xref: /linux/arch/x86/coco/sev/vc-handle.c (revision 8d561baae505bab6b3f133e10dc48e27e4505cbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/cc_platform.h>
14 #include <linux/printk.h>
15 #include <linux/mm_types.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/io.h>
19 #include <linux/psp-sev.h>
20 #include <linux/efi.h>
21 #include <uapi/linux/sev-guest.h>
22 
23 #include <asm/init.h>
24 #include <asm/stacktrace.h>
25 #include <asm/sev.h>
26 #include <asm/sev-internal.h>
27 #include <asm/insn-eval.h>
28 #include <asm/fpu/xcr.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/traps.h>
32 #include <asm/svm.h>
33 #include <asm/smp.h>
34 #include <asm/cpu.h>
35 #include <asm/apic.h>
36 #include <asm/cpuid/api.h>
37 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)38 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
39 					   unsigned long vaddr, phys_addr_t *paddr)
40 {
41 	unsigned long va = (unsigned long)vaddr;
42 	unsigned int level;
43 	phys_addr_t pa;
44 	pgd_t *pgd;
45 	pte_t *pte;
46 
47 	pgd = __va(read_cr3_pa());
48 	pgd = &pgd[pgd_index(va)];
49 	pte = lookup_address_in_pgd(pgd, va, &level);
50 	if (!pte) {
51 		ctxt->fi.vector     = X86_TRAP_PF;
52 		ctxt->fi.cr2        = vaddr;
53 		ctxt->fi.error_code = 0;
54 
55 		if (user_mode(ctxt->regs))
56 			ctxt->fi.error_code |= X86_PF_USER;
57 
58 		return ES_EXCEPTION;
59 	}
60 
61 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
62 		/* Emulated MMIO to/from encrypted memory not supported */
63 		return ES_UNSUPPORTED;
64 
65 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
66 	pa |= va & ~page_level_mask(level);
67 
68 	*paddr = pa;
69 
70 	return ES_OK;
71 }
72 
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)73 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
74 {
75 	BUG_ON(size > 4);
76 
77 	if (user_mode(ctxt->regs)) {
78 		struct thread_struct *t = &current->thread;
79 		struct io_bitmap *iobm = t->io_bitmap;
80 		size_t idx;
81 
82 		if (!iobm)
83 			goto fault;
84 
85 		for (idx = port; idx < port + size; ++idx) {
86 			if (test_bit(idx, iobm->bitmap))
87 				goto fault;
88 		}
89 	}
90 
91 	return ES_OK;
92 
93 fault:
94 	ctxt->fi.vector = X86_TRAP_GP;
95 	ctxt->fi.error_code = 0;
96 
97 	return ES_EXCEPTION;
98 }
99 
vc_forward_exception(struct es_em_ctxt * ctxt)100 void vc_forward_exception(struct es_em_ctxt *ctxt)
101 {
102 	long error_code = ctxt->fi.error_code;
103 	int trapnr = ctxt->fi.vector;
104 
105 	ctxt->regs->orig_ax = ctxt->fi.error_code;
106 
107 	switch (trapnr) {
108 	case X86_TRAP_GP:
109 		exc_general_protection(ctxt->regs, error_code);
110 		break;
111 	case X86_TRAP_UD:
112 		exc_invalid_op(ctxt->regs);
113 		break;
114 	case X86_TRAP_PF:
115 		write_cr2(ctxt->fi.cr2);
116 		exc_page_fault(ctxt->regs, error_code);
117 		break;
118 	case X86_TRAP_AC:
119 		exc_alignment_check(ctxt->regs, error_code);
120 		break;
121 	default:
122 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
123 		BUG();
124 	}
125 }
126 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)127 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
128 				unsigned char *buffer)
129 {
130 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
131 }
132 
__vc_decode_user_insn(struct es_em_ctxt * ctxt)133 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
134 {
135 	char buffer[MAX_INSN_SIZE];
136 	int insn_bytes;
137 
138 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
139 	if (insn_bytes == 0) {
140 		/* Nothing could be copied */
141 		ctxt->fi.vector     = X86_TRAP_PF;
142 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
143 		ctxt->fi.cr2        = ctxt->regs->ip;
144 		return ES_EXCEPTION;
145 	} else if (insn_bytes == -EINVAL) {
146 		/* Effective RIP could not be calculated */
147 		ctxt->fi.vector     = X86_TRAP_GP;
148 		ctxt->fi.error_code = 0;
149 		ctxt->fi.cr2        = 0;
150 		return ES_EXCEPTION;
151 	}
152 
153 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
154 		return ES_DECODE_FAILED;
155 
156 	if (ctxt->insn.immediate.got)
