xref: /linux/arch/s390/kernel/uv.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2024
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/sizes.h>
14 #include <linux/bitmap.h>
15 #include <linux/memblock.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/pagewalk.h>
19 #include <linux/backing-dev.h>
20 #include <asm/facility.h>
21 #include <asm/sections.h>
22 #include <asm/uv.h>
23 
24 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
25 int __bootdata_preserved(prot_virt_guest);
26 EXPORT_SYMBOL(prot_virt_guest);
27 
28 /*
29  * uv_info contains both host and guest information but it's currently only
30  * expected to be used within modules if it's the KVM module or for
31  * any PV guest module.
32  *
33  * The kernel itself will write these values once in uv_query_info()
34  * and then make some of them readable via a sysfs interface.
35  */
36 struct uv_info __bootdata_preserved(uv_info);
37 EXPORT_SYMBOL(uv_info);
38 
39 int __bootdata_preserved(prot_virt_host);
40 EXPORT_SYMBOL(prot_virt_host);
41 
uv_init(phys_addr_t stor_base,unsigned long stor_len)42 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
43 {
44 	struct uv_cb_init uvcb = {
45 		.header.cmd = UVC_CMD_INIT_UV,
46 		.header.len = sizeof(uvcb),
47 		.stor_origin = stor_base,
48 		.stor_len = stor_len,
49 	};
50 
51 	if (uv_call(0, (uint64_t)&uvcb)) {
52 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
53 		       uvcb.header.rc, uvcb.header.rrc);
54 		return -1;
55 	}
56 	return 0;
57 }
58 
setup_uv(void)59 void __init setup_uv(void)
60 {
61 	void *uv_stor_base;
62 
63 	if (!is_prot_virt_host())
64 		return;
65 
66 	uv_stor_base = memblock_alloc_try_nid(
67 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
68 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
69 	if (!uv_stor_base) {
70 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
71 			uv_info.uv_base_stor_len);
72 		goto fail;
73 	}
74 
75 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
76 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
77 		goto fail;
78 	}
79 
80 	pr_info("Reserving %luMB as ultravisor base storage\n",
81 		uv_info.uv_base_stor_len >> 20);
82 	return;
83 fail:
84 	pr_info("Disabling support for protected virtualization");
85 	prot_virt_host = 0;
86 }
87 
88 /*
89  * Requests the Ultravisor to pin the page in the shared state. This will
90  * cause an intercept when the guest attempts to unshare the pinned page.
91  */
uv_pin_shared(unsigned long paddr)92 int uv_pin_shared(unsigned long paddr)
93 {
94 	struct uv_cb_cfs uvcb = {
95 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
96 		.header.len = sizeof(uvcb),
97 		.paddr = paddr,
98 	};
99 
100 	if (uv_call(0, (u64)&uvcb))
101 		return -EINVAL;
102 	return 0;
103 }
104 EXPORT_SYMBOL_GPL(uv_pin_shared);
105 
106 /*
107  * Requests the Ultravisor to destroy a guest page and make it
108  * accessible to the host. The destroy clears the page instead of
109  * exporting.
110  *
111  * @paddr: Absolute host address of page to be destroyed
112  */
uv_destroy(unsigned long paddr)113 static int uv_destroy(unsigned long paddr)
114 {
115 	struct uv_cb_cfs uvcb = {
116 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
117 		.header.len = sizeof(uvcb),
118 		.paddr = paddr
119 	};
120 
121 	if (uv_call(0, (u64)&uvcb)) {
122 		/*
123 		 * Older firmware uses 107/d as an indication of a non secure
124 		 * page. Let us emulate the newer variant (no-op).
125 		 */
126 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
127 			return 0;
128 		return -EINVAL;
129 	}
130 	return 0;
131 }
132 
133 /*
134  * The caller must already hold a reference to the folio
135  */
uv_destroy_folio(struct folio * folio)136 int uv_destroy_folio(struct folio *folio)
137 {
138 	int rc;
139 
140 	/* Large folios cannot be secure */
141 	if (unlikely(folio_test_large(folio)))
142 		return 0;
143 
144 	folio_get(folio);
145 	rc = uv_destroy(folio_to_phys(folio));
146 	if (!rc)
147 		clear_bit(PG_arch_1, &folio->flags);
148 	folio_put(folio);
149 	return rc;
150 }
151 EXPORT_SYMBOL(uv_destroy_folio);
152 
153 /*
154  * The present PTE still indirectly holds a folio reference through the mapping.
