloning range at its end. This means that we either have the
582 * NO_HOLES feature enabled or the implicit hole happened due to
583 * mixing buffered and direct IO writes against this file.
584 */
585 btrfs_release_path(path);
586
587 /*
588 * When using NO_HOLES and we are cloning a range that covers
589 * only a hole (no extents) into a range beyond the current
590 * i_size, punching a hole in the target range will not create
591 * an extent map defining a hole, because the range starts at or
592 * beyond current i_size. If the file previously had an i_size
593 * greater than the new i_size set by this clone operation, we
594 * need to make sure the next fsync is a full fsync, so that it
595 * detects and logs a hole covering a range from the current
596 * i_size to the new i_size. If the clone range covers extents,
597 * besides a hole, then we know the full sync flag was already
598 * set by previous calls to btrfs_replace_file_extents() that
599 * replaced file extent items.
600 */
601 if (last_dest_end >= i_size_read(inode))
602 btrfs_set_inode_full_sync(BTRFS_I(inode));
603
604 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
605 last_dest_end, destoff + len - 1, NULL, &trans);
606 if (ret)
607 goto out;
608
609 ret = clone_finish_inode_update(trans, inode, destoff + len,
610 destoff, olen, no_time_update);
611 }
612
613 out:
614 btrfs_free_path(path);
615 kvfree(buf);
616 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
617
618 return ret;
619 }
620
btrfs_double_mmap_lock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)621 static void btrfs_double_mmap_lock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
622 {
623 if (inode1 < inode2)
624 swap(inode1, inode2);
625 down_write(&inode1->i_mmap_lock);
626 down_write_nested(&inode2->i_mmap_lock, SINGLE_DEPTH_NESTING);
627 }
628
btrfs_double_mmap_unlock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)629 static void btrfs_double_mmap_unlock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
630 {
631 up_write(&inode1->i_mmap_lock);
632 up_write(&inode2->i_mmap_lock);
633 }
634
btrfs_extent_same_range(struct btrfs_inode * src,u64 loff,u64 len,struct btrfs_inode * dst,u64 dst_loff)635 static int btrfs_extent_same_range(struct btrfs_inode *src, u64 loff, u64 len,
636 struct btrfs_inode *dst, u64 dst_loff)
637 {
638 const u64 end = dst_loff + len - 1;
639 struct extent_state *cached_state = NULL;
640 struct btrfs_fs_info *fs_info = src->root->fs_info;
641 const u64 bs = fs_info->sectorsize;
642 int ret;
643
644 /*
645 * Lock destination range to serialize with concurrent readahead(), and
646 * we are safe from concurrency with relocation of source extents
647 * because we have already locked the inode's i_mmap_lock in exclusive
648 * mode.
649 */
650 btrfs_lock_extent(&dst->io_tree, dst_loff, end, &cached_state);
651 ret = btrfs_clone(&src->vfs_inode, &dst->vfs_inode, loff, len,
652 ALIGN(len, bs), dst_loff, 1);
653 btrfs_unlock_extent(&dst->io_tree, dst_loff, end, &cached_state);
654
655 btrfs_btree_balance_dirty(fs_info);
656
657 return ret;
658 }
659
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)660 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
661 struct inode *dst, u64 dst_loff)
662 {
663 int ret = 0;
664 u64 i, tail_len, chunk_count;
665 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
666
667 spin_lock(&root_dst->root_item_lock);
668 if (root_dst->send_in_progress) {
669 btrfs_warn_rl(root_dst->fs_info,
670 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
671 btrfs_root_id(root_dst),
672 root_dst->send_in_progress);
673 spin_unlock(&root_dst->root_item_lock);
674 return -EAGAIN;
675 }
676 root_dst->dedupe_in_progress++;
677 spin_unlock(&root_dst->root_item_lock);
678
679 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
680 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
681
682 for (i = 0; i < chunk_count; i++) {
683 ret = btrfs_extent_same_range(BTRFS_I(src), loff, BTRFS_MAX_DEDUPE_LEN,
684 BTRFS_I(dst), dst_loff);
685 if (ret)
686 goto out;
687
688 loff += BTRFS_MAX_DEDUPE_LEN;
689 dst_loff += BTRFS_MAX_DEDUPE_LEN;
690 }
691
692 if (tail_len > 0)
693 ret = btrfs_extent_same_range(BTRFS_I(src), loff, tail_len,
694 BTRFS_I(dst), dst_loff);
695 out:
696 spin_lock(&root_dst->root_item_lock);
