xref: /qemu/system/memory.c (revision 24c00b754121f3569ea9e68f5f188747cf5b8439)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "system/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27 #include "system/ram_addr.h"
28 #include "system/kvm.h"
29 #include "system/runstate.h"
30 #include "system/tcg.h"
31 #include "qemu/accel.h"
32 #include "hw/boards.h"
33 #include "migration/vmstate.h"
34 #include "system/address-spaces.h"
35 
36 #include "memory-internal.h"
37 
38 //#define DEBUG_UNASSIGNED
39 
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44 
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 
51 static GHashTable *flat_views;
52 
53 typedef struct AddrRange AddrRange;
54 
55 /*
56  * Note that signed integers are needed for negative offsetting in aliases
57  * (large MemoryRegion::alias_offset).
58  */
59 struct AddrRange {
60     Int128 start;
61     Int128 size;
62 };
63 
addrrange_make(Int128 start,Int128 size)64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66     return (AddrRange) { start, size };
67 }
68 
addrrange_equal(AddrRange r1,AddrRange r2)69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73 
addrrange_end(AddrRange r)74 static Int128 addrrange_end(AddrRange r)
75 {
76     return int128_add(r.start, r.size);
77 }
78 
addrrange_shift(AddrRange range,Int128 delta)79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81     int128_addto(&range.start, delta);
82     return range;
83 }
84 
addrrange_contains(AddrRange range,Int128 addr)85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87     return int128_ge(addr, range.start)
88         && int128_lt(addr, addrrange_end(range));
89 }
90 
addrrange_intersects(AddrRange r1,AddrRange r2)91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93     return addrrange_contains(r1, r2.start)
94         || addrrange_contains(r2, r1.start);
95 }
96 
addrrange_intersection(AddrRange r1,AddrRange r2)97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99     Int128 start = int128_max(r1.start, r2.start);
100     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101     return addrrange_make(start, int128_sub(end, start));
102 }
103 
104 enum ListenerDirection { Forward, Reverse };
105 
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120                 if (_listener->_callback) {                             \
121                     _listener->_callback(_listener, ##_args);           \
122                 }                                                       \
123             }                                                           \
124             break;                                                      \
125         default:                                                        \
126             abort();                                                    \
127         }                                                               \
128     } while (0)
129 
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131     do {                                                                \
132         MemoryListener *_listener;                                      \
133                                                                         \
134         switch (_direction) {                                           \
135         case Forward:                                                   \
136             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
137                 if (_listener->_callback) {                             \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         case Reverse:                                                   \
143             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144                 if (_listener->_callback) {                             \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153 
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156     do {                                                                \
157         MemoryRegionSection mrs = section_from_flat_range(fr,           \
158                 address_space_to_flatview(as));                         \
159         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
160     } while(0)
161 
162 struct CoalescedMemoryRange {
163     AddrRange addr;
164     QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166 
167 struct MemoryRegionIoeventfd {
168     AddrRange addr;
169     bool match_data;
170     uint64_t data;
171     EventNotifier *e;
172 };
173 
memory_region_ioeventfd_before(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175                                            MemoryRegionIoeventfd *b)
176 {
177     if (int128_lt(a->addr.start, b->addr.start)) {
178         return true;
179     } else if (int128_gt(a->addr.start, b->addr.start)) {
180         return false;
181     } else if (int128_lt(a->addr.size, b->addr.size)) {
182         return true;
183     } else if (int128_gt(a->addr.size, b->addr.size)) {
184         return false;
185     } else if (a->match_data < b->match_data) {
186         return true;
187     } else  if (a->match_data > b->match_data) {
188         return false;
189     } else if (a->match_data) {
190         if (a->data < b->data) {
191             return true;
192         } else if (a->data > b->data) {
193             return false;
194         }
195     }
196     if (a->e < b->e) {
197         return true;
198     } else if (a->e > b->e) {
199         return false;
200     }
201     return false;
202 }
203 
memory_region_ioeventfd_equal(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205                                           MemoryRegionIoeventfd *b)
206 {
207     if (int128_eq(a->addr.start, b->addr.start) &&
208         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209          (int128_eq(a->addr.size, b->addr.size) &&
210           (a->match_data == b->match_data) &&
211           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212           (a->e == b->e))))
213         return true;
214 
215     return false;
216 }
217 
218 /* Range of memory in the global map.  Addresses are absolute. */
219 struct FlatRange {
220     MemoryRegion *mr;
221     hwaddr offset_in_region;
222     AddrRange addr;
223     uint8_t dirty_log_mask;
224     bool romd_mode;
225     bool readonly;
226     bool nonvolatile;
227     bool unmergeable;
228 };
229 
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232 
233 static inline MemoryRegionSection
section_from_flat_range(FlatRange * fr,FlatView * fv)234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244         .unmergeable = fr->unmergeable,
245     };
246 }
247 
flatrange_equal(FlatRange * a,FlatRange * b)248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250     return a->mr == b->mr
251         && addrrange_equal(a->addr, b->addr)
252         && a->offset_in_region == b->offset_in_region
253         && a->romd_mode == b->romd_mode
254         && a->readonly == b->readonly
255         && a->nonvolatile == b->nonvolatile
256         && a->unmergeable == b->unmergeable;
257 }
258 
flatview_new(MemoryRegion * mr_root)259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261     FlatView *view;
262 
263     view = g_new0(FlatView, 1);
264     view->ref = 1;
265     view->root = mr_root;
266     memory_region_ref(mr_root);
267     trace_flatview_new(view, mr_root);
268 
269     return view;
270 }
271 
272 /* Insert a range into a given position.  Caller is responsible for maintaining
273  * sorting order.
