1 /*
2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * 2003-10-17 - Ported from altq
10 */
11 /*
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
19 *
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33 * DAMAGE.
34 *
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
39 */
40 /*
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45 *
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
50 */
51
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
70
71 /*
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
76 *
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
82 */
83
84 struct internal_sc {
85 u64 sm1; /* scaled slope of the 1st segment */
86 u64 ism1; /* scaled inverse-slope of the 1st segment */
87 u64 dx; /* the x-projection of the 1st segment */
88 u64 dy; /* the y-projection of the 1st segment */
89 u64 sm2; /* scaled slope of the 2nd segment */
90 u64 ism2; /* scaled inverse-slope of the 2nd segment */
91 };
92
93 /* runtime service curve */
94 struct runtime_sc {
95 u64 x; /* current starting position on x-axis */
96 u64 y; /* current starting position on y-axis */
97 u64 sm1; /* scaled slope of the 1st segment */
98 u64 ism1; /* scaled inverse-slope of the 1st segment */
99 u64 dx; /* the x-projection of the 1st segment */
100 u64 dy; /* the y-projection of the 1st segment */
101 u64 sm2; /* scaled slope of the 2nd segment */
102 u64 ism2; /* scaled inverse-slope of the 2nd segment */
103 };
104
105 enum hfsc_class_flags {
106 HFSC_RSC = 0x1,
107 HFSC_FSC = 0x2,
108 HFSC_USC = 0x4
109 };
110
111 struct hfsc_class {
112 struct Qdisc_class_common cl_common;
113
114 struct gnet_stats_basic_sync bstats;
115 struct gnet_stats_queue qstats;
116 struct net_rate_estimator __rcu *rate_est;
117 struct tcf_proto __rcu *filter_list; /* filter list */
118 struct tcf_block *block;
119 unsigned int level; /* class level in hierarchy */
120
121 struct hfsc_sched *sched; /* scheduler data */
122 struct hfsc_class *cl_parent; /* parent class */
123 struct list_head siblings; /* sibling classes */
124 struct list_head children; /* child classes */
125 struct Qdisc *qdisc; /* leaf qdisc */
126
127 struct rb_node el_node; /* qdisc's eligible tree member */
128 struct rb_root vt_tree; /* active children sorted by cl_vt */
129 struct rb_node vt_node; /* parent's vt_tree member */
130 struct rb_root cf_tree; /* active children sorted by cl_f */
131 struct rb_node cf_node; /* parent's cf_heap member */
132
133 u64 cl_total; /* total work in bytes */
134 u64 cl_cumul; /* cumulative work in bytes done by
135 real-time criteria */
136
137 u64 cl_d; /* deadline*/
138 u64 cl_e; /* eligible time */
139 u64 cl_vt; /* virtual time */
140 u64 cl_f; /* time when this class will fit for
141 link-sharing, max(myf, cfmin) */
142 u64 cl_myf; /* my fit-time (calculated from this
143 class's own upperlimit curve) */
144 u64 cl_cfmin; /* earliest children's fit-time (used
145 with cl_myf to obtain cl_f) */
146 u64 cl_cvtmin; /* minimal virtual time among the
147 children fit for link-sharing
148 (monotonic within a period) */
149 u64 cl_vtadj; /* intra-period cumulative vt
150 adjustment */
151 u64 cl_cvtoff; /* largest virtual time seen among
152 the children */
153
154 struct internal_sc cl_rsc; /* internal real-time service curve */
155 struct internal_sc cl_fsc; /* internal fair service curve */
156 struct internal_sc cl_usc; /* internal upperlimit service curve */
157 struct runtime_sc cl_deadline; /* deadline curve */
158 struct runtime_sc cl_eligible; /* eligible curve */
159 struct runtime_sc cl_virtual; /* virtual curve */
160 struct runtime_sc cl_ulimit; /* upperlimit curve */
161
162 u8 cl_flags; /* which curves are valid */
163 u32 cl_vtperiod; /* vt period sequence number */
164 u32 cl_parentperiod;/* parent's vt period sequence number*/
165 u32 cl_nactive; /* number of active children */
166 };
167
168 struct hfsc_sched {
169 u16 defcls; /* default class id */
170 struct hfsc_class root; /* root class */
171 struct Qdisc_class_hash clhash; /* class hash */
172 struct rb_root eligible; /* eligible tree */
173 struct qdisc_watchdog watchdog; /* watchdog timer */
174 };
175
176 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
177
178
179 /*
180 * eligible tree holds backlogged classes being sorted by their eligible times.
181 * there is one eligible tree per hfsc instance.
182 */
183
184 static void
eltree_insert(struct hfsc_class * cl)185 eltree_insert(struct hfsc_class *cl)
186 {
187 struct rb_node **p = &cl->sched->eligible.rb_node;
188 struct rb_node *parent = NULL;
189 struct hfsc_class *cl1;
190
191 while (*p != NULL) {
192 parent = *p;
193 cl1 = rb_entry(parent, struct hfsc_class, el_node);
194 if (cl->cl_e >= cl1->cl_e)
195 p = &parent->rb_right;
196 else
197 p = &parent->rb_left;
198 }
199 rb_link_node(&cl->el_node, parent, p);
200 rb_insert_color(&cl->el_node, &cl->sched->eligible);
201 }
202
203 static inline void
eltree_remove(struct hfsc_class * cl)204 eltree_remove(struct hfsc_class *cl)
205 {
206 if (!RB_EMPTY_NODE(&cl->el_node)) {
207 rb_erase(&cl->el_node, &cl->sched->eligible);
208 RB_CLEAR_NODE(&cl->el_node);
209 }
210 }
211
212 static inline void
eltree_update(struct hfsc_class * cl)213 eltree_update(struct hfsc_class *cl)
214 {
215 eltree_remove(cl);
216 eltree_insert(cl);
217 }
218
219 /* find the class with the minimum deadline among the eligible classes */
220 static inline struct hfsc_class *
eltree_get_mindl(struct hfsc_sched * q,u64 cur_time)221 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
222 {
223 struct hfsc_class *p, *cl = NULL;
224 struct rb_node *n;
225
226 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
227 p = rb_entry(n, struct hfsc_class, el_node);
228 if (p->cl_e > cur_time)
229 break;
230 if (cl == NULL || p->cl_d < cl->cl_d)
231 cl = p;
232 }
233 return cl;
234 }
235
236 /* find the class with minimum eligible time among the eligible classes */
237 static inline struct hfsc_class *
eltree_get_minel(struct hfsc_sched * q)238 eltree_get_minel(struct hfsc_sched *q)
239 {
240 struct rb_node *n;
241
242 n = rb_first(&q->eligible);
243 if (n == NULL)
244 return NULL;
245 return rb_entry(n, struct hfsc_class, el_node);
246 }
247
248 /*
249 * vttree holds holds backlogged child classes being sorted by their virtual
250 * time. each intermediate class has one vttree.
