xref: /linux/fs/btrfs/reflink.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 #include "file-item.h"
16 #include "file.h"
17 #include "super.h"
18 
19 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
20 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22 				     struct inode *inode,
23 				     u64 endoff,
24 				     const u64 destoff,
25 				     const u64 olen,
26 				     int no_time_update)
27 {
28 	int ret;
29 
30 	inode_inc_iversion(inode);
31 	if (!no_time_update) {
32 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33 	}
34 	/*
35 	 * We round up to the block size at eof when determining which
36 	 * extents to clone above, but shouldn't round up the file size.
37 	 */
38 	if (endoff > destoff + olen)
39 		endoff = destoff + olen;
40 	if (endoff > inode->i_size) {
41 		i_size_write(inode, endoff);
42 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43 	}
44 
45 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
46 	if (ret) {
47 		btrfs_abort_transaction(trans, ret);
48 		btrfs_end_transaction(trans);
49 		return ret;
50 	}
51 	return btrfs_end_transaction(trans);
52 }
53 
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)54 static int copy_inline_to_page(struct btrfs_inode *inode,
55 			       const u64 file_offset,
56 			       char *inline_data,
57 			       const u64 size,
58 			       const u64 datal,
59 			       const u8 comp_type)
60 {
61 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
62 	const u32 block_size = fs_info->sectorsize;
63 	const u64 range_end = file_offset + block_size - 1;
64 	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
65 	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
66 	struct extent_changeset *data_reserved = NULL;
67 	struct folio *folio = NULL;
68 	struct address_space *mapping = inode->vfs_inode.i_mapping;
69 	int ret;
70 
71 	ASSERT(IS_ALIGNED(file_offset, block_size));
72 
73 	/*
74 	 * We have flushed and locked the ranges of the source and destination
75 	 * inodes, we also have locked the inodes, so we are safe to do a
76 	 * reservation here. Also we must not do the reservation while holding
77 	 * a transaction open, otherwise we would deadlock.
78 	 */
79 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
80 					   block_size);
81 	if (ret)
82 		goto out;
83 
84 	folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
85 					FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
86 					btrfs_alloc_write_mask(mapping));
87 	if (IS_ERR(folio)) {
88 		ret = PTR_ERR(folio);
89 		goto out_unlock;
90 	}
91 
92 	ret = set_folio_extent_mapped(folio);
93 	if (ret < 0)
94 		goto out_unlock;
95 
96 	btrfs_clear_extent_bit(&inode->io_tree, file_offset, range_end,
97 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, NULL);
98 	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
99 	if (ret)
100 		goto out_unlock;
101 
102 	/*
103 	 * After dirtying the page our caller will need to start a transaction,
104 	 * and if we are low on metadata free space, that can cause flushing of
105 	 * delalloc for all inodes in order to get metadata space released.
106 	 * However we are holding the range locked for the whole duration of
107 	 * the clone/dedupe operation, so we may deadlock if that happens and no
108 	 * other task releases enough space. So mark this inode as not being
109 	 * possible to flush to avoid such deadlock. We will clear that flag
110 	 * when we finish cloning all extents, since a transaction is started
111 	 * after finding each extent to clone.
112 	 */
113 	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
114 
115 	if (comp_type == BTRFS_COMPRESS_NONE) {
116 		memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
117 					datal);
118 	} else {
119 		ret = btrfs_decompress(comp_type, data_start, folio,
120 				       offset_in_folio(folio, file_offset),
121 				       inline_size, datal);
122 		if (ret)
123 			goto out_unlock;
124 		flush_dcache_folio(folio);
125 	}
126 
127 	/*
128 	 * If our inline data is smaller then the block/page size, then the
129 	 * remaining of the block/page is equivalent to zeroes. We had something
130 	 * like the following done:
131 	 *
132 	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
133 	 * $ sync  # (or fsync)
134 	 * $ xfs_io -c "falloc 0 4K" file
135 	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
136 	 *
137 	 * So what's in the range [500, 4095] corresponds to zeroes.