274  */
flatview_insert(FlatView * view,unsigned pos,FlatRange * range)275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277     if (view->nr == view->nr_allocated) {
278         view->nr_allocated = MAX(2 * view->nr, 10);
279         view->ranges = g_realloc(view->ranges,
280                                     view->nr_allocated * sizeof(*view->ranges));
281     }
282     memmove(view->ranges + pos + 1, view->ranges + pos,
283             (view->nr - pos) * sizeof(FlatRange));
284     view->ranges[pos] = *range;
285     memory_region_ref(range->mr);
286     ++view->nr;
287 }
288 
flatview_destroy(FlatView * view)289 static void flatview_destroy(FlatView *view)
290 {
291     int i;
292 
293     trace_flatview_destroy(view, view->root);
294     if (view->dispatch) {
295         address_space_dispatch_free(view->dispatch);
296     }
297     for (i = 0; i < view->nr; i++) {
298         memory_region_unref(view->ranges[i].mr);
299     }
300     g_free(view->ranges);
301     memory_region_unref(view->root);
302     g_free(view);
303 }
304 
flatview_ref(FlatView * view)305 static bool flatview_ref(FlatView *view)
306 {
307     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309 
flatview_unref(FlatView * view)310 void flatview_unref(FlatView *view)
311 {
312     if (qatomic_fetch_dec(&view->ref) == 1) {
313         trace_flatview_destroy_rcu(view, view->root);
314         assert(view->root);
315         call_rcu(view, flatview_destroy, rcu);
316     }
317 }
318 
can_merge(FlatRange * r1,FlatRange * r2)319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322         && r1->mr == r2->mr
323         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324                                 r1->addr.size),
325                      int128_make64(r2->offset_in_region))
326         && r1->dirty_log_mask == r2->dirty_log_mask
327         && r1->romd_mode == r2->romd_mode
328         && r1->readonly == r2->readonly
329         && r1->nonvolatile == r2->nonvolatile
330         && !r1->unmergeable && !r2->unmergeable;
331 }
332 
333 /* Attempt to simplify a view by merging adjacent ranges */
flatview_simplify(FlatView * view)334 static void flatview_simplify(FlatView *view)
335 {
336     unsigned i, j, k;
337 
338     i = 0;
339     while (i < view->nr) {
340         j = i + 1;
341         while (j < view->nr
342                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344             ++j;
345         }
346         ++i;
347         for (k = i; k < j; k++) {
348             memory_region_unref(view->ranges[k].mr);
349         }
350         memmove(&view->ranges[i], &view->ranges[j],
351                 (view->nr - j) * sizeof(view->ranges[j]));
352         view->nr -= j - i;
353     }
354 }
355 
adjust_endianness(MemoryRegion * mr,uint64_t * data,MemOp op)356 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
357 {
358     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
359         switch (op & MO_SIZE) {
360         case MO_8:
361             break;
362         case MO_16:
363             *data = bswap16(*data);
364             break;
365         case MO_32:
366             *data = bswap32(*data);
367             break;
368         case MO_64:
369             *data = bswap64(*data);
370             break;
371         default:
372             g_assert_not_reached();
373         }
374     }
375 }
376 
memory_region_shift_read_access(uint64_t * value,signed shift,uint64_t mask,uint64_t tmp)377 static inline void memory_region_shift_read_access(uint64_t *value,
378                                                    signed shift,
379                                                    uint64_t mask,
380                                                    uint64_t tmp)
381 {
382     if (shift >= 0) {
383         *value |= (tmp & mask) << shift;
384     } else {
385         *value |= (tmp & mask) >> -shift;
386     }
387 }
388 
memory_region_shift_write_access(uint64_t * value,signed shift,uint64_t mask)389 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
390                                                         signed shift,
391                                                         uint64_t mask)
392 {
393     uint64_t tmp;
394 
395     if (shift >= 0) {
396         tmp = (*value >> shift) & mask;
397     } else {
398         tmp = (*value << -shift) & mask;
399     }
400 
401     return tmp;
402 }
403 
memory_region_to_absolute_addr(MemoryRegion * mr,hwaddr offset)404 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
405 {
406     MemoryRegion *root;
407     hwaddr abs_addr = offset;
408 
409     abs_addr += mr->addr;
410     for (root = mr; root->container; ) {
411         root = root->container;
412         abs_addr += root->addr;
413     }
414 
415     return abs_addr;
416 }
417 
get_cpu_index(void)418 static int get_cpu_index(void)
419 {
420     if (current_cpu) {
421         return current_cpu->cpu_index;
422     }
423     return -1;
424 }
425 
memory_region_read_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)426 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
427                                                 hwaddr addr,
428                                                 uint64_t *value,
429                                                 unsigned size,
430                                                 signed shift,
431                                                 uint64_t mask,
432                                                 MemTxAttrs attrs)
433 {
434     uint64_t tmp;
435 
436     tmp = mr->ops->read(mr->opaque, addr, size);
437     if (mr->subpage) {
438         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
440         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
441         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
442                                      memory_region_name(mr));
443     }
444     memory_region_shift_read_access(value, shift, mask, tmp);
445     return MEMTX_OK;
446 }
447 
memory_region_read_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)448 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
449                                                           hwaddr addr,
450                                                           uint64_t *value,
451                                                           unsigned size,
452                                                           signed shift,