251 */
252 static void
vttree_insert(struct hfsc_class * cl)253 vttree_insert(struct hfsc_class *cl)
254 {
255 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
256 struct rb_node *parent = NULL;
257 struct hfsc_class *cl1;
258
259 while (*p != NULL) {
260 parent = *p;
261 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
262 if (cl->cl_vt >= cl1->cl_vt)
263 p = &parent->rb_right;
264 else
265 p = &parent->rb_left;
266 }
267 rb_link_node(&cl->vt_node, parent, p);
268 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
269 }
270
271 static inline void
vttree_remove(struct hfsc_class * cl)272 vttree_remove(struct hfsc_class *cl)
273 {
274 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
275 }
276
277 static inline void
vttree_update(struct hfsc_class * cl)278 vttree_update(struct hfsc_class *cl)
279 {
280 vttree_remove(cl);
281 vttree_insert(cl);
282 }
283
284 static inline struct hfsc_class *
vttree_firstfit(struct hfsc_class * cl,u64 cur_time)285 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
286 {
287 struct hfsc_class *p;
288 struct rb_node *n;
289
290 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
291 p = rb_entry(n, struct hfsc_class, vt_node);
292 if (p->cl_f <= cur_time)
293 return p;
294 }
295 return NULL;
296 }
297
298 /*
299 * get the leaf class with the minimum vt in the hierarchy
300 */
301 static struct hfsc_class *
vttree_get_minvt(struct hfsc_class * cl,u64 cur_time)302 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
303 {
304 /* if root-class's cfmin is bigger than cur_time nothing to do */
305 if (cl->cl_cfmin > cur_time)
306 return NULL;
307
308 while (cl->level > 0) {
309 cl = vttree_firstfit(cl, cur_time);
310 if (cl == NULL)
311 return NULL;
312 /*
313 * update parent's cl_cvtmin.
314 */
315 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
316 cl->cl_parent->cl_cvtmin = cl->cl_vt;
317 }
318 return cl;
319 }
320
321 static void
cftree_insert(struct hfsc_class * cl)322 cftree_insert(struct hfsc_class *cl)
323 {
324 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
325 struct rb_node *parent = NULL;
326 struct hfsc_class *cl1;
327
328 while (*p != NULL) {
329 parent = *p;
330 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
331 if (cl->cl_f >= cl1->cl_f)
332 p = &parent->rb_right;
333 else
334 p = &parent->rb_left;
335 }
336 rb_link_node(&cl->cf_node, parent, p);
337 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
338 }
339
340 static inline void
cftree_remove(struct hfsc_class * cl)341 cftree_remove(struct hfsc_class *cl)
342 {
343 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
344 }
345
346 static inline void
cftree_update(struct hfsc_class * cl)347 cftree_update(struct hfsc_class *cl)
348 {
349 cftree_remove(cl);
350 cftree_insert(cl);
351 }
352
353 /*
354 * service curve support functions
355 *
356 * external service curve parameters
357 * m: bps
358 * d: us
359 * internal service curve parameters
360 * sm: (bytes/psched_us) << SM_SHIFT
361 * ism: (psched_us/byte) << ISM_SHIFT
362 * dx: psched_us
363 *
364 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
365 *
366 * sm and ism are scaled in order to keep effective digits.
367 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
368 * digits in decimal using the following table.
369 *
370 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
371 * ------------+-------------------------------------------------------
372 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
373 *
374 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
375 *
376 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
377 */
378 #define SM_SHIFT (30 - PSCHED_SHIFT)
379 #define ISM_SHIFT (8 + PSCHED_SHIFT)
380
381 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
382 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
383
384 static inline u64
seg_x2y(u64 x,u64 sm)385 seg_x2y(u64 x, u64 sm)
386 {
387 u64 y;
388
389 /*
390 * compute
391 * y = x * sm >> SM_SHIFT
392 * but divide it for the upper and lower bits to avoid overflow
393 */
394 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
395 return y;
396 }
397
398 static inline u64
seg_y2x(u64 y,u64 ism)399 seg_y2x(u64 y, u64 ism)
400 {
401 u64 x;
402
403 if (y == 0)
404 x = 0;
405 else if (ism == HT_INFINITY)
406 x = HT_INFINITY;
407 else {
408 x = (y >> ISM_SHIFT) * ism
409 + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
410 }
411 return x;
412 }
413
414 /* Convert m (bps) into sm (bytes/psched us) */
415 static u64
m2sm(u32 m)416 m2sm(u32 m)
417 {
418 u64 sm;
419
420 sm = ((u64)m << SM_SHIFT);
421 sm += PSCHED_TICKS_PER_SEC - 1;
422 do_div(sm, PSCHED_TICKS_PER_SEC);
423 return sm;
424 }
425
426 /* convert m (bps) into ism (psched us/byte) */
427 static u64
m2ism(u32 m)428 m2ism(u32 m)
429 {
430 u64 ism;
431
432 if (m == 0)
433 ism = HT_INFINITY;
434 else {
435 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
436 ism += m - 1;
437 do_div(ism, m);
438 }
439 return ism;
440 }
441
442 /* convert d (us) into dx (psched us) */
443 static u64
d2dx(u32 d)444 d2dx(u32 d)
445 {
446 u64 dx;
447
448 dx = ((u64)d * PSCHED_TICKS_PER_SEC);
449 dx += USEC_PER_SEC - 1;
450 do_div(dx, USEC_PER_SEC);
451 return dx;
452 }
453
454 /* convert sm (bytes/psched us) into m (bps) */
455 static u32
sm2m(u64 sm)456 sm2m(u64 sm)
457 {
458 u64 m;
459
460 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
461 return (u32)m;
462 }
463
464 /* convert dx (psched us) into d (us) */
465 static u32
dx2d(u64 dx)466 dx2d(u64 dx)
467 {
468 u64 d;
469
470 d = dx * USEC_PER_SEC;
471 do_div(d, PSCHED_TICKS_PER_SEC);
472 return (u32)d;
473 }
474
475 static void
sc2isc(struct tc_service_curve * sc,struct internal_sc * isc)476 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
477 {
478 isc->sm1 = m2sm(sc->m1);
479 isc->ism1 = m2ism(sc->m1);
480 isc->dx = d2dx(sc->d);
481 isc->dy = seg_x2y(isc->dx, isc->sm1);
482 isc->sm2 = m2sm(sc->m2);
483 isc->ism2 = m2ism(sc->m2);
484 }
485
486 /*
487 * initialize the runtime service curve with the given internal
488 * service curve starting at (x, y).