157 		return ES_OK;
158 	else
159 		return ES_DECODE_FAILED;
160 }
161 
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)162 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
163 {
164 	char buffer[MAX_INSN_SIZE];
165 	int res, ret;
166 
167 	res = vc_fetch_insn_kernel(ctxt, buffer);
168 	if (res) {
169 		ctxt->fi.vector     = X86_TRAP_PF;
170 		ctxt->fi.error_code = X86_PF_INSTR;
171 		ctxt->fi.cr2        = ctxt->regs->ip;
172 		return ES_EXCEPTION;
173 	}
174 
175 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
176 	if (ret < 0)
177 		return ES_DECODE_FAILED;
178 	else
179 		return ES_OK;
180 }
181 
182 /*
183  * User instruction decoding is also required for the EFI runtime. Even though
184  * the EFI runtime is running in kernel mode, it uses special EFI virtual
185  * address mappings that require the use of efi_mm to properly address and
186  * decode.
187  */
vc_decode_insn(struct es_em_ctxt * ctxt)188 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
189 {
190 	if (user_mode(ctxt->regs) || mm_is_efi(current->active_mm))
191 		return __vc_decode_user_insn(ctxt);
192 	else
193 		return __vc_decode_kern_insn(ctxt);
194 }
195 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)196 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
197 				   char *dst, char *buf, size_t size)
198 {
199 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
200 
201 	/*
202 	 * This function uses __put_user() independent of whether kernel or user
203 	 * memory is accessed. This works fine because __put_user() does no
204 	 * sanity checks of the pointer being accessed. All that it does is
205 	 * to report when the access failed.
206 	 *
207 	 * Also, this function runs in atomic context, so __put_user() is not
208 	 * allowed to sleep. The page-fault handler detects that it is running
209 	 * in atomic context and will not try to take mmap_sem and handle the
210 	 * fault, so additional pagefault_enable()/disable() calls are not
211 	 * needed.
212 	 *
213 	 * The access can't be done via copy_to_user() here because
214 	 * vc_write_mem() must not use string instructions to access unsafe
215 	 * memory. The reason is that MOVS is emulated by the #VC handler by
216 	 * splitting the move up into a read and a write and taking a nested #VC
217 	 * exception on whatever of them is the MMIO access. Using string
218 	 * instructions here would cause infinite nesting.
219 	 */
220 	switch (size) {
221 	case 1: {
222 		u8 d1;
223 		u8 __user *target = (u8 __user *)dst;
224 
225 		memcpy(&d1, buf, 1);
226 		if (__put_user(d1, target))
227 			goto fault;
228 		break;
229 	}
230 	case 2: {
231 		u16 d2;
232 		u16 __user *target = (u16 __user *)dst;
233 
234 		memcpy(&d2, buf, 2);
235 		if (__put_user(d2, target))
236 			goto fault;
237 		break;
238 	}
239 	case 4: {
240 		u32 d4;
241 		u32 __user *target = (u32 __user *)dst;
242 
243 		memcpy(&d4, buf, 4);
244 		if (__put_user(d4, target))
245 			goto fault;
246 		break;
247 	}
248 	case 8: {
249 		u64 d8;
250 		u64 __user *target = (u64 __user *)dst;
251 
252 		memcpy(&d8, buf, 8);
253 		if (__put_user(d8, target))
254 			goto fault;
255 		break;
256 	}
257 	default:
258 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
259 		return ES_UNSUPPORTED;
260 	}
261 
262 	return ES_OK;
263 
264 fault:
265 	if (user_mode(ctxt->regs))
266 		error_code |= X86_PF_USER;
267 
268 	ctxt->fi.vector = X86_TRAP_PF;
269 	ctxt->fi.error_code = error_code;
270 	ctxt->fi.cr2 = (unsigned long)dst;
271 
272 	return ES_EXCEPTION;
273 }
274 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)275 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
276 				  char *src, char *buf, size_t size)
277 {
278 	unsigned long error_code = X86_PF_PROT;
279 
280 	/*
281 	 * This function uses __get_user() independent of whether kernel or user
282 	 * memory is accessed. This works fine because __get_user() does no
283 	 * sanity checks of the pointer being accessed. All that it does is
284 	 * to report when the access failed.