697 root_dst->dedupe_in_progress--;
698 spin_unlock(&root_dst->root_item_lock);
699
700 return ret;
701 }
702
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)703 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
704 u64 off, u64 olen, u64 destoff)
705 {
706 struct extent_state *cached_state = NULL;
707 struct inode *inode = file_inode(file);
708 struct inode *src = file_inode(file_src);
709 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
710 int ret;
711 int wb_ret;
712 u64 len = olen;
713 u64 bs = fs_info->sectorsize;
714 u64 end;
715
716 /*
717 * VFS's generic_remap_file_range_prep() protects us from cloning the
718 * eof block into the middle of a file, which would result in corruption
719 * if the file size is not blocksize aligned. So we don't need to check
720 * for that case here.
721 */
722 if (off + len == src->i_size)
723 len = ALIGN(src->i_size, bs) - off;
724
725 if (destoff > inode->i_size) {
726 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
727
728 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
729 if (ret)
730 return ret;
731 /*
732 * We may have truncated the last block if the inode's size is
733 * not sector size aligned, so we need to wait for writeback to
734 * complete before proceeding further, otherwise we can race
735 * with cloning and attempt to increment a reference to an
736 * extent that no longer exists (writeback completed right after
737 * we found the previous extent covering eof and before we
738 * attempted to increment its reference count).
739 */
740 ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
741 destoff - wb_start);
742 if (ret)
743 return ret;
744 }
745
746 /*
747 * Lock destination range to serialize with concurrent readahead(), and
748 * we are safe from concurrency with relocation of source extents
749 * because we have already locked the inode's i_mmap_lock in exclusive
750 * mode.
751 */
752 end = destoff + len - 1;
753 btrfs_lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
754 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
755 btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
756
757 /*
758 * We may have copied an inline extent into a page of the destination
759 * range, so wait for writeback to complete before truncating pages
760 * from the page cache. This is a rare case.
761 */
762 wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
763 ret = ret ? ret : wb_ret;
764 /*
765 * Truncate page cache pages so that future reads will see the cloned
766 * data immediately and not the previous data.
767 */
768 truncate_inode_pages_range(&inode->i_data,
769 round_down(destoff, PAGE_SIZE),
770 round_up(destoff + len, PAGE_SIZE) - 1);
771
772 btrfs_btree_balance_dirty(fs_info);
773
774 return ret;
775 }
776
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)777 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
778 struct file *file_out, loff_t pos_out,
779 loff_t *len, unsigned int remap_flags)
780 {
781 struct btrfs_inode *inode_in = BTRFS_I(file_inode(file_in));
782 struct btrfs_inode *inode_out = BTRFS_I(file_inode(file_out));
783 u64 bs = inode_out->root->fs_info->sectorsize;
784 u64 wb_len;
785 int ret;
786
787 if (!(remap_flags & REMAP_FILE_DEDUP)) {
788 struct btrfs_root *root_out = inode_out->root;
789
790 if (btrfs_root_readonly(root_out))
791 return -EROFS;
792
793 ASSERT(inode_in->vfs_inode.i_sb == inode_out->vfs_inode.i_sb);
794 }
795
796 /* Don't make the dst file partly checksummed */
797 if ((inode_in->flags & BTRFS_INODE_NODATASUM) !=
798 (inode_out->flags & BTRFS_INODE_NODATASUM)) {
799 return -EINVAL;
800 }
801
802 /*
803 * Now that the inodes are locked, we need to start writeback ourselves
804 * and can not rely on the writeback from the VFS's generic helper
805 * generic_remap_file_range_prep() because:
806 *
807 * 1) For compression we must call filemap_fdatawrite_range() range
808 * twice (btrfs_fdatawrite_range() does it for us), and the generic
809 * helper only calls it once;
810 *
811 * 2) filemap_fdatawrite_range(), called by the generic helper only
812 * waits for the writeback to complete, i.e. for IO to be done, and
813 * not for the ordered extents to complete. We need to wait for them
814 * to complete so that new file extent items are in the fs tree.