489 */
490 static void
rtsc_init(struct runtime_sc * rtsc,struct internal_sc * isc,u64 x,u64 y)491 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
492 {
493 rtsc->x = x;
494 rtsc->y = y;
495 rtsc->sm1 = isc->sm1;
496 rtsc->ism1 = isc->ism1;
497 rtsc->dx = isc->dx;
498 rtsc->dy = isc->dy;
499 rtsc->sm2 = isc->sm2;
500 rtsc->ism2 = isc->ism2;
501 }
502
503 /*
504 * calculate the y-projection of the runtime service curve by the
505 * given x-projection value
506 */
507 static u64
rtsc_y2x(struct runtime_sc * rtsc,u64 y)508 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
509 {
510 u64 x;
511
512 if (y < rtsc->y)
513 x = rtsc->x;
514 else if (y <= rtsc->y + rtsc->dy) {
515 /* x belongs to the 1st segment */
516 if (rtsc->dy == 0)
517 x = rtsc->x + rtsc->dx;
518 else
519 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
520 } else {
521 /* x belongs to the 2nd segment */
522 x = rtsc->x + rtsc->dx
523 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
524 }
525 return x;
526 }
527
528 static u64
rtsc_x2y(struct runtime_sc * rtsc,u64 x)529 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
530 {
531 u64 y;
532
533 if (x <= rtsc->x)
534 y = rtsc->y;
535 else if (x <= rtsc->x + rtsc->dx)
536 /* y belongs to the 1st segment */
537 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
538 else
539 /* y belongs to the 2nd segment */
540 y = rtsc->y + rtsc->dy
541 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
542 return y;
543 }
544
545 /*
546 * update the runtime service curve by taking the minimum of the current
547 * runtime service curve and the service curve starting at (x, y).
548 */
549 static void
rtsc_min(struct runtime_sc * rtsc,struct internal_sc * isc,u64 x,u64 y)550 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
551 {
552 u64 y1, y2, dx, dy;
553 u32 dsm;
554
555 if (isc->sm1 <= isc->sm2) {
556 /* service curve is convex */
557 y1 = rtsc_x2y(rtsc, x);
558 if (y1 < y)
559 /* the current rtsc is smaller */
560 return;
561 rtsc->x = x;
562 rtsc->y = y;
563 return;
564 }
565
566 /*
567 * service curve is concave
568 * compute the two y values of the current rtsc
569 * y1: at x
570 * y2: at (x + dx)
571 */
572 y1 = rtsc_x2y(rtsc, x);
573 if (y1 <= y) {
574 /* rtsc is below isc, no change to rtsc */
575 return;
576 }
577
578 y2 = rtsc_x2y(rtsc, x + isc->dx);
579 if (y2 >= y + isc->dy) {
580 /* rtsc is above isc, replace rtsc by isc */
581 rtsc->x = x;
582 rtsc->y = y;
583 rtsc->dx = isc->dx;
584 rtsc->dy = isc->dy;
585 return;
586 }
587
588 /*
589 * the two curves intersect
590 * compute the offsets (dx, dy) using the reverse
591 * function of seg_x2y()
592 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
593 */
594 dx = (y1 - y) << SM_SHIFT;
595 dsm = isc->sm1 - isc->sm2;
596 do_div(dx, dsm);
597 /*
598 * check if (x, y1) belongs to the 1st segment of rtsc.
599 * if so, add the offset.
600 */
601 if (rtsc->x + rtsc->dx > x)
602 dx += rtsc->x + rtsc->dx - x;
603 dy = seg_x2y(dx, isc->sm1);
604
605 rtsc->x = x;
606 rtsc->y = y;
607 rtsc->dx = dx;
608 rtsc->dy = dy;
609 }
610
611 static void
init_ed(struct hfsc_class * cl,unsigned int next_len)612 init_ed(struct hfsc_class *cl, unsigned int next_len)
613 {
614 u64 cur_time = psched_get_time();
615
616 /* update the deadline curve */
617 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
618
619 /*
620 * update the eligible curve.
621 * for concave, it is equal to the deadline curve.
622 * for convex, it is a linear curve with slope m2.
623 */
624 cl->cl_eligible = cl->cl_deadline;
625 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
626 cl->cl_eligible.dx = 0;
627 cl->cl_eligible.dy = 0;
628 }
629
630 /* compute e and d */
631 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
632 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
633
634 eltree_insert(cl);
635 }
636
637 static void
update_ed(struct hfsc_class * cl,unsigned int next_len)638 update_ed(struct hfsc_class *cl, unsigned int next_len)
639 {
640 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
641 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
642
643 eltree_update(cl);
644 }
645
646 static inline void
update_d(struct hfsc_class * cl,unsigned int next_len)647 update_d(struct hfsc_class *cl, unsigned int next_len)
648 {
649 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
650 }
651
652 static inline void
update_cfmin(struct hfsc_class * cl)653 update_cfmin(struct hfsc_class *cl)
654 {
655 struct rb_node *n = rb_first(&cl->cf_tree);
656 struct hfsc_class *p;
657
658 if (n == NULL) {
659 cl->cl_cfmin = 0;
660 return;
661 }
662 p = rb_entry(n, struct hfsc_class, cf_node);
663 cl->cl_cfmin = p->cl_f;
664 }
665
666 static void
init_vf(struct hfsc_class * cl,unsigned int len)667 init_vf(struct hfsc_class *cl, unsigned int len)
668 {
669 struct hfsc_class *max_cl;
670 struct rb_node *n;
671 u64 vt, f, cur_time;
672 int go_active;
673
674 cur_time = 0;
675 go_active = 1;
676 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
677 if (go_active && cl->cl_nactive++ == 0)
678 go_active = 1;
679 else
680 go_active = 0;
681
682 if (go_active) {
683 n = rb_last(&cl->cl_parent->vt_tree);
684 if (n != NULL) {
685 max_cl = rb_entry(n, struct hfsc_class, vt_node);
686 /*
687 * set vt to the average of the min and max
688 * classes. if the parent's period didn't
689 * change, don't decrease vt of the class.
690 */
691 vt = max_cl->cl_vt;
692 if (cl->cl_parent->cl_cvtmin != 0)
693 vt = (cl->cl_parent->cl_cvtmin + vt)/2;
694
695 if (cl->cl_parent->cl_vtperiod !=
696 cl->cl_parentperiod || vt > cl->cl_vt)
697 cl->cl_vt = vt;
698 } else {
699 /*
700 * first child for a new parent backlog period.
701 * initialize cl_vt to the highest value seen
702 * among the siblings. this is analogous to
703 * what cur_time would provide in realtime case.