285 	 *
286 	 * Also, this function runs in atomic context, so __get_user() is not
287 	 * allowed to sleep. The page-fault handler detects that it is running
288 	 * in atomic context and will not try to take mmap_sem and handle the
289 	 * fault, so additional pagefault_enable()/disable() calls are not
290 	 * needed.
291 	 *
292 	 * The access can't be done via copy_from_user() here because
293 	 * vc_read_mem() must not use string instructions to access unsafe
294 	 * memory. The reason is that MOVS is emulated by the #VC handler by
295 	 * splitting the move up into a read and a write and taking a nested #VC
296 	 * exception on whatever of them is the MMIO access. Using string
297 	 * instructions here would cause infinite nesting.
298 	 */
299 	switch (size) {
300 	case 1: {
301 		u8 d1;
302 		u8 __user *s = (u8 __user *)src;
303 
304 		if (__get_user(d1, s))
305 			goto fault;
306 		memcpy(buf, &d1, 1);
307 		break;
308 	}
309 	case 2: {
310 		u16 d2;
311 		u16 __user *s = (u16 __user *)src;
312 
313 		if (__get_user(d2, s))
314 			goto fault;
315 		memcpy(buf, &d2, 2);
316 		break;
317 	}
318 	case 4: {
319 		u32 d4;
320 		u32 __user *s = (u32 __user *)src;
321 
322 		if (__get_user(d4, s))
323 			goto fault;
324 		memcpy(buf, &d4, 4);
325 		break;
326 	}
327 	case 8: {
328 		u64 d8;
329 		u64 __user *s = (u64 __user *)src;
330 		if (__get_user(d8, s))
331 			goto fault;
332 		memcpy(buf, &d8, 8);
333 		break;
334 	}
335 	default:
336 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
337 		return ES_UNSUPPORTED;
338 	}
339 
340 	return ES_OK;
341 
342 fault:
343 	if (user_mode(ctxt->regs))
344 		error_code |= X86_PF_USER;
345 
346 	ctxt->fi.vector = X86_TRAP_PF;
347 	ctxt->fi.error_code = error_code;
348 	ctxt->fi.cr2 = (unsigned long)src;
349 
350 	return ES_EXCEPTION;
351 }
352 
353 #define sev_printk(fmt, ...)		printk(fmt, ##__VA_ARGS__)
354 
355 #include "vc-shared.c"
356 
357 /* Writes to the SVSM CAA MSR are ignored */
__vc_handle_msr_caa(struct pt_regs * regs,bool write)358 static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
359 {
360 	if (write)
361 		return ES_OK;
362 
363 	regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
364 	regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
365 
366 	return ES_OK;
367 }
368 
369 /*
370  * TSC related accesses should not exit to the hypervisor when a guest is
371  * executing with Secure TSC enabled, so special handling is required for
372  * accesses of MSR_IA32_TSC and MSR_AMD64_GUEST_TSC_FREQ.
373  */
__vc_handle_secure_tsc_msrs(struct es_em_ctxt * ctxt,bool write)374 static enum es_result __vc_handle_secure_tsc_msrs(struct es_em_ctxt *ctxt, bool write)
375 {
376 	struct pt_regs *regs = ctxt->regs;
377 	u64 tsc;
378 
379 	/*
380 	 * Writing to MSR_IA32_TSC can cause subsequent reads of the TSC to
381 	 * return undefined values, and GUEST_TSC_FREQ is read-only. Generate
382 	 * a #GP on all writes.