155  */
uv_destroy_pte(pte_t pte)156 int uv_destroy_pte(pte_t pte)
157 {
158 	VM_WARN_ON(!pte_present(pte));
159 	return uv_destroy_folio(pfn_folio(pte_pfn(pte)));
160 }
161 
162 /*
163  * Requests the Ultravisor to encrypt a guest page and make it
164  * accessible to the host for paging (export).
165  *
166  * @paddr: Absolute host address of page to be exported
167  */
uv_convert_from_secure(unsigned long paddr)168 int uv_convert_from_secure(unsigned long paddr)
169 {
170 	struct uv_cb_cfs uvcb = {
171 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
172 		.header.len = sizeof(uvcb),
173 		.paddr = paddr
174 	};
175 
176 	if (uv_call(0, (u64)&uvcb))
177 		return -EINVAL;
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(uv_convert_from_secure);
181 
182 /*
183  * The caller must already hold a reference to the folio.
184  */
uv_convert_from_secure_folio(struct folio * folio)185 int uv_convert_from_secure_folio(struct folio *folio)
186 {
187 	int rc;
188 
189 	/* Large folios cannot be secure */
190 	if (unlikely(folio_test_large(folio)))
191 		return 0;
192 
193 	folio_get(folio);
194 	rc = uv_convert_from_secure(folio_to_phys(folio));
195 	if (!rc)
196 		clear_bit(PG_arch_1, &folio->flags);
197 	folio_put(folio);
198 	return rc;
199 }
200 EXPORT_SYMBOL_GPL(uv_convert_from_secure_folio);
201 
202 /*
203  * The present PTE still indirectly holds a folio reference through the mapping.
204  */
uv_convert_from_secure_pte(pte_t pte)205 int uv_convert_from_secure_pte(pte_t pte)
206 {
207 	VM_WARN_ON(!pte_present(pte));
208 	return uv_convert_from_secure_folio(pfn_folio(pte_pfn(pte)));
209 }
210 
211 /**
212  * should_export_before_import - Determine whether an export is needed
213  * before an import-like operation
214  * @uvcb: the Ultravisor control block of the UVC to be performed
215  * @mm: the mm of the process
216  *
217  * Returns whether an export is needed before every import-like operation.
218  * This is needed for shared pages, which don't trigger a secure storage
219  * exception when accessed from a different guest.
220  *
221  * Although considered as one, the Unpin Page UVC is not an actual import,
222  * so it is not affected.
223  *
224  * No export is needed also when there is only one protected VM, because the
225  * page cannot belong to the wrong VM in that case (there is no "other VM"
226  * it can belong to).
227  *
228  * Return: true if an export is needed before every import, otherwise false.
229  */
should_export_before_import(struct uv_cb_header * uvcb,struct mm_struct * mm)230 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
231 {
232 	/*
233 	 * The misc feature indicates, among other things, that importing a
234 	 * shared page from a different protected VM will automatically also
235 	 * transfer its ownership.
236 	 */
237 	if (uv_has_feature(BIT_UV_FEAT_MISC))
238 		return false;
239 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
240 		return false;
241 	return atomic_read(&mm->context.protected_count) > 1;
242 }
243 
244 /*
245  * Calculate the expected ref_count for a folio that would otherwise have no
246  * further pins. This was cribbed from similar functions in other places in
247  * the kernel, but with some slight modifications. We know that a secure
248  * folio can not be a large folio, for example.
249  */
expected_folio_refs(struct folio * folio)250 static int expected_folio_refs(struct folio *folio)
251 {
252 	int res;
253 
254 	res = folio_mapcount(folio);
255 	if (folio_test_swapcache(folio)) {
256 		res++;
257 	} else if (folio_mapping(folio)) {
258 		res++;
259 		if (folio->private)
260 			res++;
261 	}
262 	return res;
263 }
264 
265 /**
266  * __make_folio_secure() - make a folio secure
267  * @folio: the folio to make secure
268  * @uvcb: the uvcb that describes the UVC to be used
269  *
270  * The folio @folio will be made secure if possible, @uvcb will be passed
271  * as-is to the UVC.
272  *
273  * Return: 0 on success;
274  *         -EBUSY if the folio is in writeback or has too many references;
275  *         -EAGAIN if the UVC needs to be attempted again;
276  *         -ENXIO if the address is not mapped;
277  *         -EINVAL if the UVC failed for other reasons.