704 */
705 cl->cl_vt = cl->cl_parent->cl_cvtoff;
706 cl->cl_parent->cl_cvtmin = 0;
707 }
708
709 /* update the virtual curve */
710 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
711 cl->cl_vtadj = 0;
712
713 cl->cl_vtperiod++; /* increment vt period */
714 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
715 if (cl->cl_parent->cl_nactive == 0)
716 cl->cl_parentperiod++;
717 cl->cl_f = 0;
718
719 vttree_insert(cl);
720 cftree_insert(cl);
721
722 if (cl->cl_flags & HFSC_USC) {
723 /* class has upper limit curve */
724 if (cur_time == 0)
725 cur_time = psched_get_time();
726
727 /* update the ulimit curve */
728 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
729 cl->cl_total);
730 /* compute myf */
731 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
732 cl->cl_total);
733 }
734 }
735
736 f = max(cl->cl_myf, cl->cl_cfmin);
737 if (f != cl->cl_f) {
738 cl->cl_f = f;
739 cftree_update(cl);
740 }
741 update_cfmin(cl->cl_parent);
742 }
743 }
744
745 static void
update_vf(struct hfsc_class * cl,unsigned int len,u64 cur_time)746 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
747 {
748 u64 f; /* , myf_bound, delta; */
749 int go_passive = 0;
750
751 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
752 go_passive = 1;
753
754 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
755 cl->cl_total += len;
756
757 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
758 continue;
759
760 if (go_passive && --cl->cl_nactive == 0)
761 go_passive = 1;
762 else
763 go_passive = 0;
764
765 /* update vt */
766 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj;
767
768 /*
769 * if vt of the class is smaller than cvtmin,
770 * the class was skipped in the past due to non-fit.
771 * if so, we need to adjust vtadj.
772 */
773 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
774 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
775 cl->cl_vt = cl->cl_parent->cl_cvtmin;
776 }
777
778 if (go_passive) {
779 /* no more active child, going passive */
780
781 /* update cvtoff of the parent class */
782 if (cl->cl_vt > cl->cl_parent->cl_cvtoff)
783 cl->cl_parent->cl_cvtoff = cl->cl_vt;
784
785 /* remove this class from the vt tree */
786 vttree_remove(cl);
787
788 cftree_remove(cl);
789 update_cfmin(cl->cl_parent);
790
791 continue;
792 }
793
794 /* update the vt tree */
795 vttree_update(cl);
796
797 /* update f */
798 if (cl->cl_flags & HFSC_USC) {
799 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
800 #if 0
801 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
802 cl->cl_total);
803 /*
804 * This code causes classes to stay way under their
805 * limit when multiple classes are used at gigabit
806 * speed. needs investigation. -kaber
807 */
808 /*
809 * if myf lags behind by more than one clock tick
810 * from the current time, adjust myfadj to prevent
811 * a rate-limited class from going greedy.
812 * in a steady state under rate-limiting, myf
813 * fluctuates within one clock tick.
814 */
815 myf_bound = cur_time - PSCHED_JIFFIE2US(1);
816 if (cl->cl_myf < myf_bound) {
817 delta = cur_time - cl->cl_myf;
818 cl->cl_myfadj += delta;
819 cl->cl_myf += delta;
820 }
821 #endif
822 }
823
824 f = max(cl->cl_myf, cl->cl_cfmin);
825 if (f != cl->cl_f) {
826 cl->cl_f = f;
827 cftree_update(cl);
828 update_cfmin(cl->cl_parent);
829 }
830 }
831 }
832
833 static unsigned int
qdisc_peek_len(struct Qdisc * sch)834 qdisc_peek_len(struct Qdisc *sch)
835 {
836 struct sk_buff *skb;
837 unsigned int len;
838
839 skb = sch->ops->peek(sch);
840 if (unlikely(skb == NULL)) {
841 qdisc_warn_nonwc("qdisc_peek_len", sch);
842 return 0;
843 }
844 len = qdisc_pkt_len(skb);
845
846 return len;
847 }
848
849 static void
hfsc_adjust_levels(struct hfsc_class * cl)850 hfsc_adjust_levels(struct hfsc_class *cl)
851 {
852 struct hfsc_class *p;
853 unsigned int level;
854
855 do {
856 level = 0;
857 list_for_each_entry(p, &cl->children, siblings) {
858 if (p->level >= level)
859 level = p->level + 1;
860 }
861 cl->level = level;
862 } while ((cl = cl->cl_parent) != NULL);
863 }
864
865 static inline struct hfsc_class *
hfsc_find_class(u32 classid,struct Qdisc * sch)866 hfsc_find_class(u32 classid, struct Qdisc *sch)
867 {
868 struct hfsc_sched *q = qdisc_priv(sch);
869 struct Qdisc_class_common *clc;
870
871 clc = qdisc_class_find(&q->clhash, classid);
872 if (clc == NULL)
873 return NULL;
874 return container_of(clc, struct hfsc_class, cl_common);
875 }
876
877 static void
hfsc_change_rsc(struct hfsc_class * cl,struct tc_service_curve * rsc,u64 cur_time)878 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
879 u64 cur_time)
880 {
881 sc2isc(rsc, &cl->cl_rsc);
882 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
883 cl->cl_eligible = cl->cl_deadline;
884 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
885 cl->cl_eligible.dx = 0;
886 cl->cl_eligible.dy = 0;
887 }
888 cl->cl_flags |= HFSC_RSC;
889 }
890
891 static void
hfsc_change_fsc(struct hfsc_class * cl,struct tc_service_curve * fsc)892 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
893 {
894 sc2isc(fsc, &cl->cl_fsc);
895 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
896 cl->cl_flags |= HFSC_FSC;
897 }
898
899 static void
hfsc_change_usc(struct hfsc_class * cl,struct tc_service_curve * usc,u64 cur_time)900 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
901 u64 cur_time)
902 {
903 sc2isc(usc, &cl->cl_usc);
904 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
905 cl->cl_flags |= HFSC_USC;
906 }
907
908 static void
hfsc_upgrade_rt(struct hfsc_class * cl)909 hfsc_upgrade_rt(struct hfsc_class *cl)
910 {
911 cl->cl_fsc = cl->cl_rsc;
912 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
913 cl->cl_flags |= HFSC_FSC;
914 }
915
916 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
917 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
918 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
919 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
920 };
921
922 static int
hfsc_change_class(struct Qdisc * sch,u32 classid,u32 parentid,struct nlattr ** tca,unsigned long * arg,struct netlink_ext_ack * extack)923 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