383 	 */
384 	if (write) {
385 		ctxt->fi.vector = X86_TRAP_GP;
386 		ctxt->fi.error_code = 0;
387 		return ES_EXCEPTION;
388 	}
389 
390 	/*
391 	 * GUEST_TSC_FREQ read should not be intercepted when Secure TSC is
392 	 * enabled. Terminate the guest if a read is attempted.
393 	 */
394 	if (regs->cx == MSR_AMD64_GUEST_TSC_FREQ)
395 		return ES_VMM_ERROR;
396 
397 	/* Reads of MSR_IA32_TSC should return the current TSC value. */
398 	tsc = rdtsc_ordered();
399 	regs->ax = lower_32_bits(tsc);
400 	regs->dx = upper_32_bits(tsc);
401 
402 	return ES_OK;
403 }
404 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)405 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
406 {
407 	struct pt_regs *regs = ctxt->regs;
408 	enum es_result ret;
409 	bool write;
410 
411 	/* Is it a WRMSR? */
412 	write = ctxt->insn.opcode.bytes[1] == 0x30;
413 
414 	switch (regs->cx) {
415 	case MSR_SVSM_CAA:
416 		return __vc_handle_msr_caa(regs, write);
417 	case MSR_IA32_TSC:
418 	case MSR_AMD64_GUEST_TSC_FREQ:
419 		if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
420 			return __vc_handle_secure_tsc_msrs(ctxt, write);
421 		break;
422 	default:
423 		break;
424 	}
425 
426 	ghcb_set_rcx(ghcb, regs->cx);
427 	if (write) {
428 		ghcb_set_rax(ghcb, regs->ax);
429 		ghcb_set_rdx(ghcb, regs->dx);
430 	}
431 
432 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
433 
434 	if ((ret == ES_OK) && !write) {
435 		regs->ax = ghcb->save.rax;
436 		regs->dx = ghcb->save.rdx;
437 	}
438 
439 	return ret;
440 }
441 
vc_early_forward_exception(struct es_em_ctxt * ctxt)442 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
443 {
444 	int trapnr = ctxt->fi.vector;
445 
446 	if (trapnr == X86_TRAP_PF)
447 		native_write_cr2(ctxt->fi.cr2);
448 
449 	ctxt->regs->orig_ax = ctxt->fi.error_code;
450 	do_early_exception(ctxt->regs, trapnr);
451 }
452 
vc_insn_get_rm(struct es_em_ctxt * ctxt)453 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
454 {
455 	long *reg_array;
456 	int offset;
457 
458 	reg_array = (long *)ctxt->regs;
459 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
460 
461 	if (offset < 0)
462 		return NULL;
463 
464 	offset /= sizeof(long);
465 
466 	return reg_array + offset;
467 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)468 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
469 				 unsigned int bytes, bool read)
470 {
471 	u64 exit_code, exit_info_1, exit_info_2;
472 	unsigned long ghcb_pa = __pa(ghcb);
473 	enum es_result res;
474 	phys_addr_t paddr;
475 	void __user *ref;
476 
477 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
478 	if (ref == (void __user *)-1L)
479 		return ES_UNSUPPORTED;
480 
481 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
482 
483 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
484 	if (res != ES_OK) {
485 		if (res == ES_EXCEPTION && !read)
486 			ctxt->fi.error_code |= X86_PF_WRITE;
487 
488 		return res;
489 	}
490 
491 	exit_info_1 = paddr;
492 	/* Can never be greater than 8 */
493 	exit_info_2 = bytes;
494 
495 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
496 
497 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
498 }
499 
500 /*
501  * The MOVS instruction has two memory operands, which raises the
502  * problem that it is not known whether the access to the source or the
503  * destination caused the #VC exception (and hence whether an MMIO read
504  * or write operation needs to be emulated).