815 */
816 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
817 wb_len = ALIGN(inode_in->vfs_inode.i_size, bs) - ALIGN_DOWN(pos_in, bs);
818 else
819 wb_len = ALIGN(*len, bs);
820
821 /*
822 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
823 *
824 * Btrfs' back references do not have a block level granularity, they
825 * work at the whole extent level.
826 * NOCOW buffered write without data space reserved may not be able
827 * to fall back to CoW due to lack of data space, thus could cause
828 * data loss.
829 *
830 * Here we take a shortcut by flushing the whole inode, so that all
831 * nocow write should reach disk as nocow before we increase the
832 * reference of the extent. We could do better by only flushing NOCOW
833 * data, but that needs extra accounting.
834 *
835 * Also we don't need to check ASYNC_EXTENT, as async extent will be
836 * CoWed anyway, not affecting nocow part.
837 */
838 ret = filemap_flush(inode_in->vfs_inode.i_mapping);
839 if (ret < 0)
840 return ret;
841
842 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), wb_len);
843 if (ret < 0)
844 return ret;
845 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), wb_len);
846 if (ret < 0)
847 return ret;
848
849 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
850 len, remap_flags);
851 }
852
file_sync_write(const struct file * file)853 static bool file_sync_write(const struct file *file)
854 {
855 if (file->f_flags & (__O_SYNC | O_DSYNC))
856 return true;
857 if (IS_SYNC(file_inode(file)))
858 return true;
859
860 return false;
861 }
862
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)863 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
864 struct file *dst_file, loff_t destoff, loff_t len,
865 unsigned int remap_flags)
866 {
867 struct btrfs_inode *src_inode = BTRFS_I(file_inode(src_file));
868 struct btrfs_inode *dst_inode = BTRFS_I(file_inode(dst_file));
869 bool same_inode = dst_inode == src_inode;
870 int ret;
871
872 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
873 return -EINVAL;
874
875 if (same_inode) {
876 btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
877 } else {
878 lock_two_nondirectories(&src_inode->vfs_inode, &dst_inode->vfs_inode);
879 btrfs_double_mmap_lock(src_inode, dst_inode);
880 }
881
882 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
883 &len, remap_flags);
884 if (ret < 0 || len == 0)
885 goto out_unlock;
886
887 if (remap_flags & REMAP_FILE_DEDUP)
888 ret = btrfs_extent_same(&src_inode->vfs_inode, off, len,
889 &dst_inode->vfs_inode, destoff);
890 else
891 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
892
893 out_unlock:
894 if (same_inode) {
895 btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
896 } else {
897 btrfs_double_mmap_unlock(src_inode, dst_inode);
898 unlock_two_nondirectories(&src_inode->vfs_inode,
899 &dst_inode->vfs_inode);
900 }
901
902 /*
903 * If either the source or the destination file was opened with O_SYNC,
904 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
905 * source files/ranges, so that after a successful return (0) followed
906 * by a power failure results in the reflinked data to be readable from
907 * both files/ranges.
908 */
909 if (ret == 0 && len > 0 &&
910 (file_sync_write(src_file) || file_sync_write(dst_file))) {
911 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
912 if (ret == 0)
913 ret = btrfs_sync_file(dst_file, destoff,
914 destoff + len - 1, 0);
915 }
916
917 return ret < 0 ? ret : len;
918 }
919