924 struct nlattr **tca, unsigned long *arg,
925 struct netlink_ext_ack *extack)
926 {
927 struct hfsc_sched *q = qdisc_priv(sch);
928 struct hfsc_class *cl = (struct hfsc_class *)*arg;
929 struct hfsc_class *parent = NULL;
930 struct nlattr *opt = tca[TCA_OPTIONS];
931 struct nlattr *tb[TCA_HFSC_MAX + 1];
932 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
933 u64 cur_time;
934 int err;
935
936 if (opt == NULL)
937 return -EINVAL;
938
939 err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy,
940 NULL);
941 if (err < 0)
942 return err;
943
944 if (tb[TCA_HFSC_RSC]) {
945 rsc = nla_data(tb[TCA_HFSC_RSC]);
946 if (rsc->m1 == 0 && rsc->m2 == 0)
947 rsc = NULL;
948 }
949
950 if (tb[TCA_HFSC_FSC]) {
951 fsc = nla_data(tb[TCA_HFSC_FSC]);
952 if (fsc->m1 == 0 && fsc->m2 == 0)
953 fsc = NULL;
954 }
955
956 if (tb[TCA_HFSC_USC]) {
957 usc = nla_data(tb[TCA_HFSC_USC]);
958 if (usc->m1 == 0 && usc->m2 == 0)
959 usc = NULL;
960 }
961
962 if (cl != NULL) {
963 int old_flags;
964 int len = 0;
965
966 if (parentid) {
967 if (cl->cl_parent &&
968 cl->cl_parent->cl_common.classid != parentid)
969 return -EINVAL;
970 if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
971 return -EINVAL;
972 }
973 cur_time = psched_get_time();
974
975 if (tca[TCA_RATE]) {
976 err = gen_replace_estimator(&cl->bstats, NULL,
977 &cl->rate_est,
978 NULL,
979 true,
980 tca[TCA_RATE]);
981 if (err)
982 return err;
983 }
984
985 sch_tree_lock(sch);
986 old_flags = cl->cl_flags;
987
988 if (rsc != NULL)
989 hfsc_change_rsc(cl, rsc, cur_time);
990 if (fsc != NULL)
991 hfsc_change_fsc(cl, fsc);
992 if (usc != NULL)
993 hfsc_change_usc(cl, usc, cur_time);
994
995 if (cl->qdisc->q.qlen != 0)
996 len = qdisc_peek_len(cl->qdisc);
997 /* Check queue length again since some qdisc implementations
998 * (e.g., netem/codel) might empty the queue during the peek
999 * operation.
1000 */
1001 if (cl->qdisc->q.qlen != 0) {
1002 if (cl->cl_flags & HFSC_RSC) {
1003 if (old_flags & HFSC_RSC)
1004 update_ed(cl, len);
1005 else
1006 init_ed(cl, len);
1007 }
1008
1009 if (cl->cl_flags & HFSC_FSC) {
1010 if (old_flags & HFSC_FSC)
1011 update_vf(cl, 0, cur_time);
1012 else
1013 init_vf(cl, len);
1014 }
1015 }
1016 sch_tree_unlock(sch);
1017
1018 return 0;
1019 }
1020
1021 if (parentid == TC_H_ROOT)
1022 return -EEXIST;
1023
1024 parent = &q->root;
1025 if (parentid) {
1026 parent = hfsc_find_class(parentid, sch);
1027 if (parent == NULL)
1028 return -ENOENT;
1029 }
1030
1031 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1032 return -EINVAL;
1033 if (hfsc_find_class(classid, sch))
1034 return -EEXIST;
1035
1036 if (rsc == NULL && fsc == NULL)
1037 return -EINVAL;
1038
1039 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1040 if (cl == NULL)
1041 return -ENOBUFS;
1042
1043 err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack);
1044 if (err) {
1045 kfree(cl);
1046 return err;
1047 }
1048
1049 if (tca[TCA_RATE]) {
1050 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
1051 NULL, true, tca[TCA_RATE]);
1052 if (err) {
1053 tcf_block_put(cl->block);
1054 kfree(cl);
1055 return err;
1056 }
1057 }
1058
1059 if (rsc != NULL)
1060 hfsc_change_rsc(cl, rsc, 0);
1061 if (fsc != NULL)
1062 hfsc_change_fsc(cl, fsc);
1063 if (usc != NULL)
1064 hfsc_change_usc(cl, usc, 0);
1065
1066 cl->cl_common.classid = classid;
1067 cl->sched = q;
1068 cl->cl_parent = parent;
1069 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1070 classid, NULL);
1071 if (cl->qdisc == NULL)
1072 cl->qdisc = &noop_qdisc;
1073 else
1074 qdisc_hash_add(cl->qdisc, true);
1075 INIT_LIST_HEAD(&cl->children);
1076 cl->vt_tree = RB_ROOT;
1077 cl->cf_tree = RB_ROOT;
1078
1079 sch_tree_lock(sch);
1080 /* Check if the inner class is a misconfigured 'rt' */
1081 if (!(parent->cl_flags & HFSC_FSC) && parent != &q->root) {
1082 NL_SET_ERR_MSG(extack,
1083 "Forced curve change on parent 'rt' to 'sc'");
1084 hfsc_upgrade_rt(parent);
1085 }
1086 qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1087 list_add_tail(&cl->siblings, &parent->children);
1088 if (parent->level == 0)
1089 qdisc_purge_queue(parent->qdisc);
1090 hfsc_adjust_levels(parent);
1091 sch_tree_unlock(sch);
1092
1093 qdisc_class_hash_grow(sch, &q->clhash);
1094
1095 *arg = (unsigned long)cl;
1096 return 0;
1097 }
1098
1099 static void
hfsc_destroy_class(struct Qdisc * sch,struct hfsc_class * cl)1100 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1101 {
1102 struct hfsc_sched *q = qdisc_priv(sch);
1103
1104 tcf_block_put(cl->block);
1105 qdisc_put(cl->qdisc);
1106 gen_kill_estimator(&cl->rate_est);
1107 if (cl != &q->root)
1108 kfree(cl);
1109 }
1110
1111 static int
hfsc_delete_class(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)1112 hfsc_delete_class(struct Qdisc *sch, unsigned long arg,
1113 struct netlink_ext_ack *extack)
1114 {
1115 struct hfsc_sched *q = qdisc_priv(sch);
1116 struct hfsc_class *cl = (struct hfsc_class *)arg;
1117
1118 if (cl->level > 0 || qdisc_class_in_use(&cl->cl_common) ||
1119 cl == &q->root) {
1120 NL_SET_ERR_MSG(extack, "HFSC class in use");
1121 return -EBUSY;
1122 }
1123
1124 sch_tree_lock(sch);
1125
1126 list_del(&cl->siblings);
1127 hfsc_adjust_levels(cl->cl_parent);
1128
1129 qdisc_purge_queue(cl->qdisc);
1130 qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1131
1132 sch_tree_unlock(sch);
1133
1134 hfsc_destroy_class(sch, cl);
1135 return 0;
1136 }
1137
1138 static struct hfsc_class *
hfsc_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)1139 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1140 {
1141 struct hfsc_sched *q = qdisc_priv(sch);
1142 struct hfsc_class *head, *cl;
1143 struct tcf_result res;
1144 struct tcf_proto *tcf;
1145 int result;
1146
1147 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1148 (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1149 if (cl->level == 0)
1150 return cl;
1151
1152 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1153 head = &q->root;
1154 tcf = rcu_dereference_bh(q->root.filter_list);
1155 while (tcf && (result = tcf_classify(skb, NULL, tcf, &res, false)) >= 0) {
1156 #ifdef CONFIG_NET_CLS_ACT
1157 switch (result) {