505  *
506  * Instead of playing games with walking page-tables and trying to guess
507  * whether the source or destination is an MMIO range, split the move
508  * into two operations, a read and a write with only one memory operand.
509  * This will cause a nested #VC exception on the MMIO address which can
510  * then be handled.
511  *
512  * This implementation has the benefit that it also supports MOVS where
513  * source _and_ destination are MMIO regions.
514  *
515  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
516  * rare operation. If it turns out to be a performance problem the split
517  * operations can be moved to memcpy_fromio() and memcpy_toio().
518  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)519 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
520 					  unsigned int bytes)
521 {
522 	unsigned long ds_base, es_base;
523 	unsigned char *src, *dst;
524 	unsigned char buffer[8];
525 	enum es_result ret;
526 	bool rep;
527 	int off;
528 
529 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
530 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
531 
532 	if (ds_base == -1L || es_base == -1L) {
533 		ctxt->fi.vector = X86_TRAP_GP;
534 		ctxt->fi.error_code = 0;
535 		return ES_EXCEPTION;
536 	}
537 
538 	src = ds_base + (unsigned char *)ctxt->regs->si;
539 	dst = es_base + (unsigned char *)ctxt->regs->di;
540 
541 	ret = vc_read_mem(ctxt, src, buffer, bytes);
542 	if (ret != ES_OK)
543 		return ret;
544 
545 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
546 	if (ret != ES_OK)
547 		return ret;
548 
549 	if (ctxt->regs->flags & X86_EFLAGS_DF)
550 		off = -bytes;
551 	else
552 		off =  bytes;
553 
554 	ctxt->regs->si += off;
555 	ctxt->regs->di += off;
556 
557 	rep = insn_has_rep_prefix(&ctxt->insn);
558 	if (rep)
559 		ctxt->regs->cx -= 1;
560 
561 	if (!rep || ctxt->regs->cx == 0)
562 		return ES_OK;
563 	else
564 		return ES_RETRY;
565 }
566 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)567 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
568 {
569 	struct insn *insn = &ctxt->insn;
570 	enum insn_mmio_type mmio;
571 	unsigned int bytes = 0;
572 	enum es_result ret;
573 	u8 sign_byte;
574 	long *reg_data;
575 
576 	mmio = insn_decode_mmio(insn, &bytes);
577 	if (mmio == INSN_MMIO_DECODE_FAILED)
578 		return ES_DECODE_FAILED;
579 
580 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
581 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
582 		if (!reg_data)
583 			return ES_DECODE_FAILED;
584 	}
585 
586 	if (user_mode(ctxt->regs))
587 		return ES_UNSUPPORTED;
588 
589 	switch (mmio) {
590 	case INSN_MMIO_WRITE:
591 		memcpy(ghcb->shared_buffer, reg_data, bytes);
592 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
593 		break;
594 	case INSN_MMIO_WRITE_IMM:
595 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
596 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
597 		break;
598 	case INSN_MMIO_READ:
599 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
600 		if (ret)
601 			break;
602 
603 		/* Zero-extend for 32-bit operation */
604 		if (bytes == 4)
605 			*reg_data = 0;
606 
607 		memcpy(reg_data, ghcb->shared_buffer, bytes);
608 		break;
609 	case INSN_MMIO_READ_ZERO_EXTEND:
610 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
611 		if (ret)
612 			break;
613 
614 		/* Zero extend based on operand size */
615 		memset(reg_data, 0, insn->opnd_bytes);
616 		memcpy(reg_data, ghcb->shared_buffer, bytes);
617 		break;
618 	case INSN_MMIO_READ_SIGN_EXTEND:
619 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
620 		if (ret)
621 			break;
622 
623 		if (bytes == 1) {
624 			u8 *val = (u8 *)ghcb->shared_buffer;
625 
626 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
627 		} else {
628 			u16 *val = (u16 *)ghcb->shared_buffer;
629 
630 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
631 		}
632 
633 		/* Sign extend based on operand size */
634 		memset(reg_data, sign_byte, insn->opnd_bytes);
635 		memcpy(reg_data, ghcb->shared_buffer, bytes);
636 		break;
637 	case INSN_MMIO_MOVS:
638 		ret = vc_handle_mmio_movs(ctxt, bytes);
639 		break;
640 	default:
641 		ret = ES_UNSUPPORTED;
642 		break;
643 	}
644 
645 	return ret;
646 }