278  *
279  * Context: The caller must hold exactly one extra reference on the folio
280  *          (it's the same logic as split_folio()), and the folio must be
281  *          locked.
282  */
__make_folio_secure(struct folio * folio,struct uv_cb_header * uvcb)283 static int __make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb)
284 {
285 	int expected, cc = 0;
286 
287 	if (folio_test_writeback(folio))
288 		return -EBUSY;
289 	expected = expected_folio_refs(folio) + 1;
290 	if (!folio_ref_freeze(folio, expected))
291 		return -EBUSY;
292 	set_bit(PG_arch_1, &folio->flags);
293 	/*
294 	 * If the UVC does not succeed or fail immediately, we don't want to
295 	 * loop for long, or we might get stall notifications.
296 	 * On the other hand, this is a complex scenario and we are holding a lot of
297 	 * locks, so we can't easily sleep and reschedule. We try only once,
298 	 * and if the UVC returned busy or partial completion, we return
299 	 * -EAGAIN and we let the callers deal with it.
300 	 */
301 	cc = __uv_call(0, (u64)uvcb);
302 	folio_ref_unfreeze(folio, expected);
303 	/*
304 	 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors.
305 	 * If busy or partially completed, return -EAGAIN.
306 	 */
307 	if (cc == UVC_CC_OK)
308 		return 0;
309 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
310 		return -EAGAIN;
311 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
312 }
313 
make_folio_secure(struct mm_struct * mm,struct folio * folio,struct uv_cb_header * uvcb)314 static int make_folio_secure(struct mm_struct *mm, struct folio *folio, struct uv_cb_header *uvcb)
315 {
316 	int rc;
317 
318 	if (!folio_trylock(folio))
319 		return -EAGAIN;
320 	if (should_export_before_import(uvcb, mm))
321 		uv_convert_from_secure(folio_to_phys(folio));
322 	rc = __make_folio_secure(folio, uvcb);
323 	folio_unlock(folio);
324 
325 	return rc;
326 }
327 
328 /**
329  * s390_wiggle_split_folio() - try to drain extra references to a folio and
330  *			       split the folio if it is large.
331  * @mm:    the mm containing the folio to work on
332  * @folio: the folio
333  *
334  * Context: Must be called while holding an extra reference to the folio;
335  *          the mm lock should not be held.
336  * Return: 0 if the operation was successful;
337  *	   -EAGAIN if splitting the large folio was not successful,
338  *		   but another attempt can be made;
339  *	   -EINVAL in case of other folio splitting errors. See split_folio().
340  */
s390_wiggle_split_folio(struct mm_struct * mm,struct folio * folio)341 static int s390_wiggle_split_folio(struct mm_struct *mm, struct folio *folio)
342 {
343 	int rc, tried_splits;
344 
345 	lockdep_assert_not_held(&mm->mmap_lock);
346 	folio_wait_writeback(folio);
347 	lru_add_drain_all();
348 
349 	if (!folio_test_large(folio))
350 		return 0;
351 
352 	for (tried_splits = 0; tried_splits < 2; tried_splits++) {
353 		struct address_space *mapping;
354 		loff_t lstart, lend;
355 		struct inode *inode;
356 
357 		folio_lock(folio);
358 		rc = split_folio(folio);
359 		if (rc != -EBUSY) {
360 			folio_unlock(folio);
361 			return rc;
362 		}
363 
364 		/*
365 		 * Splitting with -EBUSY can fail for various reasons, but we
366 		 * have to handle one case explicitly for now: some mappings
367 		 * don't allow for splitting dirty folios; writeback will
368 		 * mark them clean again, including marking all page table
369 		 * entries mapping the folio read-only, to catch future write
370 		 * attempts.
371 		 *
372 		 * While the system should be writing back dirty folios in the
373 		 * background, we obtained this folio by looking up a writable
374 		 * page table entry. On these problematic mappings, writable
375 		 * page table entries imply dirty folios, preventing the
376 		 * split in the first place.
377 		 *
378 		 * To prevent a livelock when trigger writeback manually and
379 		 * letting the caller look up the folio again in the page
380 		 * table (turning it dirty), immediately try to split again.
381 		 *
382 		 * This is only a problem for some mappings (e.g., XFS);
383 		 * mappings that do not support writeback (e.g., shmem) do not
384 		 * apply.