1158 case TC_ACT_QUEUED:
1159 case TC_ACT_STOLEN:
1160 case TC_ACT_TRAP:
1161 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1162 fallthrough;
1163 case TC_ACT_SHOT:
1164 return NULL;
1165 }
1166 #endif
1167 cl = (struct hfsc_class *)res.class;
1168 if (!cl) {
1169 cl = hfsc_find_class(res.classid, sch);
1170 if (!cl)
1171 break; /* filter selected invalid classid */
1172 if (cl->level >= head->level)
1173 break; /* filter may only point downwards */
1174 }
1175
1176 if (cl->level == 0)
1177 return cl; /* hit leaf class */
1178
1179 /* apply inner filter chain */
1180 tcf = rcu_dereference_bh(cl->filter_list);
1181 head = cl;
1182 }
1183
1184 /* classification failed, try default class */
1185 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle),
1186 READ_ONCE(q->defcls)), sch);
1187 if (cl == NULL || cl->level > 0)
1188 return NULL;
1189
1190 return cl;
1191 }
1192
1193 static int
hfsc_graft_class(struct Qdisc * sch,unsigned long arg,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)1194 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1195 struct Qdisc **old, struct netlink_ext_ack *extack)
1196 {
1197 struct hfsc_class *cl = (struct hfsc_class *)arg;
1198
1199 if (cl->level > 0)
1200 return -EINVAL;
1201 if (new == NULL) {
1202 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1203 cl->cl_common.classid, NULL);
1204 if (new == NULL)
1205 new = &noop_qdisc;
1206 }
1207
1208 *old = qdisc_replace(sch, new, &cl->qdisc);
1209 return 0;
1210 }
1211
1212 static struct Qdisc *
hfsc_class_leaf(struct Qdisc * sch,unsigned long arg)1213 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1214 {
1215 struct hfsc_class *cl = (struct hfsc_class *)arg;
1216
1217 if (cl->level == 0)
1218 return cl->qdisc;
1219
1220 return NULL;
1221 }
1222
1223 static void
hfsc_qlen_notify(struct Qdisc * sch,unsigned long arg)1224 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1225 {
1226 struct hfsc_class *cl = (struct hfsc_class *)arg;
1227
1228 /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
1229 * needs to be called explicitly to remove a class from vttree.
1230 */
1231 if (cl->cl_nactive)
1232 update_vf(cl, 0, 0);
1233 if (cl->cl_flags & HFSC_RSC)
1234 eltree_remove(cl);
1235 }
1236
1237 static unsigned long
hfsc_search_class(struct Qdisc * sch,u32 classid)1238 hfsc_search_class(struct Qdisc *sch, u32 classid)
1239 {
1240 return (unsigned long)hfsc_find_class(classid, sch);
1241 }
1242
1243 static unsigned long
hfsc_bind_tcf(struct Qdisc * sch,unsigned long parent,u32 classid)1244 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1245 {
1246 struct hfsc_class *p = (struct hfsc_class *)parent;
1247 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1248
1249 if (cl != NULL) {
1250 if (p != NULL && p->level <= cl->level)
1251 return 0;
1252 qdisc_class_get(&cl->cl_common);
1253 }
1254
1255 return (unsigned long)cl;
1256 }
1257
1258 static void
hfsc_unbind_tcf(struct Qdisc * sch,unsigned long arg)1259 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1260 {
1261 struct hfsc_class *cl = (struct hfsc_class *)arg;
1262
1263 qdisc_class_put(&cl->cl_common);
1264 }
1265
hfsc_tcf_block(struct Qdisc * sch,unsigned long arg,struct netlink_ext_ack * extack)1266 static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg,
1267 struct netlink_ext_ack *extack)
1268 {
1269 struct hfsc_sched *q = qdisc_priv(sch);
1270 struct hfsc_class *cl = (struct hfsc_class *)arg;
1271
1272 if (cl == NULL)
1273 cl = &q->root;
1274
1275 return cl->block;
1276 }
1277
1278 static int
hfsc_dump_sc(struct sk_buff * skb,int attr,struct internal_sc * sc)1279 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1280 {
1281 struct tc_service_curve tsc;
1282
1283 tsc.m1 = sm2m(sc->sm1);
1284 tsc.d = dx2d(sc->dx);
1285 tsc.m2 = sm2m(sc->sm2);
1286 if (nla_put(skb, attr, sizeof(tsc), &tsc))
1287 goto nla_put_failure;
1288
1289 return skb->len;
1290
1291 nla_put_failure:
1292 return -1;
1293 }
1294
1295 static int
hfsc_dump_curves(struct sk_buff * skb,struct hfsc_class * cl)1296 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1297 {
1298 if ((cl->cl_flags & HFSC_RSC) &&
1299 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1300 goto nla_put_failure;
1301
1302 if ((cl->cl_flags & HFSC_FSC) &&
1303 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1304 goto nla_put_failure;
1305
1306 if ((cl->cl_flags & HFSC_USC) &&
1307 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1308 goto nla_put_failure;
1309
1310 return skb->len;
1311
1312 nla_put_failure:
1313 return -1;
1314 }
1315
1316 static int
hfsc_dump_class(struct Qdisc * sch,unsigned long arg,struct sk_buff * skb,struct tcmsg * tcm)1317 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1318 struct tcmsg *tcm)
1319 {
1320 struct hfsc_class *cl = (struct hfsc_class *)arg;
1321 struct nlattr *nest;
1322
1323 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1324 TC_H_ROOT;
1325 tcm->tcm_handle = cl->cl_common.classid;
1326 if (cl->level == 0)
1327 tcm->tcm_info = cl->qdisc->handle;
1328
1329 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1330 if (nest == NULL)
1331 goto nla_put_failure;
1332 if (hfsc_dump_curves(skb, cl) < 0)
1333 goto nla_put_failure;
1334 return nla_nest_end(skb, nest);
1335
1336 nla_put_failure:
1337 nla_nest_cancel(skb, nest);
1338 return -EMSGSIZE;
1339 }
1340
1341 static int
hfsc_dump_class_stats(struct Qdisc * sch,unsigned long arg,struct gnet_dump * d)1342 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1343 struct gnet_dump *d)
1344 {
1345 struct hfsc_class *cl = (struct hfsc_class *)arg;
1346 struct tc_hfsc_stats xstats;
1347 __u32 qlen;
1348
1349 qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog);
1350 xstats.level = cl->level;
1351 xstats.period = cl->cl_vtperiod;
1352 xstats.work = cl->cl_total;
1353 xstats.rtwork = cl->cl_cumul;
1354
1355 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
1356 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1357 gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0)
1358 return -1;
1359
1360 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1361 }
1362
1363
1364
1365 static void