138 	 */
139 	if (datal < block_size)
140 		folio_zero_range(folio, datal, block_size - datal);
141 
142 	btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
143 	btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
144 	btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
145 out_unlock:
146 	if (!IS_ERR(folio)) {
147 		folio_unlock(folio);
148 		folio_put(folio);
149 	}
150 	if (ret)
151 		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
152 					     block_size, true);
153 	btrfs_delalloc_release_extents(inode, block_size);
154 out:
155 	extent_changeset_free(data_reserved);
156 
157 	return ret;
158 }
159 
160 /*
161  * Deal with cloning of inline extents. We try to copy the inline extent from
162  * the source inode to destination inode when possible. When not possible we
163  * copy the inline extent's data into the respective page of the inode.
164  */
clone_copy_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)165 static int clone_copy_inline_extent(struct btrfs_inode *inode,
166 				    struct btrfs_path *path,
167 				    struct btrfs_key *new_key,
168 				    const u64 drop_start,
169 				    const u64 datal,
170 				    const u64 size,
171 				    const u8 comp_type,
172 				    char *inline_data,
173 				    struct btrfs_trans_handle **trans_out)
174 {
175 	struct btrfs_root *root = inode->root;
176 	struct btrfs_fs_info *fs_info = root->fs_info;
177 	const u64 aligned_end = ALIGN(new_key->offset + datal,
178 				      fs_info->sectorsize);
179 	struct btrfs_trans_handle *trans = NULL;
180 	struct btrfs_drop_extents_args drop_args = { 0 };
181 	int ret;
182 	struct btrfs_key key;
183 
184 	if (new_key->offset > 0) {
185 		ret = copy_inline_to_page(inode, new_key->offset,
186 					  inline_data, size, datal, comp_type);
187 		goto out;
188 	}
189 
190 	key.objectid = btrfs_ino(inode);
191 	key.type = BTRFS_EXTENT_DATA_KEY;
192 	key.offset = 0;
193 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
194 	if (ret < 0) {
195 		return ret;
196 	} else if (ret > 0) {
197 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
198 			ret = btrfs_next_leaf(root, path);
199 			if (ret < 0)
200 				return ret;
201 			else if (ret > 0)
202 				goto copy_inline_extent;
203 		}
204 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
205 		if (key.objectid == btrfs_ino(inode) &&
206 		    key.type == BTRFS_EXTENT_DATA_KEY) {
207 			/*
208 			 * There's an implicit hole at file offset 0, copy the
209 			 * inline extent's data to the page.
210 			 */
211 			ASSERT(key.offset > 0);
212 			goto copy_to_page;
213 		}
214 	} else if (i_size_read(&inode->vfs_inode) <= datal) {
215 		struct btrfs_file_extent_item *ei;
216 
217 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
218 				    struct btrfs_file_extent_item);
219 		/*
220 		 * If it's an inline extent replace it with the source inline
221 		 * extent, otherwise copy the source inline extent data into
222 		 * the respective page at the destination inode.
223 		 */
224 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
225 		    BTRFS_FILE_EXTENT_INLINE)
226 			goto copy_inline_extent;
227 
228 		goto copy_to_page;
229 	}
230 
231 copy_inline_extent:
232 	/*
233 	 * We have no extent items, or we have an extent at offset 0 which may
234 	 * or may not be inlined. All these cases are dealt the same way.
235 	 */
236 	if (i_size_read(&inode->vfs_inode) > datal) {
237 		/*
238 		 * At the destination offset 0 we have either a hole, a regular
239 		 * extent or an inline extent larger then the one we want to
240 		 * clone. Deal with all these cases by copying the inline extent
241 		 * data into the respective page at the destination inode.
242 		 */
243 		goto copy_to_page;
244 	}
245 
246 	/*
247 	 * Release path before starting a new transaction so we don't hold locks
248 	 * that would confuse lockdep.
249 	 */
250 	btrfs_release_path(path);
251 	/*
252 	 * If we end up here it means were copy the inline extent into a leaf
253 	 * of the destination inode. We know we will drop or adjust at most one
254 	 * extent item in the destination root.