385 		 */
386 		if (!folio_test_dirty(folio) || folio_test_anon(folio) ||
387 		    !folio->mapping || !mapping_can_writeback(folio->mapping)) {
388 			folio_unlock(folio);
389 			break;
390 		}
391 
392 		/*
393 		 * Ideally, we'd only trigger writeback on this exact folio. But
394 		 * there is no easy way to do that, so we'll stabilize the
395 		 * mapping while we still hold the folio lock, so we can drop
396 		 * the folio lock to trigger writeback on the range currently
397 		 * covered by the folio instead.
398 		 */
399 		mapping = folio->mapping;
400 		lstart = folio_pos(folio);
401 		lend = lstart + folio_size(folio) - 1;
402 		inode = igrab(mapping->host);
403 		folio_unlock(folio);
404 
405 		if (unlikely(!inode))
406 			break;
407 
408 		filemap_write_and_wait_range(mapping, lstart, lend);
409 		iput(mapping->host);
410 	}
411 	return -EAGAIN;
412 }
413 
make_hva_secure(struct mm_struct * mm,unsigned long hva,struct uv_cb_header * uvcb)414 int make_hva_secure(struct mm_struct *mm, unsigned long hva, struct uv_cb_header *uvcb)
415 {
416 	struct vm_area_struct *vma;
417 	struct folio_walk fw;
418 	struct folio *folio;
419 	int rc;
420 
421 	mmap_read_lock(mm);
422 	vma = vma_lookup(mm, hva);
423 	if (!vma) {
424 		mmap_read_unlock(mm);
425 		return -EFAULT;
426 	}
427 	folio = folio_walk_start(&fw, vma, hva, 0);
428 	if (!folio) {
429 		mmap_read_unlock(mm);
430 		return -ENXIO;
431 	}
432 
433 	folio_get(folio);
434 	/*
435 	 * Secure pages cannot be huge and userspace should not combine both.
436 	 * In case userspace does it anyway this will result in an -EFAULT for
437 	 * the unpack. The guest is thus never reaching secure mode.
438 	 * If userspace plays dirty tricks and decides to map huge pages at a
439 	 * later point in time, it will receive a segmentation fault or
440 	 * KVM_RUN will return -EFAULT.
441 	 */
442 	if (folio_test_hugetlb(folio))
443 		rc = -EFAULT;
444 	else if (folio_test_large(folio))
445 		rc = -E2BIG;
446 	else if (!pte_write(fw.pte) || (pte_val(fw.pte) & _PAGE_INVALID))
447 		rc = -ENXIO;
448 	else
449 		rc = make_folio_secure(mm, folio, uvcb);
450 	folio_walk_end(&fw, vma);
451 	mmap_read_unlock(mm);
452 
453 	if (rc == -E2BIG || rc == -EBUSY) {
454 		rc = s390_wiggle_split_folio(mm, folio);
455 		if (!rc)
456 			rc = -EAGAIN;
457 	}
458 	folio_put(folio);
459 
460 	return rc;
461 }
462 EXPORT_SYMBOL_GPL(make_hva_secure);
463 
464 /*
465  * To be called with the folio locked or with an extra reference! This will
466  * prevent kvm_s390_pv_make_secure() from touching the folio concurrently.
467  * Having 2 parallel arch_make_folio_accessible is fine, as the UV calls will
468  * become a no-op if the folio is already exported.
469  */
arch_make_folio_accessible(struct folio * folio)470 int arch_make_folio_accessible(struct folio *folio)
471 {
472 	int rc = 0;
473 
474 	/* Large folios cannot be secure */
475 	if (unlikely(folio_test_large(folio)))
476 		return 0;
477 
478 	/*
479 	 * PG_arch_1 is used in 2 places:
480 	 * 1. for storage keys of hugetlb folios and KVM
481 	 * 2. As an indication that this small folio might be secure. This can
482 	 *    overindicate, e.g. we set the bit before calling
483 	 *    convert_to_secure.
484 	 * As secure pages are never large folios, both variants can co-exists.