647 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)648 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
649 					  struct es_em_ctxt *ctxt)
650 {
651 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
652 	long val, *reg = vc_insn_get_rm(ctxt);
653 	enum es_result ret;
654 
655 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
656 		return ES_VMM_ERROR;
657 
658 	if (!reg)
659 		return ES_DECODE_FAILED;
660 
661 	val = *reg;
662 
663 	/* Upper 32 bits must be written as zeroes */
664 	if (val >> 32) {
665 		ctxt->fi.vector = X86_TRAP_GP;
666 		ctxt->fi.error_code = 0;
667 		return ES_EXCEPTION;
668 	}
669 
670 	/* Clear out other reserved bits and set bit 10 */
671 	val = (val & 0xffff23ffL) | BIT(10);
672 
673 	/* Early non-zero writes to DR7 are not supported */
674 	if (!data && (val & ~DR7_RESET_VALUE))
675 		return ES_UNSUPPORTED;
676 
677 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
678 	ghcb_set_rax(ghcb, val);
679 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
680 	if (ret != ES_OK)
681 		return ret;
682 
683 	if (data)
684 		data->dr7 = val;
685 
686 	return ES_OK;
687 }
688 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)689 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
690 					 struct es_em_ctxt *ctxt)
691 {
692 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
693 	long *reg = vc_insn_get_rm(ctxt);
694 
695 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
696 		return ES_VMM_ERROR;
697 
698 	if (!reg)
699 		return ES_DECODE_FAILED;
700 
701 	if (data)
702 		*reg = data->dr7;
703 	else
704 		*reg = DR7_RESET_VALUE;
705 
706 	return ES_OK;
707 }
708 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)709 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
710 				       struct es_em_ctxt *ctxt)
711 {
712 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
713 }
714 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)715 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
716 {
717 	enum es_result ret;
718 
719 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
720 
721 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
722 	if (ret != ES_OK)
723 		return ret;
724 
725 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
726 		return ES_VMM_ERROR;
727 
728 	ctxt->regs->ax = ghcb->save.rax;
729 	ctxt->regs->dx = ghcb->save.rdx;
730 
731 	return ES_OK;
732 }
733 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)734 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
735 					struct es_em_ctxt *ctxt)
736 {
737 	/*
738 	 * Treat it as a NOP and do not leak a physical address to the
739 	 * hypervisor.
740 	 */
741 	return ES_OK;
742 }
743 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)744 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
745 				      struct es_em_ctxt *ctxt)
746 {
747 	/* Treat the same as MONITOR/MONITORX */
748 	return ES_OK;
749 }
750 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)751 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
752 					struct es_em_ctxt *ctxt)
753 {
754 	enum es_result ret;
755 
756 	ghcb_set_rax(ghcb, ctxt->regs->ax);
757 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
758 
759 	if (x86_platform.hyper.sev_es_hcall_prepare)
760 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
761 
762 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
763 	if (ret != ES_OK)
764 		return ret;
765 
766 	if (!ghcb_rax_is_valid(ghcb))
767 		return ES_VMM_ERROR;
768 
769 	ctxt->regs->ax = ghcb->save.rax;
770 
771 	/*
772 	 * Call sev_es_hcall_finish() after regs->ax is already set.
773 	 * This allows the hypervisor handler to overwrite it again if
774 	 * necessary.
775 	 */
776 	if (x86_platform.hyper.sev_es_hcall_finish &&
777 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
778 		return ES_VMM_ERROR;
779 
780 	return ES_OK;
781 }
782 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)783 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
784 					struct es_em_ctxt *ctxt)
785 {
786 	/*
787 	 * Calling ecx_alignment_check() directly does not work, because it
788 	 * enables IRQs and the GHCB is active. Forward the exception and call
789 	 * it later from vc_forward_exception().