255 	 *
256 	 * 1 unit - adjusting old extent (we may have to split it)
257 	 * 1 unit - add new extent
258 	 * 1 unit - inode update
259 	 */
260 	trans = btrfs_start_transaction(root, 3);
261 	if (IS_ERR(trans)) {
262 		ret = PTR_ERR(trans);
263 		trans = NULL;
264 		goto out;
265 	}
266 	drop_args.path = path;
267 	drop_args.start = drop_start;
268 	drop_args.end = aligned_end;
269 	drop_args.drop_cache = true;
270 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
271 	if (ret) {
272 		btrfs_abort_transaction(trans, ret);
273 		goto out;
274 	}
275 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276 	if (ret) {
277 		btrfs_abort_transaction(trans, ret);
278 		goto out;
279 	}
280 
281 	write_extent_buffer(path->nodes[0], inline_data,
282 			    btrfs_item_ptr_offset(path->nodes[0],
283 						  path->slots[0]),
284 			    size);
285 	btrfs_update_inode_bytes(inode, datal, drop_args.bytes_found);
286 	btrfs_set_inode_full_sync(inode);
287 	ret = btrfs_inode_set_file_extent_range(inode, 0, aligned_end);
288 	if (ret)
289 		btrfs_abort_transaction(trans, ret);
290 out:
291 	if (!ret && !trans) {
292 		/*
293 		 * No transaction here means we copied the inline extent into a
294 		 * page of the destination inode.
295 		 *
296 		 * 1 unit to update inode item
297 		 */
298 		trans = btrfs_start_transaction(root, 1);
299 		if (IS_ERR(trans)) {
300 			ret = PTR_ERR(trans);
301 			trans = NULL;
302 		}
303 	}
304 	if (ret && trans)
305 		btrfs_end_transaction(trans);
306 	if (!ret)
307 		*trans_out = trans;
308 
309 	return ret;
310 
311 copy_to_page:
312 	/*
313 	 * Release our path because we don't need it anymore and also because
314 	 * copy_inline_to_page() needs to reserve data and metadata, which may
315 	 * need to flush delalloc when we are low on available space and
316 	 * therefore cause a deadlock if writeback of an inline extent needs to
317 	 * write to the same leaf or an ordered extent completion needs to write
318 	 * to the same leaf.
319 	 */
320 	btrfs_release_path(path);
321 
322 	ret = copy_inline_to_page(inode, new_key->offset,
323 				  inline_data, size, datal, comp_type);
324 	goto out;
325 }
326 
327 /*
328  * Clone a range from inode file to another.
329  *
330  * @src:             Inode to clone from
331  * @inode:           Inode to clone to
332  * @off:             Offset within source to start clone from
333  * @olen:            Original length, passed by user, of range to clone
334  * @olen_aligned:    Block-aligned value of olen
335  * @destoff:         Offset within @inode to start clone
336  * @no_time_update:  Whether to update mtime/ctime on the target inode
337  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)338 static int btrfs_clone(struct inode *src, struct inode *inode,
339 		       const u64 off, const u64 olen, const u64 olen_aligned,
340 		       const u64 destoff, int no_time_update)
341 {
342 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
343 	struct btrfs_path *path = NULL;
344 	struct extent_buffer *leaf;
345 	struct btrfs_trans_handle *trans;
346 	char *buf = NULL;
347 	struct btrfs_key key;
348 	u32 nritems;
349 	int slot;
350 	int ret;
351 	const u64 len = olen_aligned;
352 	u64 last_dest_end = destoff;
353 	u64 prev_extent_end = off;
354 
355 	ret = -ENOMEM;
356 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
357 	if (!buf)
358 		return ret;
359 
360 	path = btrfs_alloc_path();
361 	if (!path) {
362 		kvfree(buf);
363 		return ret;
364 	}
365 
366 	path->reada = READA_FORWARD;
367 	/* Clone data */
368 	key.objectid = btrfs_ino(BTRFS_I(src));
369 	key.type = BTRFS_EXTENT_DATA_KEY;
370 	key.offset = off;
371 
372 	while (1) {
373 		struct btrfs_file_extent_item *extent;
374 		u64 extent_gen;
375 		int type;
376 		u32 size;
377 		struct btrfs_key new_key;
378 		u64 disko = 0, diskl = 0;
379 		u64 datao = 0, datal = 0;
380 		u8 comp;
381 		u64 drop_start;
382 
383 		/* Note the key will change type as we walk through the tree */
384 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
385 				0, 0);
386 		if (ret < 0)
387 			goto out;
388 		/*
389 		 * First search, if no extent item that starts at offset off was
390 		 * found but the previous item is an extent item, it's possible
391 		 * it might overlap our target range, therefore process it.