hfsc_walk(struct Qdisc * sch,struct qdisc_walker * arg)1366 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1367 {
1368 struct hfsc_sched *q = qdisc_priv(sch);
1369 struct hfsc_class *cl;
1370 unsigned int i;
1371
1372 if (arg->stop)
1373 return;
1374
1375 for (i = 0; i < q->clhash.hashsize; i++) {
1376 hlist_for_each_entry(cl, &q->clhash.hash[i],
1377 cl_common.hnode) {
1378 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
1379 return;
1380 }
1381 }
1382 }
1383
1384 static void
hfsc_schedule_watchdog(struct Qdisc * sch)1385 hfsc_schedule_watchdog(struct Qdisc *sch)
1386 {
1387 struct hfsc_sched *q = qdisc_priv(sch);
1388 struct hfsc_class *cl;
1389 u64 next_time = 0;
1390
1391 cl = eltree_get_minel(q);
1392 if (cl)
1393 next_time = cl->cl_e;
1394 if (q->root.cl_cfmin != 0) {
1395 if (next_time == 0 || next_time > q->root.cl_cfmin)
1396 next_time = q->root.cl_cfmin;
1397 }
1398 if (next_time)
1399 qdisc_watchdog_schedule(&q->watchdog, next_time);
1400 }
1401
1402 static int
hfsc_init_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1403 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1404 struct netlink_ext_ack *extack)
1405 {
1406 struct hfsc_sched *q = qdisc_priv(sch);
1407 struct tc_hfsc_qopt *qopt;
1408 int err;
1409
1410 qdisc_watchdog_init(&q->watchdog, sch);
1411
1412 if (!opt || nla_len(opt) < sizeof(*qopt))
1413 return -EINVAL;
1414 qopt = nla_data(opt);
1415
1416 q->defcls = qopt->defcls;
1417 err = qdisc_class_hash_init(&q->clhash);
1418 if (err < 0)
1419 return err;
1420 q->eligible = RB_ROOT;
1421
1422 err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack);
1423 if (err)
1424 return err;
1425
1426 gnet_stats_basic_sync_init(&q->root.bstats);
1427 q->root.cl_common.classid = sch->handle;
1428 q->root.sched = q;
1429 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1430 sch->handle, NULL);
1431 if (q->root.qdisc == NULL)
1432 q->root.qdisc = &noop_qdisc;
1433 else
1434 qdisc_hash_add(q->root.qdisc, true);
1435 INIT_LIST_HEAD(&q->root.children);
1436 q->root.vt_tree = RB_ROOT;
1437 q->root.cf_tree = RB_ROOT;
1438
1439 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1440 qdisc_class_hash_grow(sch, &q->clhash);
1441
1442 return 0;
1443 }
1444
1445 static int
hfsc_change_qdisc(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1446 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt,
1447 struct netlink_ext_ack *extack)
1448 {
1449 struct hfsc_sched *q = qdisc_priv(sch);
1450 struct tc_hfsc_qopt *qopt;
1451
1452 if (nla_len(opt) < sizeof(*qopt))
1453 return -EINVAL;
1454 qopt = nla_data(opt);
1455
1456 WRITE_ONCE(q->defcls, qopt->defcls);
1457
1458 return 0;
1459 }
1460
1461 static void
hfsc_reset_class(struct hfsc_class * cl)1462 hfsc_reset_class(struct hfsc_class *cl)
1463 {
1464 cl->cl_total = 0;
1465 cl->cl_cumul = 0;
1466 cl->cl_d = 0;
1467 cl->cl_e = 0;
1468 cl->cl_vt = 0;
1469 cl->cl_vtadj = 0;
1470 cl->cl_cvtmin = 0;
1471 cl->cl_cvtoff = 0;
1472 cl->cl_vtperiod = 0;
1473 cl->cl_parentperiod = 0;
1474 cl->cl_f = 0;
1475 cl->cl_myf = 0;
1476 cl->cl_cfmin = 0;
1477 cl->cl_nactive = 0;
1478
1479 cl->vt_tree = RB_ROOT;
1480 cl->cf_tree = RB_ROOT;
1481 qdisc_reset(cl->qdisc);
1482
1483 if (cl->cl_flags & HFSC_RSC)
1484 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1485 if (cl->cl_flags & HFSC_FSC)
1486 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1487 if (cl->cl_flags & HFSC_USC)
1488 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1489 }
1490
1491 static void
hfsc_reset_qdisc(struct Qdisc * sch)1492 hfsc_reset_qdisc(struct Qdisc *sch)
1493 {
1494 struct hfsc_sched *q = qdisc_priv(sch);
1495 struct hfsc_class *cl;
1496 unsigned int i;
1497
1498 for (i = 0; i < q->clhash.hashsize; i++) {
1499 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1500 hfsc_reset_class(cl);
1501 }
1502 q->eligible = RB_ROOT;
1503 qdisc_watchdog_cancel(&q->watchdog);
1504 }
1505
1506 static void
hfsc_destroy_qdisc(struct Qdisc * sch)1507 hfsc_destroy_qdisc(struct Qdisc *sch)
1508 {
1509 struct hfsc_sched *q = qdisc_priv(sch);
1510 struct hlist_node *next;
1511 struct hfsc_class *cl;
1512 unsigned int i;
1513
1514 for (i = 0; i < q->clhash.hashsize; i++) {
1515 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) {
1516 tcf_block_put(cl->block);
1517 cl->block = NULL;
1518 }
1519 }
1520 for (i = 0; i < q->clhash.hashsize; i++) {
1521 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1522 cl_common.hnode)
1523 hfsc_destroy_class(sch, cl);
1524 }
1525 qdisc_class_hash_destroy(&q->clhash);
1526 qdisc_watchdog_cancel(&q->watchdog);
1527 }
1528
1529 static int
hfsc_dump_qdisc(struct Qdisc * sch,struct sk_buff * skb)1530 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1531 {
1532 struct hfsc_sched *q = qdisc_priv(sch);
1533 unsigned char *b = skb_tail_pointer(skb);
1534 struct tc_hfsc_qopt qopt;
1535
1536 qopt.defcls = READ_ONCE(q->defcls);
1537 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1538 goto nla_put_failure;
1539 return skb->len;
1540
1541 nla_put_failure:
1542 nlmsg_trim(skb, b);
1543 return -1;
1544 }
1545
1546 static int
hfsc_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)1547 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
1548 {
1549 unsigned int len = qdisc_pkt_len(skb);
1550 struct hfsc_class *cl;
1551 int err;
1552 bool first;
1553
1554 cl = hfsc_classify(skb, sch, &err);
1555 if (cl == NULL) {
1556 if (err & __NET_XMIT_BYPASS)
1557 qdisc_qstats_drop(sch);
1558 __qdisc_drop(skb, to_free);
1559 return err;
1560 }
1561
1562 first = !cl->qdisc->q.qlen;
1563 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1564 if (unlikely(err != NET_XMIT_SUCCESS)) {
1565 if (net_xmit_drop_count(err)) {
1566 cl->qstats.drops++;
1567 qdisc_qstats_drop(sch);
1568 }
1569 return err;
1570 }
1571
1572 sch->qstats.backlog += len;
1573 sch->q.qlen++;
1574
1575 if (first && !cl->cl_nactive) {
1576 if (cl->cl_flags & HFSC_RSC)
1577 init_ed(cl, len);
1578 if (cl->cl_flags & HFSC_FSC)
1579 init_vf(cl, len);
1580 /*
1581 * If this is the first packet, isolate the head so an eventual
1582 * head drop before the first dequeue operation has no chance
1583 * to invalidate the deadline.