453                                                           uint64_t mask,
454                                                           MemTxAttrs attrs)
455 {
456     uint64_t tmp = 0;
457     MemTxResult r;
458 
459     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
460     if (mr->subpage) {
461         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
462     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
463         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
464         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
465                                      memory_region_name(mr));
466     }
467     memory_region_shift_read_access(value, shift, mask, tmp);
468     return r;
469 }
470 
memory_region_write_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)471 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
472                                                 hwaddr addr,
473                                                 uint64_t *value,
474                                                 unsigned size,
475                                                 signed shift,
476                                                 uint64_t mask,
477                                                 MemTxAttrs attrs)
478 {
479     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
480 
481     if (mr->subpage) {
482         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
483     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
484         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
485         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
486                                       memory_region_name(mr));
487     }
488     mr->ops->write(mr->opaque, addr, tmp, size);
489     return MEMTX_OK;
490 }
491 
memory_region_write_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)492 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
493                                                            hwaddr addr,
494                                                            uint64_t *value,
495                                                            unsigned size,
496                                                            signed shift,
497                                                            uint64_t mask,
498                                                            MemTxAttrs attrs)
499 {
500     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
501 
502     if (mr->subpage) {
503         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
504     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
505         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
506         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
507                                       memory_region_name(mr));
508     }
509     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
510 }
511 
access_with_adjusted_size(hwaddr addr,uint64_t * value,unsigned size,unsigned access_size_min,unsigned access_size_max,MemTxResult (* access_fn)(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs),MemoryRegion * mr,MemTxAttrs attrs)512 static MemTxResult access_with_adjusted_size(hwaddr addr,
513                                       uint64_t *value,
514                                       unsigned size,
515                                       unsigned access_size_min,
516                                       unsigned access_size_max,
517                                       MemTxResult (*access_fn)
518                                                   (MemoryRegion *mr,
519                                                    hwaddr addr,
520                                                    uint64_t *value,
521                                                    unsigned size,
522                                                    signed shift,
523                                                    uint64_t mask,
524                                                    MemTxAttrs attrs),
525                                       MemoryRegion *mr,
526                                       MemTxAttrs attrs)
527 {
528     uint64_t access_mask;
529     unsigned access_size;
530     unsigned i;
531     MemTxResult r = MEMTX_OK;
532     bool reentrancy_guard_applied = false;
533 
534     if (!access_size_min) {
535         access_size_min = 1;
536     }
537     if (!access_size_max) {
538         access_size_max = 4;
539     }
540 
541     /* Do not allow more than one simultaneous access to a device's IO Regions */
542     if (mr->dev && !mr->disable_reentrancy_guard &&
543         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
544         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
545             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
546                              "%s at addr: 0x%" HWADDR_PRIX,
547                              memory_region_name(mr), addr);
548             return MEMTX_ACCESS_ERROR;
549         }
550         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
551         reentrancy_guard_applied = true;
552     }
553 
554     /* FIXME: support unaligned access? */
555     access_size = MAX(MIN(size, access_size_max), access_size_min);
556     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
557     if (devend_big_endian(mr->ops->endianness)) {
558         for (i = 0; i < size; i += access_size) {
559             r |= access_fn(mr, addr + i, value, access_size,
560                         (size - access_size - i) * 8, access_mask, attrs);
561         }
562     } else {
563         for (i = 0; i < size; i += access_size) {
564             r |= access_fn(mr, addr + i, value, access_size, i * 8,
565                         access_mask, attrs);
566         }
567     }
568     if (mr->dev && reentrancy_guard_applied) {
569         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
570     }
571     return r;
572 }
573 
memory_region_to_address_space(MemoryRegion * mr)574 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
575 {
576     AddressSpace *as;
577 
578     while (mr->container) {
579         mr = mr->container;
580     }
581     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
582         if (mr == as->root) {
583             return as;
584         }
585     }
586     return NULL;
587 }
588 
589 /* Render a memory region into the global view.  Ranges in @view obscure
590  * ranges in @mr.