485 	 */
486 	if (!test_bit(PG_arch_1, &folio->flags))
487 		return 0;
488 
489 	rc = uv_pin_shared(folio_to_phys(folio));
490 	if (!rc) {
491 		clear_bit(PG_arch_1, &folio->flags);
492 		return 0;
493 	}
494 
495 	rc = uv_convert_from_secure(folio_to_phys(folio));
496 	if (!rc) {
497 		clear_bit(PG_arch_1, &folio->flags);
498 		return 0;
499 	}
500 
501 	return rc;
502 }
503 EXPORT_SYMBOL_GPL(arch_make_folio_accessible);
504 
uv_query_facilities(struct kobject * kobj,struct kobj_attribute * attr,char * buf)505 static ssize_t uv_query_facilities(struct kobject *kobj,
506 				   struct kobj_attribute *attr, char *buf)
507 {
508 	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
509 			  uv_info.inst_calls_list[0],
510 			  uv_info.inst_calls_list[1],
511 			  uv_info.inst_calls_list[2],
512 			  uv_info.inst_calls_list[3]);
513 }
514 
515 static struct kobj_attribute uv_query_facilities_attr =
516 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
517 
uv_query_supp_se_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)518 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
519 					struct kobj_attribute *attr, char *buf)
520 {
521 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
522 }
523 
524 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
525 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
526 
uv_query_supp_se_hdr_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)527 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
528 					struct kobj_attribute *attr, char *buf)
529 {
530 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
531 }
532 
533 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
534 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
535 
uv_query_dump_cpu_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)536 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
537 				     struct kobj_attribute *attr, char *buf)
538 {
539 	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
540 }
541 
542 static struct kobj_attribute uv_query_dump_cpu_len_attr =
543 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
544 
uv_query_dump_storage_state_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)545 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
546 					       struct kobj_attribute *attr, char *buf)
547 {
548 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
549 }
550 
551 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
552 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
553 
uv_query_dump_finalize_len(struct kobject * kobj,struct kobj_attribute * attr,char * buf)554 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
555 					  struct kobj_attribute *attr, char *buf)
556 {
557 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
558 }
559 
560 static struct kobj_attribute uv_query_dump_finalize_len_attr =
561 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
562 
uv_query_feature_indications(struct kobject * kobj,struct kobj_attribute * attr,char * buf)563 static ssize_t uv_query_feature_indications(struct kobject *kobj,
564 					    struct kobj_attribute *attr, char *buf)
565 {
566 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
567 }
568 
569 static struct kobj_attribute uv_query_feature_indications_attr =
570 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
571 
uv_query_max_guest_cpus(struct kobject * kobj,struct kobj_attribute * attr,char * buf)572 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
573 				       struct kobj_attribute *attr, char *buf)
574 {
575 	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
576 }
577 
578 static struct kobj_attribute uv_query_max_guest_cpus_attr =
579 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
580 
uv_query_max_guest_vms(struct kobject * kobj,struct kobj_attribute * attr,char * buf)581 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
582 				      struct kobj_attribute *attr, char *buf)
583 {
584 	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
585 }
586 
587 static struct kobj_attribute uv_query_max_guest_vms_attr =
588 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
589 
uv_query_max_guest_addr(struct kobject * kobj,struct kobj_attribute * attr,char * buf)590 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
591 				       struct kobj_attribute *attr, char *buf)
592 {
593 	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
594 }
595 
596 static struct kobj_attribute uv_query_max_guest_addr_attr =
597 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
598 