790 	 */
791 	ctxt->fi.vector = X86_TRAP_AC;
792 	ctxt->fi.error_code = 0;
793 	return ES_EXCEPTION;
794 }
795 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)796 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
797 					 struct ghcb *ghcb,
798 					 unsigned long exit_code)
799 {
800 	enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
801 
802 	if (result != ES_OK)
803 		return result;
804 
805 	switch (exit_code) {
806 	case SVM_EXIT_READ_DR7:
807 		result = vc_handle_dr7_read(ghcb, ctxt);
808 		break;
809 	case SVM_EXIT_WRITE_DR7:
810 		result = vc_handle_dr7_write(ghcb, ctxt);
811 		break;
812 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
813 		result = vc_handle_trap_ac(ghcb, ctxt);
814 		break;
815 	case SVM_EXIT_RDTSC:
816 	case SVM_EXIT_RDTSCP:
817 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
818 		break;
819 	case SVM_EXIT_RDPMC:
820 		result = vc_handle_rdpmc(ghcb, ctxt);
821 		break;
822 	case SVM_EXIT_INVD:
823 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
824 		result = ES_UNSUPPORTED;
825 		break;
826 	case SVM_EXIT_CPUID:
827 		result = vc_handle_cpuid(ghcb, ctxt);
828 		break;
829 	case SVM_EXIT_IOIO:
830 		result = vc_handle_ioio(ghcb, ctxt);
831 		break;
832 	case SVM_EXIT_MSR:
833 		result = vc_handle_msr(ghcb, ctxt);
834 		break;
835 	case SVM_EXIT_VMMCALL:
836 		result = vc_handle_vmmcall(ghcb, ctxt);
837 		break;
838 	case SVM_EXIT_WBINVD:
839 		result = vc_handle_wbinvd(ghcb, ctxt);
840 		break;
841 	case SVM_EXIT_MONITOR:
842 		result = vc_handle_monitor(ghcb, ctxt);
843 		break;
844 	case SVM_EXIT_MWAIT:
845 		result = vc_handle_mwait(ghcb, ctxt);
846 		break;
847 	case SVM_EXIT_NPF:
848 		result = vc_handle_mmio(ghcb, ctxt);
849 		break;
850 	default:
851 		/*
852 		 * Unexpected #VC exception
853 		 */
854 		result = ES_UNSUPPORTED;
855 	}
856 
857 	return result;
858 }
859 
is_vc2_stack(unsigned long sp)860 static __always_inline bool is_vc2_stack(unsigned long sp)
861 {
862 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
863 }
864 
vc_from_invalid_context(struct pt_regs * regs)865 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
866 {
867 	unsigned long sp, prev_sp;
868 
869 	sp      = (unsigned long)regs;
870 	prev_sp = regs->sp;
871 
872 	/*
873 	 * If the code was already executing on the VC2 stack when the #VC
874 	 * happened, let it proceed to the normal handling routine. This way the
875 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
876 	 */
877 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
878 }
879 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)880 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
881 {
882 	struct ghcb_state state;
883 	struct es_em_ctxt ctxt;
884 	enum es_result result;
885 	struct ghcb *ghcb;
886 	bool ret = true;
887 
888 	ghcb = __sev_get_ghcb(&state);
889 
890 	vc_ghcb_invalidate(ghcb);
891 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
892 
893 	if (result == ES_OK)
894 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
895 
896 	__sev_put_ghcb(&state);
897 
898 	/* Done - now check the result */
899 	switch (result) {
900 	case ES_OK:
901 		vc_finish_insn(&ctxt);
902 		break;
903 	case ES_UNSUPPORTED:
904 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
905 				   error_code, regs->ip);
906 		ret = false;
907 		break;
908 	case ES_VMM_ERROR:
909 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
910 				   error_code, regs->ip);
911 		ret = false;
912 		break;
913 	case ES_DECODE_FAILED:
914 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
915 				   error_code, regs->ip);
916 		ret = false;
917 		break;
918 	case ES_EXCEPTION:
919 		vc_forward_exception(&ctxt);
920 		break;
921 	case ES_RETRY:
922 		/* Nothing to do */
923 		break;
924 	default:
925 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
926 		/*
927 		 * Emulating the instruction which caused the #VC exception
928 		 * failed - can't continue so print debug information
929 		 */
930 		BUG();
931 	}
932 
933 	return ret;
934 }
935 
vc_is_db(unsigned long error_code)936 static __always_inline bool vc_is_db(unsigned long error_code)
937 {
938 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
939 }
940 
941 /*
942  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
943  * and will panic when an error happens.