591  */
render_memory_region(FlatView * view,MemoryRegion * mr,Int128 base,AddrRange clip,bool readonly,bool nonvolatile,bool unmergeable)592 static void render_memory_region(FlatView *view,
593                                  MemoryRegion *mr,
594                                  Int128 base,
595                                  AddrRange clip,
596                                  bool readonly,
597                                  bool nonvolatile,
598                                  bool unmergeable)
599 {
600     MemoryRegion *subregion;
601     unsigned i;
602     hwaddr offset_in_region;
603     Int128 remain;
604     Int128 now;
605     FlatRange fr;
606     AddrRange tmp;
607 
608     if (!mr->enabled) {
609         return;
610     }
611 
612     int128_addto(&base, int128_make64(mr->addr));
613     readonly |= mr->readonly;
614     nonvolatile |= mr->nonvolatile;
615     unmergeable |= mr->unmergeable;
616 
617     tmp = addrrange_make(base, mr->size);
618 
619     if (!addrrange_intersects(tmp, clip)) {
620         return;
621     }
622 
623     clip = addrrange_intersection(tmp, clip);
624 
625     if (mr->alias) {
626         int128_subfrom(&base, int128_make64(mr->alias->addr));
627         int128_subfrom(&base, int128_make64(mr->alias_offset));
628         render_memory_region(view, mr->alias, base, clip,
629                              readonly, nonvolatile, unmergeable);
630         return;
631     }
632 
633     /* Render subregions in priority order. */
634     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
635         render_memory_region(view, subregion, base, clip,
636                              readonly, nonvolatile, unmergeable);
637     }
638 
639     if (!mr->terminates) {
640         return;
641     }
642 
643     offset_in_region = int128_get64(int128_sub(clip.start, base));
644     base = clip.start;
645     remain = clip.size;
646 
647     fr.mr = mr;
648     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
649     fr.romd_mode = mr->romd_mode;
650     fr.readonly = readonly;
651     fr.nonvolatile = nonvolatile;
652     fr.unmergeable = unmergeable;
653 
654     /* Render the region itself into any gaps left by the current view. */
655     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
656         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
657             continue;
658         }
659         if (int128_lt(base, view->ranges[i].addr.start)) {
660             now = int128_min(remain,
661                              int128_sub(view->ranges[i].addr.start, base));
662             fr.offset_in_region = offset_in_region;
663             fr.addr = addrrange_make(base, now);
664             flatview_insert(view, i, &fr);
665             ++i;
666             int128_addto(&base, now);
667             offset_in_region += int128_get64(now);
668             int128_subfrom(&remain, now);
669         }
670         now = int128_sub(int128_min(int128_add(base, remain),
671                                     addrrange_end(view->ranges[i].addr)),
672                          base);
673         int128_addto(&base, now);
674         offset_in_region += int128_get64(now);
675         int128_subfrom(&remain, now);
676     }
677     if (int128_nz(remain)) {
678         fr.offset_in_region = offset_in_region;
679         fr.addr = addrrange_make(base, remain);
680         flatview_insert(view, i, &fr);
681     }
682 }
683 
flatview_for_each_range(FlatView * fv,flatview_cb cb,void * opaque)684 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
685 {
686     FlatRange *fr;
687 
688     assert(fv);
689     assert(cb);
690 
691     FOR_EACH_FLAT_RANGE(fr, fv) {
692         if (cb(fr->addr.start, fr->addr.size, fr->mr,
693                fr->offset_in_region, opaque)) {
694             break;
695         }
696     }
697 }
698 
memory_region_get_flatview_root(MemoryRegion * mr)699 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
700 {
701     while (mr->enabled) {
702         if (mr->alias) {
703             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
704                 /* The alias is included in its entirety.  Use it as
705                  * the "real" root, so that we can share more FlatViews.
706                  */
707                 mr = mr->alias;
708                 continue;
709             }
710         } else if (!mr->terminates) {
711             unsigned int found = 0;
712             MemoryRegion *child, *next = NULL;
713             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
714                 if (child->enabled) {
715                     if (++found > 1) {
716                         next = NULL;
717                         break;
718                     }
719                     if (!child->addr && int128_ge(mr->size, child->size)) {
720                         /* A child is included in its entirety.  If it's the only
721                          * enabled one, use it in the hope of finding an alias down the
722                          * way. This will also let us share FlatViews.