uv_query_supp_att_req_hdr_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)599 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
600 					     struct kobj_attribute *attr, char *buf)
601 {
602 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
603 }
604 
605 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
606 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
607 
uv_query_supp_att_pflags(struct kobject * kobj,struct kobj_attribute * attr,char * buf)608 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
609 					struct kobj_attribute *attr, char *buf)
610 {
611 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
612 }
613 
614 static struct kobj_attribute uv_query_supp_att_pflags_attr =
615 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
616 
uv_query_supp_add_secret_req_ver(struct kobject * kobj,struct kobj_attribute * attr,char * buf)617 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
618 						struct kobj_attribute *attr, char *buf)
619 {
620 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
621 }
622 
623 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
624 	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
625 
uv_query_supp_add_secret_pcf(struct kobject * kobj,struct kobj_attribute * attr,char * buf)626 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
627 					    struct kobj_attribute *attr, char *buf)
628 {
629 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
630 }
631 
632 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
633 	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
634 
uv_query_supp_secret_types(struct kobject * kobj,struct kobj_attribute * attr,char * buf)635 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
636 					  struct kobj_attribute *attr, char *buf)
637 {
638 	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
639 }
640 
641 static struct kobj_attribute uv_query_supp_secret_types_attr =
642 	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
643 
uv_query_max_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)644 static ssize_t uv_query_max_secrets(struct kobject *kobj,
645 				    struct kobj_attribute *attr, char *buf)
646 {
647 	return sysfs_emit(buf, "%d\n",
648 			  uv_info.max_assoc_secrets + uv_info.max_retr_secrets);
649 }
650 
651 static struct kobj_attribute uv_query_max_secrets_attr =
652 	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
653 
uv_query_max_retr_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)654 static ssize_t uv_query_max_retr_secrets(struct kobject *kobj,
655 					 struct kobj_attribute *attr, char *buf)
656 {
657 	return sysfs_emit(buf, "%d\n", uv_info.max_retr_secrets);
658 }
659 
660 static struct kobj_attribute uv_query_max_retr_secrets_attr =
661 	__ATTR(max_retr_secrets, 0444, uv_query_max_retr_secrets, NULL);
662 
uv_query_max_assoc_secrets(struct kobject * kobj,struct kobj_attribute * attr,char * buf)663 static ssize_t uv_query_max_assoc_secrets(struct kobject *kobj,
664 					  struct kobj_attribute *attr,
665 					  char *buf)
666 {
667 	return sysfs_emit(buf, "%d\n", uv_info.max_assoc_secrets);
668 }
669 
670 static struct kobj_attribute uv_query_max_assoc_secrets_attr =
671 	__ATTR(max_assoc_secrets, 0444, uv_query_max_assoc_secrets, NULL);
672 
673 static struct attribute *uv_query_attrs[] = {
674 	&uv_query_facilities_attr.attr,
675 	&uv_query_feature_indications_attr.attr,
676 	&uv_query_max_guest_cpus_attr.attr,
677 	&uv_query_max_guest_vms_attr.attr,
678 	&uv_query_max_guest_addr_attr.attr,
679 	&uv_query_supp_se_hdr_ver_attr.attr,
680 	&uv_query_supp_se_hdr_pcf_attr.attr,
681 	&uv_query_dump_storage_state_len_attr.attr,
682 	&uv_query_dump_finalize_len_attr.attr,
683 	&uv_query_dump_cpu_len_attr.attr,
684 	&uv_query_supp_att_req_hdr_ver_attr.attr,
685 	&uv_query_supp_att_pflags_attr.attr,
686 	&uv_query_supp_add_secret_req_ver_attr.attr,
687 	&uv_query_supp_add_secret_pcf_attr.attr,
688 	&uv_query_supp_secret_types_attr.attr,
689 	&uv_query_max_secrets_attr.attr,
690 	&uv_query_max_assoc_secrets_attr.attr,
691 	&uv_query_max_retr_secrets_attr.attr,
692 	NULL,
693 };
694 
uv_query_keys(void)695 static inline struct uv_cb_query_keys uv_query_keys(void)
696 {
697 	struct uv_cb_query_keys uvcb = {
698 		.header.cmd = UVC_CMD_QUERY_KEYS,
699 		.header.len = sizeof(uvcb)
700 	};
701 
702 	uv_call(0, (uint64_t)&uvcb);
703 	return uvcb;
704 }
705 
emit_hash(struct uv_key_hash * hash,char * buf,int at)706 static inline ssize_t emit_hash(struct uv_key_hash *hash, char *buf, int at)
707 {
708 	return sysfs_emit_at(buf, at, "%016llx%016llx%016llx%016llx\n",