392 		 */
393 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
394 			btrfs_item_key_to_cpu(path->nodes[0], &key,
395 					      path->slots[0] - 1);
396 			if (key.type == BTRFS_EXTENT_DATA_KEY)
397 				path->slots[0]--;
398 		}
399 
400 		nritems = btrfs_header_nritems(path->nodes[0]);
401 process_slot:
402 		if (path->slots[0] >= nritems) {
403 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
404 			if (ret < 0)
405 				goto out;
406 			if (ret > 0)
407 				break;
408 			nritems = btrfs_header_nritems(path->nodes[0]);
409 		}
410 		leaf = path->nodes[0];
411 		slot = path->slots[0];
412 
413 		btrfs_item_key_to_cpu(leaf, &key, slot);
414 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
415 		    key.objectid != btrfs_ino(BTRFS_I(src)))
416 			break;
417 
418 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
419 
420 		extent = btrfs_item_ptr(leaf, slot,
421 					struct btrfs_file_extent_item);
422 		extent_gen = btrfs_file_extent_generation(leaf, extent);
423 		comp = btrfs_file_extent_compression(leaf, extent);
424 		type = btrfs_file_extent_type(leaf, extent);
425 		if (type == BTRFS_FILE_EXTENT_REG ||
426 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
427 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
428 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
429 			datao = btrfs_file_extent_offset(leaf, extent);
430 			datal = btrfs_file_extent_num_bytes(leaf, extent);
431 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
432 			/* Take upper bound, may be compressed */
433 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
434 		}
435 
436 		/*
437 		 * The first search might have left us at an extent item that
438 		 * ends before our target range's start, can happen if we have
439 		 * holes and NO_HOLES feature enabled.
440 		 *
441 		 * Subsequent searches may leave us on a file range we have
442 		 * processed before - this happens due to a race with ordered
443 		 * extent completion for a file range that is outside our source
444 		 * range, but that range was part of a file extent item that
445 		 * also covered a leading part of our source range.
446 		 */
447 		if (key.offset + datal <= prev_extent_end) {
448 			path->slots[0]++;
449 			goto process_slot;
450 		} else if (key.offset >= off + len) {
451 			break;
452 		}
453 
454 		prev_extent_end = key.offset + datal;
455 		size = btrfs_item_size(leaf, slot);
456 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
457 				   size);
458 
459 		btrfs_release_path(path);
460 
461 		memcpy(&new_key, &key, sizeof(new_key));
462 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
463 		if (off <= key.offset)
464 			new_key.offset = key.offset + destoff - off;
465 		else
466 			new_key.offset = destoff;
467 
468 		/*
469 		 * Deal with a hole that doesn't have an extent item that
470 		 * represents it (NO_HOLES feature enabled).
471 		 * This hole is either in the middle of the cloning range or at
472 		 * the beginning (fully overlaps it or partially overlaps it).