723                          */
724                         next = child;
725                     }
726                 }
727             }
728             if (found == 0) {
729                 return NULL;
730             }
731             if (next) {
732                 mr = next;
733                 continue;
734             }
735         }
736 
737         return mr;
738     }
739 
740     return NULL;
741 }
742 
743 /* Render a memory topology into a list of disjoint absolute ranges. */
generate_memory_topology(MemoryRegion * mr)744 static FlatView *generate_memory_topology(MemoryRegion *mr)
745 {
746     int i;
747     FlatView *view;
748 
749     view = flatview_new(mr);
750 
751     if (mr) {
752         render_memory_region(view, mr, int128_zero(),
753                              addrrange_make(int128_zero(), int128_2_64()),
754                              false, false, false);
755     }
756     flatview_simplify(view);
757 
758     view->dispatch = address_space_dispatch_new(view);
759     for (i = 0; i < view->nr; i++) {
760         MemoryRegionSection mrs =
761             section_from_flat_range(&view->ranges[i], view);
762         flatview_add_to_dispatch(view, &mrs);
763     }
764     address_space_dispatch_compact(view->dispatch);
765     g_hash_table_replace(flat_views, mr, view);
766 
767     return view;
768 }
769 
address_space_add_del_ioeventfds(AddressSpace * as,MemoryRegionIoeventfd * fds_new,unsigned fds_new_nb,MemoryRegionIoeventfd * fds_old,unsigned fds_old_nb)770 static void address_space_add_del_ioeventfds(AddressSpace *as,
771                                              MemoryRegionIoeventfd *fds_new,
772                                              unsigned fds_new_nb,
773                                              MemoryRegionIoeventfd *fds_old,
774                                              unsigned fds_old_nb)
775 {
776     unsigned iold, inew;
777     MemoryRegionIoeventfd *fd;
778     MemoryRegionSection section;
779 
780     /* Generate a symmetric difference of the old and new fd sets, adding
781      * and deleting as necessary.
782      */
783 
784     iold = inew = 0;
785     while (iold < fds_old_nb || inew < fds_new_nb) {
786         if (iold < fds_old_nb
787             && (inew == fds_new_nb
788                 || memory_region_ioeventfd_before(&fds_old[iold],
789                                                   &fds_new[inew]))) {
790             fd = &fds_old[iold];
791             section = (MemoryRegionSection) {
792                 .fv = address_space_to_flatview(as),
793                 .offset_within_address_space = int128_get64(fd->addr.start),
794                 .size = fd->addr.size,
795             };
796             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
797                                  fd->match_data, fd->data, fd->e);
798             ++iold;
799         } else if (inew < fds_new_nb
800                    && (iold == fds_old_nb
801                        || memory_region_ioeventfd_before(&fds_new[inew],
802                                                          &fds_old[iold]))) {
803             fd = &fds_new[inew];
804             section = (MemoryRegionSection) {
805                 .fv = address_space_to_flatview(as),
806                 .offset_within_address_space = int128_get64(fd->addr.start),
807                 .size = fd->addr.size,
808             };
809             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
810                                  fd->match_data, fd->data, fd->e);
811             ++inew;
812         } else {
813             ++iold;
814             ++inew;
815         }
816     }
817 }
818 
address_space_get_flatview(AddressSpace * as)819 FlatView *address_space_get_flatview(AddressSpace *as)
820 {
821     FlatView *view;
822 
823     RCU_READ_LOCK_GUARD();
824     do {
825         view = address_space_to_flatview(as);
826         /* If somebody has replaced as->current_map concurrently,
827          * flatview_ref returns false.
828          */
829     } while (!flatview_ref(view));
830     return view;
831 }
832 
address_space_update_ioeventfds(AddressSpace * as)833 static void address_space_update_ioeventfds(AddressSpace *as)
834 {
835     FlatView *view;
836     FlatRange *fr;
837     unsigned ioeventfd_nb = 0;
838     unsigned ioeventfd_max;
839     MemoryRegionIoeventfd *ioeventfds;
840     AddrRange tmp;
841     unsigned i;
842 
843     if (!as->ioeventfd_notifiers) {
844         return;
845     }
846 
847     /*
848      * It is likely that the number of ioeventfds hasn't changed much, so use
849      * the previous size as the starting value, with some headroom to avoid
850      * gratuitous reallocations.
851      */
852     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
853     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
854 
855     view = address_space_get_flatview(as);
856     FOR_EACH_FLAT_RANGE(fr, view) {
857         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
858             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
859                                   int128_sub(fr->addr.start,
860                                              int128_make64(fr->offset_in_region)));
861             if (addrrange_intersects(fr->addr, tmp)) {
862                 ++ioeventfd_nb;
863                 if (ioeventfd_nb > ioeventfd_max) {
864                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
865                     ioeventfds = g_realloc(ioeventfds,
866                             ioeventfd_max * sizeof(*ioeventfds));
867                 }
868                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
869                 ioeventfds[ioeventfd_nb-1].addr = tmp;
870             }
871         }
872     }
873 
874     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
875                                      as->ioeventfds, as->ioeventfd_nb);
876 
877     g_free(as->ioeventfds);
878     as->ioeventfds = ioeventfds;
879     as->ioeventfd_nb = ioeventfd_nb;
880     flatview_unref(view);
881 }
882 
883 /*
884  * Notify the memory listeners about the coalesced IO change events of
885  * range `cmr'.  Only the part that has intersection of the specified
886  * FlatRange will be sent.