1584 */
1585 if (cl->cl_flags & HFSC_RSC)
1586 cl->qdisc->ops->peek(cl->qdisc);
1587
1588 }
1589
1590 return NET_XMIT_SUCCESS;
1591 }
1592
1593 static struct sk_buff *
hfsc_dequeue(struct Qdisc * sch)1594 hfsc_dequeue(struct Qdisc *sch)
1595 {
1596 struct hfsc_sched *q = qdisc_priv(sch);
1597 struct hfsc_class *cl;
1598 struct sk_buff *skb;
1599 u64 cur_time;
1600 unsigned int next_len;
1601 int realtime = 0;
1602
1603 if (sch->q.qlen == 0)
1604 return NULL;
1605
1606 cur_time = psched_get_time();
1607
1608 /*
1609 * if there are eligible classes, use real-time criteria.
1610 * find the class with the minimum deadline among
1611 * the eligible classes.
1612 */
1613 cl = eltree_get_mindl(q, cur_time);
1614 if (cl) {
1615 realtime = 1;
1616 } else {
1617 /*
1618 * use link-sharing criteria
1619 * get the class with the minimum vt in the hierarchy
1620 */
1621 cl = vttree_get_minvt(&q->root, cur_time);
1622 if (cl == NULL) {
1623 qdisc_qstats_overlimit(sch);
1624 hfsc_schedule_watchdog(sch);
1625 return NULL;
1626 }
1627 }
1628
1629 skb = qdisc_dequeue_peeked(cl->qdisc);
1630 if (skb == NULL) {
1631 qdisc_warn_nonwc("HFSC", cl->qdisc);
1632 return NULL;
1633 }
1634
1635 bstats_update(&cl->bstats, skb);
1636 update_vf(cl, qdisc_pkt_len(skb), cur_time);
1637 if (realtime)
1638 cl->cl_cumul += qdisc_pkt_len(skb);
1639
1640 if (cl->cl_flags & HFSC_RSC) {
1641 if (cl->qdisc->q.qlen != 0) {
1642 /* update ed */
1643 next_len = qdisc_peek_len(cl->qdisc);
1644 /* Check queue length again since some qdisc implementations
1645 * (e.g., netem/codel) might empty the queue during the peek
1646 * operation.
1647 */
1648 if (cl->qdisc->q.qlen != 0) {
1649 if (realtime)
1650 update_ed(cl, next_len);
1651 else
1652 update_d(cl, next_len);
1653 }
1654 } else {
1655 /* the class becomes passive */
1656 eltree_remove(cl);
1657 }
1658 }
1659
1660 qdisc_bstats_update(sch, skb);
1661 qdisc_qstats_backlog_dec(sch, skb);
1662 sch->q.qlen--;
1663
1664 return skb;
1665 }
1666
1667 static const struct Qdisc_class_ops hfsc_class_ops = {
1668 .change = hfsc_change_class,
1669 .delete = hfsc_delete_class,
1670 .graft = hfsc_graft_class,
1671 .leaf = hfsc_class_leaf,
1672 .qlen_notify = hfsc_qlen_notify,
1673 .find = hfsc_search_class,
1674 .bind_tcf = hfsc_bind_tcf,
1675 .unbind_tcf = hfsc_unbind_tcf,
1676 .tcf_block = hfsc_tcf_block,
1677 .dump = hfsc_dump_class,
1678 .dump_stats = hfsc_dump_class_stats,
1679 .walk = hfsc_walk
1680 };
1681
1682 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1683 .id = "hfsc",
1684 .init = hfsc_init_qdisc,
1685 .change = hfsc_change_qdisc,
1686 .reset = hfsc_reset_qdisc,
1687 .destroy = hfsc_destroy_qdisc,
1688 .dump = hfsc_dump_qdisc,
1689 .enqueue = hfsc_enqueue,
1690 .dequeue = hfsc_dequeue,
1691 .peek = qdisc_peek_dequeued,
1692 .cl_ops = &hfsc_class_ops,
1693 .priv_size = sizeof(struct hfsc_sched),
1694 .owner = THIS_MODULE
1695 };
1696 MODULE_ALIAS_NET_SCH("hfsc");
1697
1698 static int __init
hfsc_init(void)1699 hfsc_init(void)
1700 {
1701 return register_qdisc(&hfsc_qdisc_ops);
1702 }
1703
1704 static void __exit
hfsc_cleanup(void)1705 hfsc_cleanup(void)
1706 {
1707 unregister_qdisc(&hfsc_qdisc_ops);
1708 }
1709
1710 MODULE_LICENSE("GPL");
1711 MODULE_DESCRIPTION("Hierarchical Fair Service Curve scheduler");
1712 module_init(hfsc_init);
1713 module_exit(hfsc_cleanup);
1714