473 		 */
474 		if (new_key.offset != last_dest_end)
475 			drop_start = last_dest_end;
476 		else
477 			drop_start = new_key.offset;
478 
479 		if (type == BTRFS_FILE_EXTENT_REG ||
480 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
481 			struct btrfs_replace_extent_info clone_info;
482 
483 			/*
484 			 *    a  | --- range to clone ---|  b
485 			 * | ------------- extent ------------- |
486 			 */
487 
488 			/* Subtract range b */
489 			if (key.offset + datal > off + len)
490 				datal = off + len - key.offset;
491 
492 			/* Subtract range a */
493 			if (off > key.offset) {
494 				datao += off - key.offset;
495 				datal -= off - key.offset;
496 			}
497 
498 			clone_info.disk_offset = disko;
499 			clone_info.disk_len = diskl;
500 			clone_info.data_offset = datao;
501 			clone_info.data_len = datal;
502 			clone_info.file_offset = new_key.offset;
503 			clone_info.extent_buf = buf;
504 			clone_info.is_new_extent = false;
505 			clone_info.update_times = !no_time_update;
506 			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
507 					drop_start, new_key.offset + datal - 1,
508 					&clone_info, &trans);
509 			if (ret)
510 				goto out;
511 		} else {
512 			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
513 			/*
514 			 * Inline extents always have to start at file offset 0
515 			 * and can never be bigger then the sector size. We can
516 			 * never clone only parts of an inline extent, since all
517 			 * reflink operations must start at a sector size aligned
518 			 * offset, and the length must be aligned too or end at
519 			 * the i_size (which implies the whole inlined data).
520 			 */
521 			ASSERT(key.offset == 0);
522 			ASSERT(datal <= fs_info->sectorsize);
523 			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
524 			    WARN_ON(key.offset != 0) ||
525 			    WARN_ON(datal > fs_info->sectorsize)) {
526 				ret = -EUCLEAN;
527 				goto out;
528 			}
529 
530 			ret = clone_copy_inline_extent(BTRFS_I(inode), path, &new_key,
531 						       drop_start, datal, size,
532 						       comp, buf, &trans);
533 			if (ret)
534 				goto out;
535 		}
536 
537 		btrfs_release_path(path);
538 
539 		/*
540 		 * Whenever we share an extent we update the last_reflink_trans
541 		 * of each inode to the current transaction. This is needed to
542 		 * make sure fsync does not log multiple checksum items with
543 		 * overlapping ranges (because some extent items might refer
544 		 * only to sections of the original extent). For the destination
545 		 * inode we do this regardless of the generation of the extents
546 		 * or even if they are inline extents or explicit holes, to make
547 		 * sure a full fsync does not skip them. For the source inode,
548 		 * we only need to update last_reflink_trans in case it's a new
549 		 * extent that is not a hole or an inline extent, to deal with
550 		 * the checksums problem on fsync.
551 		 */
552 		if (extent_gen == trans->transid && disko > 0)
553 			BTRFS_I(src)->last_reflink_trans = trans->transid;
554 
555 		BTRFS_I(inode)->last_reflink_trans = trans->transid;
556 
557 		last_dest_end = ALIGN(new_key.offset + datal,
558 				      fs_info->sectorsize);
559 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
560 						destoff, olen, no_time_update);
561 		if (ret)
562 			goto out;
563 		if (new_key.offset + datal >= destoff + len)
564 			break;
565 
566 		btrfs_release_path(path);
567 		key.offset = prev_extent_end;
568 
569 		if (fatal_signal_pending(current)) {
570 			ret = -EINTR;
571 			goto out;
572 		}
573 
574 		cond_resched();
575 	}
576 	ret = 0;
577 
578 	if (last_dest_end < destoff + len) {
579 		/*
580 		 * We have an implicit hole that fully or partially overlaps our
581 		 * cloning range at its end. This means that we either have the
582 		 * NO_HOLES feature enabled or the implicit hole happened due to
583 		 * mixing buffered and direct IO writes against this file.