887  */
flat_range_coalesced_io_notify(FlatRange * fr,AddressSpace * as,CoalescedMemoryRange * cmr,bool add)888 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
889                                            CoalescedMemoryRange *cmr, bool add)
890 {
891     AddrRange tmp;
892 
893     tmp = addrrange_shift(cmr->addr,
894                           int128_sub(fr->addr.start,
895                                      int128_make64(fr->offset_in_region)));
896     if (!addrrange_intersects(tmp, fr->addr)) {
897         return;
898     }
899     tmp = addrrange_intersection(tmp, fr->addr);
900 
901     if (add) {
902         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
903                                       int128_get64(tmp.start),
904                                       int128_get64(tmp.size));
905     } else {
906         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
907                                       int128_get64(tmp.start),
908                                       int128_get64(tmp.size));
909     }
910 }
911 
flat_range_coalesced_io_del(FlatRange * fr,AddressSpace * as)912 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
913 {
914     CoalescedMemoryRange *cmr;
915 
916     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
917         flat_range_coalesced_io_notify(fr, as, cmr, false);
918     }
919 }
920 
flat_range_coalesced_io_add(FlatRange * fr,AddressSpace * as)921 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
922 {
923     MemoryRegion *mr = fr->mr;
924     CoalescedMemoryRange *cmr;
925 
926     if (QTAILQ_EMPTY(&mr->coalesced)) {
927         return;
928     }
929 
930     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
931         flat_range_coalesced_io_notify(fr, as, cmr, true);
932     }
933 }
934 
935 static void
flat_range_coalesced_io_notify_listener_add_del(FlatRange * fr,MemoryRegionSection * mrs,MemoryListener * listener,AddressSpace * as,bool add)936 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
937                                                 MemoryRegionSection *mrs,
938                                                 MemoryListener *listener,
939                                                 AddressSpace *as, bool add)
940 {
941     CoalescedMemoryRange *cmr;
942     MemoryRegion *mr = fr->mr;
943     AddrRange tmp;
944 
945     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
946         tmp = addrrange_shift(cmr->addr,
947                               int128_sub(fr->addr.start,
948                                          int128_make64(fr->offset_in_region)));
949 
950         if (!addrrange_intersects(tmp, fr->addr)) {
951             return;
952         }
953         tmp = addrrange_intersection(tmp, fr->addr);
954 
955         if (add && listener->coalesced_io_add) {
956             listener->coalesced_io_add(listener, mrs,
957                                        int128_get64(tmp.start),
958                                        int128_get64(tmp.size));
959         } else if (!add && listener->coalesced_io_del) {
960             listener->coalesced_io_del(listener, mrs,
961                                        int128_get64(tmp.start),
962                                        int128_get64(tmp.size));
963         }
964     }
965 }
966 
address_space_update_topology_pass(AddressSpace * as,const FlatView * old_view,const FlatView * new_view,bool adding)967 static void address_space_update_topology_pass(AddressSpace *as,
968                                                const FlatView *old_view,
969                                                const FlatView *new_view,
970                                                bool adding)
971 {
972     unsigned iold, inew;
973     FlatRange *frold, *frnew;
974 
975     /* Generate a symmetric difference of the old and new memory maps.
976      * Kill ranges in the old map, and instantiate ranges in the new map.
977      */
978     iold = inew = 0;
979     while (iold < old_view->nr || inew < new_view->nr) {
980         if (iold < old_view->nr) {
981             frold = &old_view->ranges[iold];
982         } else {
983             frold = NULL;
984         }
985         if (inew < new_view->nr) {
986             frnew = &new_view->ranges[inew];
987         } else {
988             frnew = NULL;
989         }
990 
991         if (frold
992             && (!frnew
993                 || int128_lt(frold->addr.start, frnew->addr.start)
994                 || (int128_eq(frold->addr.start, frnew->addr.start)
995                     && !flatrange_equal(frold, frnew)))) {
996             /* In old but not in new, or in both but attributes changed. */
997 
998             if (!adding) {
999                 flat_range_coalesced_io_del(frold, as);
1000                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1001             }
1002 
1003             ++iold;
1004         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1005             /* In both and unchanged (except logging may have changed) */
1006 
1007             if (adding) {
1008                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1009                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1010                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1011                                                   frold->dirty_log_mask,
1012                                                   frnew->dirty_log_mask);
1013                 }
1014                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1015                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1016                                                   frold->dirty_log_mask,
1017                                                   frnew->dirty_log_mask);
1018                 }