944  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)945 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
946 {
947 	irqentry_state_t irq_state;
948 
949 	/*
950 	 * With the current implementation it is always possible to switch to a
951 	 * safe stack because #VC exceptions only happen at known places, like
952 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
953 	 * also happen with code instrumentation when the hypervisor intercepts
954 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
955 	 * exceptions currently also only happen in safe places.
956 	 *
957 	 * But keep this here in case the noinstr annotations are violated due
958 	 * to bug elsewhere.
959 	 */
960 	if (unlikely(vc_from_invalid_context(regs))) {
961 		instrumentation_begin();
962 		panic("Can't handle #VC exception from unsupported context\n");
963 		instrumentation_end();
964 	}
965 
966 	/*
967 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
968 	 */
969 	if (vc_is_db(error_code)) {
970 		exc_debug(regs);
971 		return;
972 	}
973 
974 	irq_state = irqentry_nmi_enter(regs);
975 
976 	instrumentation_begin();
977 
978 	if (!vc_raw_handle_exception(regs, error_code)) {
979 		/* Show some debug info */
980 		show_regs(regs);
981 
982 		/* Ask hypervisor to sev_es_terminate */
983 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
984 
985 		/* If that fails and we get here - just panic */
986 		panic("Returned from Terminate-Request to Hypervisor\n");
987 	}
988 
989 	instrumentation_end();
990 	irqentry_nmi_exit(regs, irq_state);
991 }
992 
993 /*
994  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
995  * and will kill the current task with SIGBUS when an error happens.
996  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)997 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
998 {
999 	/*
1000 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1001 	 */
1002 	if (vc_is_db(error_code)) {
1003 		noist_exc_debug(regs);
1004 		return;
1005 	}
1006 
1007 	irqentry_enter_from_user_mode(regs);
1008 	instrumentation_begin();
1009 
1010 	if (!vc_raw_handle_exception(regs, error_code)) {
1011 		/*
1012 		 * Do not kill the machine if user-space triggered the
1013 		 * exception. Send SIGBUS instead and let user-space deal with
1014 		 * it.
1015 		 */
1016 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1017 	}
1018 
1019 	instrumentation_end();
1020 	irqentry_exit_to_user_mode(regs);
1021 }
1022 
handle_vc_boot_ghcb(struct pt_regs * regs)1023 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1024 {
1025 	unsigned long exit_code = regs->orig_ax;
1026 	struct es_em_ctxt ctxt;
1027 	enum es_result result;
1028 
1029 	vc_ghcb_invalidate(boot_ghcb);
1030 
1031 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1032 	if (result == ES_OK)
1033 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1034 
1035 	/* Done - now check the result */
1036 	switch (result) {
1037 	case ES_OK:
1038 		vc_finish_insn(&ctxt);
1039 		break;
1040 	case ES_UNSUPPORTED:
1041 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1042 				exit_code, regs->ip);
1043 		goto fail;
1044 	case ES_VMM_ERROR:
1045 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1046 				exit_code, regs->ip);
1047 		goto fail;
1048 	case ES_DECODE_FAILED:
1049 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1050 				exit_code, regs->ip);
1051 		goto fail;
1052 	case ES_EXCEPTION:
1053 		vc_early_forward_exception(&ctxt);
1054 		break;
1055 	case ES_RETRY:
1056 		/* Nothing to do */
1057 		break;
1058 	default:
1059 		BUG();
1060 	}
1061 
1062 	return true;
1063 
1064 fail:
1065 	show_regs(regs);
1066 
1067 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1068 }
1069 
1070