584 		 */
585 		btrfs_release_path(path);
586 
587 		/*
588 		 * When using NO_HOLES and we are cloning a range that covers
589 		 * only a hole (no extents) into a range beyond the current
590 		 * i_size, punching a hole in the target range will not create
591 		 * an extent map defining a hole, because the range starts at or
592 		 * beyond current i_size. If the file previously had an i_size
593 		 * greater than the new i_size set by this clone operation, we
594 		 * need to make sure the next fsync is a full fsync, so that it
595 		 * detects and logs a hole covering a range from the current
596 		 * i_size to the new i_size. If the clone range covers extents,
597 		 * besides a hole, then we know the full sync flag was already
598 		 * set by previous calls to btrfs_replace_file_extents() that
599 		 * replaced file extent items.
600 		 */
601 		if (last_dest_end >= i_size_read(inode))
602 			btrfs_set_inode_full_sync(BTRFS_I(inode));
603 
604 		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
605 				last_dest_end, destoff + len - 1, NULL, &trans);
606 		if (ret)
607 			goto out;
608 
609 		ret = clone_finish_inode_update(trans, inode, destoff + len,
610 						destoff, olen, no_time_update);
611 	}
612 
613 out:
614 	btrfs_free_path(path);
615 	kvfree(buf);
616 	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
617 
618 	return ret;
619 }
620 
btrfs_double_mmap_lock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)621 static void btrfs_double_mmap_lock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
622 {
623 	if (inode1 < inode2)
624 		swap(inode1, inode2);
625 	down_write(&inode1->i_mmap_lock);
626 	down_write_nested(&inode2->i_mmap_lock, SINGLE_DEPTH_NESTING);
627 }
628 
btrfs_double_mmap_unlock(struct btrfs_inode * inode1,struct btrfs_inode * inode2)629 static void btrfs_double_mmap_unlock(struct btrfs_inode *inode1, struct btrfs_inode *inode2)
630 {
631 	up_write(&inode1->i_mmap_lock);
632 	up_write(&inode2->i_mmap_lock);
633 }
634 
btrfs_extent_same_range(struct btrfs_inode * src,u64 loff,u64 len,struct btrfs_inode * dst,u64 dst_loff)635 static int btrfs_extent_same_range(struct btrfs_inode *src, u64 loff, u64 len,
636 				   struct btrfs_inode *dst, u64 dst_loff)
637 {
638 	const u64 end = dst_loff + len - 1;
639 	struct extent_state *cached_state = NULL;
640 	struct btrfs_fs_info *fs_info = src->root->fs_info;
641 	const u64 bs = fs_info->sectorsize;
642 	int ret;
643 
644 	/*
645 	 * Lock destination range to serialize with concurrent readahead(), and
646 	 * we are safe from concurrency with relocation of source extents
647 	 * because we have already locked the inode's i_mmap_lock in exclusive
648 	 * mode.
649 	 */
650 	btrfs_lock_extent(&dst->io_tree, dst_loff, end, &cached_state);
651 	ret = btrfs_clone(&src->vfs_inode, &dst->vfs_inode, loff, len,
652 			  ALIGN(len, bs), dst_loff, 1);
653 	btrfs_unlock_extent(&dst->io_tree, dst_loff, end, &cached_state);
654 
655 	btrfs_btree_balance_dirty(fs_info);
656 
657 	return ret;
658 }
659 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)660 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
661 			     struct inode *dst, u64 dst_loff)
662 {
663 	int ret = 0;
664 	u64 i, tail_len, chunk_count;
665 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
666 
667 	spin_lock(&root_dst->root_item_lock);
668 	if (root_dst->send_in_progress) {
669 		btrfs_warn_rl(root_dst->fs_info,
670 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
671 			      btrfs_root_id(root_dst),
672 			      root_dst->send_in_progress);
673 		spin_unlock(&root_dst->root_item_lock);
674 		return -EAGAIN;
675 	}
676 	root_dst->dedupe_in_progress++;
677 	spin_unlock(&root_dst->root_item_lock);
678 
679 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
680 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
681 
682 	for (i = 0; i < chunk_count; i++) {
683 		ret = btrfs_extent_same_range(BTRFS_I(src), loff, BTRFS_MAX_DEDUPE_LEN,
684 					      BTRFS_I(dst), dst_loff);
685 		if (ret)
686 			goto out;
687 
688 		loff += BTRFS_MAX_DEDUPE_LEN;
689 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
690 	}
691 
692 	if (tail_len > 0)
693 		ret = btrfs_extent_same_range(BTRFS_I(src), loff, tail_len,
694 					      BTRFS_I(dst), dst_loff);
695 out:
696 	spin_lock(&root_dst->root_item_lock);
697 	root_dst->dedupe_in_progress--;
698 	spin_unlock(&root_dst->root_item_lock);
699 
700 	return ret;
701 }
702 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)703 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
704 					u64 off, u64 olen, u64 destoff)
705 {
706 	struct extent_state *cached_state = NULL;
707 	struct inode *inode = file_inode(file);
708 	struct inode *src = file_inode(file_src);
709 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
710 	int ret;
711 	int wb_ret;
712 	u64 len = olen;
713 	u64 bs = fs_info->sectorsize;
714 	u64 end;
715 
716 	/*
717 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
718 	 * eof block into the middle of a file, which would result in corruption
719 	 * if the file size is not blocksize aligned. So we don't need to check
720 	 * for that case here.