1019             }
1020 
1021             ++iold;
1022             ++inew;
1023         } else {
1024             /* In new */
1025 
1026             if (adding) {
1027                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1028                 flat_range_coalesced_io_add(frnew, as);
1029             }
1030 
1031             ++inew;
1032         }
1033     }
1034 }
1035 
flatviews_init(void)1036 static void flatviews_init(void)
1037 {
1038     static FlatView *empty_view;
1039 
1040     if (flat_views) {
1041         return;
1042     }
1043 
1044     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1045                                        (GDestroyNotify) flatview_unref);
1046     if (!empty_view) {
1047         empty_view = generate_memory_topology(NULL);
1048         /* We keep it alive forever in the global variable.  */
1049         flatview_ref(empty_view);
1050     } else {
1051         g_hash_table_replace(flat_views, NULL, empty_view);
1052         flatview_ref(empty_view);
1053     }
1054 }
1055 
flatviews_reset(void)1056 static void flatviews_reset(void)
1057 {
1058     AddressSpace *as;
1059 
1060     if (flat_views) {
1061         g_hash_table_unref(flat_views);
1062         flat_views = NULL;
1063     }
1064     flatviews_init();
1065 
1066     /* Render unique FVs */
1067     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1068         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1069 
1070         if (g_hash_table_lookup(flat_views, physmr)) {
1071             continue;
1072         }
1073 
1074         generate_memory_topology(physmr);
1075     }
1076 }
1077 
address_space_set_flatview(AddressSpace * as)1078 static void address_space_set_flatview(AddressSpace *as)
1079 {
1080     FlatView *old_view = address_space_to_flatview(as);
1081     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1082     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1083 
1084     assert(new_view);
1085 
1086     if (old_view == new_view) {
1087         return;
1088     }
1089 
1090     if (old_view) {
1091         flatview_ref(old_view);
1092     }
1093 
1094     flatview_ref(new_view);
1095 
1096     if (!QTAILQ_EMPTY(&as->listeners)) {
1097         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1098 
1099         if (!old_view2) {
1100             old_view2 = &tmpview;
1101         }
1102         address_space_update_topology_pass(as, old_view2, new_view, false);
1103         address_space_update_topology_pass(as, old_view2, new_view, true);
1104     }
1105 
1106     /* Writes are protected by the BQL.  */
1107     qatomic_rcu_set(&as->current_map, new_view);
1108     if (old_view) {
1109         flatview_unref(old_view);
1110     }
1111 
1112     /* Note that all the old MemoryRegions are still alive up to this
1113      * point.  This relieves most MemoryListeners from the need to
1114      * ref/unref the MemoryRegions they get---unless they use them
1115      * outside the iothread mutex, in which case precise reference
1116      * counting is necessary.
1117      */
1118     if (old_view) {
1119         flatview_unref(old_view);
1120     }
1121 }
1122 
address_space_update_topology(AddressSpace * as)1123 static void address_space_update_topology(AddressSpace *as)
1124 {
1125     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1126 
1127     flatviews_init();
1128     if (!g_hash_table_lookup(flat_views, physmr)) {
1129         generate_memory_topology(physmr);
1130     }
1131     address_space_set_flatview(as);
1132 }
1133 
memory_region_transaction_begin(void)1134 void memory_region_transaction_begin(void)
1135 {
1136     qemu_flush_coalesced_mmio_buffer();
1137     ++memory_region_transaction_depth;
1138 }
1139 
memory_region_transaction_commit(void)1140 void memory_region_transaction_commit(void)
1141 {
1142     AddressSpace *as;
1143 
1144     assert(memory_region_transaction_depth);
1145     assert(bql_locked());
1146 
1147     --memory_region_transaction_depth;
1148     if (!memory_region_transaction_depth) {
1149         if (memory_region_update_pending) {
1150             flatviews_reset();
1151 
1152             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1153 
1154             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1155                 address_space_set_flatview(as);
1156                 address_space_update_ioeventfds(as);
1157             }
1158             memory_region_update_pending = false;
1159             ioeventfd_update_pending = false;
1160             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1161         } else if (ioeventfd_update_pending) {
1162             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1163                 address_space_update_ioeventfds(as);
1164             }
1165             ioeventfd_update_pending = false;
1166         }
1167    }
1168 }
1169 
memory_region_destructor_none(MemoryRegion * mr)1170 static void memory_region_destructor_none(MemoryRegion *mr)
1171 {
1172 }
1173 
memory_region_destructor_ram(MemoryRegion * mr)1174 static void memory_region_destructor_ram(MemoryRegion *mr)
1175 {
1176     qemu_ram_free(mr->ram_block);
1177 }
1178 
memory_region_need_escape(char c)1179 static bool memory_region_need_escape(char c)
1180 {
1181     return c == '/' || c == '[' || c == '\\' || c == ']';
1182 }
1183 
memory_region_escape_name(const char * name)1184 static char *memory_region_escape_name(const char *name)
1185 {
1186     const char *p;
1187     char *escaped, *q;
1188     uint8_t c;
1189     size_t bytes = 0;
1190 
1191     for (p = name; *p; p++) {
1192         bytes += memory_region_need_escape(*p) ? 4 : 1;
1193     }
1194     if (bytes == p - name) {
1195        return g_memdup(name, bytes + 1);
1196     }
1197 
1198     escaped = g_malloc(bytes + 1);