709 			    hash->dword[0], hash->dword[1], hash->dword[2], hash->dword[3]);
710 }
711 
uv_keys_host_key(struct kobject * kobj,struct kobj_attribute * attr,char * buf)712 static ssize_t uv_keys_host_key(struct kobject *kobj,
713 				struct kobj_attribute *attr, char *buf)
714 {
715 	struct uv_cb_query_keys uvcb = uv_query_keys();
716 
717 	return emit_hash(&uvcb.key_hashes[UVC_QUERY_KEYS_IDX_HK], buf, 0);
718 }
719 
720 static struct kobj_attribute uv_keys_host_key_attr =
721 	__ATTR(host_key, 0444, uv_keys_host_key, NULL);
722 
uv_keys_backup_host_key(struct kobject * kobj,struct kobj_attribute * attr,char * buf)723 static ssize_t uv_keys_backup_host_key(struct kobject *kobj,
724 				       struct kobj_attribute *attr, char *buf)
725 {
726 	struct uv_cb_query_keys uvcb = uv_query_keys();
727 
728 	return emit_hash(&uvcb.key_hashes[UVC_QUERY_KEYS_IDX_BACK_HK], buf, 0);
729 }
730 
731 static struct kobj_attribute uv_keys_backup_host_key_attr =
732 	__ATTR(backup_host_key, 0444, uv_keys_backup_host_key, NULL);
733 
uv_keys_all(struct kobject * kobj,struct kobj_attribute * attr,char * buf)734 static ssize_t uv_keys_all(struct kobject *kobj,
735 			   struct kobj_attribute *attr, char *buf)
736 {
737 	struct uv_cb_query_keys uvcb = uv_query_keys();
738 	ssize_t len = 0;
739 	int i;
740 
741 	for (i = 0; i < ARRAY_SIZE(uvcb.key_hashes); i++)
742 		len += emit_hash(uvcb.key_hashes + i, buf, len);
743 
744 	return len;
745 }
746 
747 static struct kobj_attribute uv_keys_all_attr =
748 	__ATTR(all, 0444, uv_keys_all, NULL);
749 
750 static struct attribute_group uv_query_attr_group = {
751 	.attrs = uv_query_attrs,
752 };
753 
754 static struct attribute *uv_keys_attrs[] = {
755 	&uv_keys_host_key_attr.attr,
756 	&uv_keys_backup_host_key_attr.attr,
757 	&uv_keys_all_attr.attr,
758 	NULL,
759 };
760 
761 static struct attribute_group uv_keys_attr_group = {
762 	.attrs = uv_keys_attrs,
763 };
764 
uv_is_prot_virt_guest(struct kobject * kobj,struct kobj_attribute * attr,char * buf)765 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
766 				     struct kobj_attribute *attr, char *buf)
767 {
768 	return sysfs_emit(buf, "%d\n", prot_virt_guest);
769 }
770 
uv_is_prot_virt_host(struct kobject * kobj,struct kobj_attribute * attr,char * buf)771 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
772 				    struct kobj_attribute *attr, char *buf)
773 {
774 	return sysfs_emit(buf, "%d\n", prot_virt_host);
775 }
776 
777 static struct kobj_attribute uv_prot_virt_guest =
778 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
779 
780 static struct kobj_attribute uv_prot_virt_host =
781 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
782 
783 static const struct attribute *uv_prot_virt_attrs[] = {
784 	&uv_prot_virt_guest.attr,
785 	&uv_prot_virt_host.attr,
786 	NULL,
787 };
788 
789 static struct kset *uv_query_kset;
790 static struct kset *uv_keys_kset;
791 static struct kobject *uv_kobj;
792 
uv_sysfs_dir_init(const struct attribute_group * grp,struct kset ** uv_dir_kset,const char * name)793 static int __init uv_sysfs_dir_init(const struct attribute_group *grp,
794 				    struct kset **uv_dir_kset, const char *name)
795 {
796 	struct kset *kset;
797 	int rc;
798 
799 	kset = kset_create_and_add(name, NULL, uv_kobj);
800 	if (!kset)
801 		return -ENOMEM;
802 	*uv_dir_kset = kset;
803 
804 	rc = sysfs_create_group(&kset->kobj, grp);
805 	if (rc)
806 		kset_unregister(kset);
807 	return rc;
808 }
809 
uv_sysfs_init(void)810 static int __init uv_sysfs_init(void)
811 {
812 	int rc = -ENOMEM;
813 
814 	if (!test_facility(158))
815 		return 0;
816 
817 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
818 	if (!uv_kobj)
819 		return -ENOMEM;
820 
821 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
822 	if (rc)
823 		goto out_kobj;
824 
825 	rc = uv_sysfs_dir_init(&uv_query_attr_group, &uv_query_kset, "query");
826 	if (rc)
827 		goto out_ind_files;
828 
829 	/* Get installed key hashes if available, ignore any errors */
830 	if (test_bit_inv(BIT_UVC_CMD_QUERY_KEYS, uv_info.inst_calls_list))
831 		uv_sysfs_dir_init(&uv_keys_attr_group, &uv_keys_kset, "keys");
832 
833 	return 0;
834 
835 out_ind_files:
836 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
837 out_kobj:
838 	kobject_del(uv_kobj);
839 	kobject_put(uv_kobj);
840 	return rc;
841 }
842 device_initcall(uv_sysfs_init);
843 
844 /*
845  * Locate a secret in the list by its id.
846  * @secret_id: search pattern.
847  * @list: ephemeral buffer space
848  * @secret: output data, containing the secret's metadata.