721 	 */
722 	if (off + len == src->i_size)
723 		len = ALIGN(src->i_size, bs) - off;
724 
725 	if (destoff > inode->i_size) {
726 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
727 
728 		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
729 		if (ret)
730 			return ret;
731 		/*
732 		 * We may have truncated the last block if the inode's size is
733 		 * not sector size aligned, so we need to wait for writeback to
734 		 * complete before proceeding further, otherwise we can race
735 		 * with cloning and attempt to increment a reference to an
736 		 * extent that no longer exists (writeback completed right after
737 		 * we found the previous extent covering eof and before we
738 		 * attempted to increment its reference count).
739 		 */
740 		ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
741 					       destoff - wb_start);
742 		if (ret)
743 			return ret;
744 	}
745 
746 	/*
747 	 * Lock destination range to serialize with concurrent readahead(), and
748 	 * we are safe from concurrency with relocation of source extents
749 	 * because we have already locked the inode's i_mmap_lock in exclusive
750 	 * mode.
751 	 */
752 	end = destoff + len - 1;
753 	btrfs_lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
754 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
755 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
756 
757 	/*
758 	 * We may have copied an inline extent into a page of the destination
759 	 * range, so wait for writeback to complete before truncating pages
760 	 * from the page cache. This is a rare case.
761 	 */
762 	wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
763 	ret = ret ? ret : wb_ret;
764 	/*
765 	 * Truncate page cache pages so that future reads will see the cloned
766 	 * data immediately and not the previous data.
767 	 */
768 	truncate_inode_pages_range(&inode->i_data,
769 				round_down(destoff, PAGE_SIZE),
770 				round_up(destoff + len, PAGE_SIZE) - 1);
771 
772 	btrfs_btree_balance_dirty(fs_info);
773 
774 	return ret;
775 }
776 
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)777 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
778 				       struct file *file_out, loff_t pos_out,
779 				       loff_t *len, unsigned int remap_flags)
780 {
781 	struct btrfs_inode *inode_in = BTRFS_I(file_inode(file_in));
782 	struct btrfs_inode *inode_out = BTRFS_I(file_inode(file_out));
783 	u64 bs = inode_out->root->fs_info->sectorsize;
784 	u64 wb_len;
785 	int ret;
786 
787 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
788 		struct btrfs_root *root_out = inode_out->root;
789 
790 		if (btrfs_root_readonly(root_out))
791 			return -EROFS;
792 
793 		ASSERT(inode_in->vfs_inode.i_sb == inode_out->vfs_inode.i_sb);
794 	}
795 
796 	/* Don't make the dst file partly checksummed */
797 	if ((inode_in->flags & BTRFS_INODE_NODATASUM) !=
798 	    (inode_out->flags & BTRFS_INODE_NODATASUM)) {
799 		return -EINVAL;
800 	}
801 
802 	/*
803 	 * Now that the inodes are locked, we need to start writeback ourselves
804 	 * and can not rely on the writeback from the VFS's generic helper
805 	 * generic_remap_file_range_prep() because:
806 	 *
807 	 * 1) For compression we must call filemap_fdatawrite_range() range
808 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
809 	 *    helper only calls it once;
810 	 *
811 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
812 	 *    waits for the writeback to complete, i.e. for IO to be done, and
813 	 *    not for the ordered extents to complete. We need to wait for them
814 	 *    to complete so that new file extent items are in the fs tree.
815 	 */
816 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
817 		wb_len = ALIGN(inode_in->vfs_inode.i_size, bs) - ALIGN_DOWN(pos_in, bs);
818 	else
819 		wb_len = ALIGN(*len, bs);
820 
821 	/*
822 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
823 	 *
824 	 * Btrfs' back references do not have a block level granularity, they
825 	 * work at the whole extent level.
826 	 * NOCOW buffered write without data space reserved may not be able
827 	 * to fall back to CoW due to lack of data space, thus could cause
828 	 * data loss.
829 	 *
830 	 * Here we take a shortcut by flushing the whole inode, so that all
831 	 * nocow write should reach disk as nocow before we increase the
832 	 * reference of the extent. We could do better by only flushing NOCOW
833 	 * data, but that needs extra accounting.
834 	 *
835 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
836 	 * CoWed anyway, not affecting nocow part.
837 	 */
838 	ret = filemap_flush(inode_in->vfs_inode.i_mapping);
839 	if (ret < 0)
840 		return ret;
841 
842 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), wb_len);
843 	if (ret < 0)
844 		return ret;
845 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), wb_len);
846 	if (ret < 0)
847 		return ret;
848 
849 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
850 					    len, remap_flags);
851 }
852 
file_sync_write(const struct file * file)853 static bool file_sync_write(const struct file *file)
854 {
855 	if (file->f_flags & (__O_SYNC | O_DSYNC))
856 		return true;
857 	if (IS_SYNC(file_inode(file)))
858 		return true;
859 
860 	return false;
861 }
862 
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)863 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
864 		struct file *dst_file, loff_t destoff, loff_t len,
865 		unsigned int remap_flags)
866 {
867 	struct btrfs_inode *src_inode = BTRFS_I(file_inode(src_file));
868 	struct btrfs_inode *dst_inode = BTRFS_I(file_inode(dst_file));
869 	bool same_inode = dst_inode == src_inode;
870 	int ret;
871 
872 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
873 		return -EINVAL;
874 
875 	if (same_inode) {
876 		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
877 	} else {
878 		lock_two_nondirectories(&src_inode->vfs_inode, &dst_inode->vfs_inode);
879 		btrfs_double_mmap_lock(src_inode, dst_inode);
880 	}
881 
882 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
883 					  &len, remap_flags);
884 	if (ret < 0 || len == 0)
885 		goto out_unlock;
886 
887 	if (remap_flags & REMAP_FILE_DEDUP)
888 		ret = btrfs_extent_same(&src_inode->vfs_inode, off, len,
889 					&dst_inode->vfs_inode, destoff);
890 	else
891 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
892 
893 out_unlock:
894 	if (same_inode) {
895 		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
896 	} else {
897 		btrfs_double_mmap_unlock(src_inode, dst_inode);
898 		unlock_two_nondirectories(&src_inode->vfs_inode,
899 					  &dst_inode->vfs_inode);
900 	}
901 
902 	/*
903 	 * If either the source or the destination file was opened with O_SYNC,
904 	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
905 	 * source files/ranges, so that after a successful return (0) followed
906 	 * by a power failure results in the reflinked data to be readable from
907 	 * both files/ranges.
908 	 */
909 	if (ret == 0 && len > 0 &&
910 	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
911 		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
912 		if (ret == 0)
913 			ret = btrfs_sync_file(dst_file, destoff,
914 					      destoff + len - 1, 0);
915 	}
916 
917 	return ret < 0 ? ret : len;
918 }
919