849  *
850  * Search for a secret with the given secret_id in the Ultravisor secret store.
851  *
852  * Context: might sleep.
853  */
find_secret_in_page(const u8 secret_id[UV_SECRET_ID_LEN],const struct uv_secret_list * list,struct uv_secret_list_item_hdr * secret)854 static int find_secret_in_page(const u8 secret_id[UV_SECRET_ID_LEN],
855 			       const struct uv_secret_list *list,
856 			       struct uv_secret_list_item_hdr *secret)
857 {
858 	u16 i;
859 
860 	for (i = 0; i < list->total_num_secrets; i++) {
861 		if (memcmp(secret_id, list->secrets[i].id, UV_SECRET_ID_LEN) == 0) {
862 			*secret = list->secrets[i].hdr;
863 			return 0;
864 		}
865 	}
866 	return -ENOENT;
867 }
868 
869 /*
870  * Do the actual search for `uv_get_secret_metadata`.
871  * @secret_id: search pattern.
872  * @list: ephemeral buffer space
873  * @secret: output data, containing the secret's metadata.
874  *
875  * Context: might sleep.
876  */
uv_find_secret(const u8 secret_id[UV_SECRET_ID_LEN],struct uv_secret_list * list,struct uv_secret_list_item_hdr * secret)877 int uv_find_secret(const u8 secret_id[UV_SECRET_ID_LEN],
878 		   struct uv_secret_list *list,
879 		   struct uv_secret_list_item_hdr *secret)
880 {
881 	u16 start_idx = 0;
882 	u16 list_rc;
883 	int ret;
884 
885 	do {
886 		uv_list_secrets(list, start_idx, &list_rc, NULL);
887 		if (list_rc != UVC_RC_EXECUTED && list_rc != UVC_RC_MORE_DATA) {
888 			if (list_rc == UVC_RC_INV_CMD)
889 				return -ENODEV;
890 			else
891 				return -EIO;
892 		}
893 		ret = find_secret_in_page(secret_id, list, secret);
894 		if (ret == 0)
895 			return ret;
896 		start_idx = list->next_secret_idx;
897 	} while (list_rc == UVC_RC_MORE_DATA && start_idx < list->next_secret_idx);
898 
899 	return -ENOENT;
900 }
901 EXPORT_SYMBOL_GPL(uv_find_secret);
902 
903 /**
904  * uv_retrieve_secret() - get the secret value for the secret index.
905  * @secret_idx: Secret index for which the secret should be retrieved.
906  * @buf: Buffer to store retrieved secret.
907  * @buf_size: Size of the buffer. The correct buffer size is reported as part of
908  * the result from `uv_get_secret_metadata`.
909  *
910  * Calls the Retrieve Secret UVC and translates the UV return code into an errno.
911  *
912  * Context: might sleep.
913  *
914  * Return:
915  * * %0		- Entry found; buffer contains a valid secret.
916  * * %ENOENT:	- No entry found or secret at the index is non-retrievable.
917  * * %ENODEV:	- Not supported: UV not available or command not available.
918  * * %EINVAL:	- Buffer too small for content.
919  * * %EIO:	- Other unexpected UV error.
920  */
uv_retrieve_secret(u16 secret_idx,u8 * buf,size_t buf_size)921 int uv_retrieve_secret(u16 secret_idx, u8 *buf, size_t buf_size)
922 {
923 	struct uv_cb_retr_secr uvcb = {
924 		.header.len = sizeof(uvcb),
925 		.header.cmd = UVC_CMD_RETR_SECRET,
926 		.secret_idx = secret_idx,
927 		.buf_addr = (u64)buf,
928 		.buf_size = buf_size,
929 	};
930 
931 	uv_call_sched(0, (u64)&uvcb);
932 
933 	switch (uvcb.header.rc) {
934 	case UVC_RC_EXECUTED:
935 		return 0;
936 	case UVC_RC_INV_CMD:
937 		return -ENODEV;
938 	case UVC_RC_RETR_SECR_STORE_EMPTY:
939 	case UVC_RC_RETR_SECR_INV_SECRET:
940 	case UVC_RC_RETR_SECR_INV_IDX:
941 		return -ENOENT;
942 	case UVC_RC_RETR_SECR_BUF_SMALL:
943 		return -EINVAL;
944 	default:
945 		return -EIO;
946 	}
947 }
948 EXPORT_SYMBOL_GPL(uv_retrieve_secret);
949