1199     for (p = name, q = escaped; *p; p++) {
1200         c = *p;
1201         if (unlikely(memory_region_need_escape(c))) {
1202             *q++ = '\\';
1203             *q++ = 'x';
1204             *q++ = "0123456789abcdef"[c >> 4];
1205             c = "0123456789abcdef"[c & 15];
1206         }
1207         *q++ = c;
1208     }
1209     *q = 0;
1210     return escaped;
1211 }
1212 
memory_region_do_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1213 static void memory_region_do_init(MemoryRegion *mr,
1214                                   Object *owner,
1215                                   const char *name,
1216                                   uint64_t size)
1217 {
1218     mr->size = int128_make64(size);
1219     if (size == UINT64_MAX) {
1220         mr->size = int128_2_64();
1221     }
1222     mr->name = g_strdup(name);
1223     mr->owner = owner;
1224     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1225     mr->ram_block = NULL;
1226 
1227     if (name) {
1228         char *escaped_name = memory_region_escape_name(name);
1229         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1230 
1231         if (!owner) {
1232             owner = machine_get_container("unattached");
1233         }
1234 
1235         object_property_add_child(owner, name_array, OBJECT(mr));
1236         object_unref(OBJECT(mr));
1237         g_free(name_array);
1238         g_free(escaped_name);
1239     }
1240 }
1241 
memory_region_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1242 void memory_region_init(MemoryRegion *mr,
1243                         Object *owner,
1244                         const char *name,
1245                         uint64_t size)
1246 {
1247     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1248     memory_region_do_init(mr, owner, name, size);
1249 }
1250 
memory_region_get_container(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1251 static void memory_region_get_container(Object *obj, Visitor *v,
1252                                         const char *name, void *opaque,
1253                                         Error **errp)
1254 {
1255     MemoryRegion *mr = MEMORY_REGION(obj);
1256     char *path = (char *)"";
1257 
1258     if (mr->container) {
1259         path = object_get_canonical_path(OBJECT(mr->container));
1260     }
1261     visit_type_str(v, name, &path, errp);
1262     if (mr->container) {
1263         g_free(path);
1264     }
1265 }
1266 
memory_region_resolve_container(Object * obj,void * opaque,const char * part)1267 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1268                                                const char *part)
1269 {
1270     MemoryRegion *mr = MEMORY_REGION(obj);
1271 
1272     return OBJECT(mr->container);
1273 }
1274 
memory_region_get_priority(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1275 static void memory_region_get_priority(Object *obj, Visitor *v,
1276                                        const char *name, void *opaque,
1277                                        Error **errp)
1278 {
1279     MemoryRegion *mr = MEMORY_REGION(obj);
1280     int32_t value = mr->priority;
1281 
1282     visit_type_int32(v, name, &value, errp);
1283 }
1284 
memory_region_get_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1285 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1286                                    void *opaque, Error **errp)
1287 {
1288     MemoryRegion *mr = MEMORY_REGION(obj);
1289     uint64_t value = memory_region_size(mr);
1290 
1291     visit_type_uint64(v, name, &value, errp);
1292 }
1293 
memory_region_initfn(Object * obj)1294 static void memory_region_initfn(Object *obj)
1295 {
1296     MemoryRegion *mr = MEMORY_REGION(obj);
1297     ObjectProperty *op;
1298 
1299     mr->ops = &unassigned_mem_ops;
1300     mr->enabled = true;
1301     mr->romd_mode = true;
1302     mr->destructor = memory_region_destructor_none;
1303     QTAILQ_INIT(&mr->subregions);
1304     QTAILQ_INIT(&mr->coalesced);
1305 
1306     op = object_property_add(OBJECT(mr), "container",
1307                              "link<" TYPE_MEMORY_REGION ">",
1308                              memory_region_get_container,
1309                              NULL, /* memory_region_set_container */
1310                              NULL, NULL);
1311     op->resolve = memory_region_resolve_container;
1312 
1313     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1314                                    &mr->addr, OBJ_PROP_FLAG_READ);
1315     object_property_add(OBJECT(mr), "priority", "uint32",
1316                         memory_region_get_priority,
1317                         NULL, /* memory_region_set_priority */
1318                         NULL, NULL);
1319     object_property_add(OBJECT(mr), "size", "uint64",
1320                         memory_region_get_size,
1321                         NULL, /* memory_region_set_size, */
1322                         NULL, NULL);
1323 }
1324 
iommu_memory_region_initfn(Object * obj)1325 static void iommu_memory_region_initfn(Object *obj)
1326 {
1327     MemoryRegion *mr = MEMORY_REGION(obj);
1328 
1329     mr->is_iommu = true;
1330 }
1331 
unassigned_mem_read(void * opaque,hwaddr addr,unsigned size)1332 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1333                                     unsigned size)
1334 {
1335 #ifdef DEBUG_UNASSIGNED
1336     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1337 #endif
1338     return 0;
1339 }
1340 
unassigned_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)1341 static void unassigned_mem_write(void *opaque, hwaddr addr,
1342                                  uint64_t val, unsigned size)
1343 {
1344 #ifdef DEBUG_UNASSIGNED
1345     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1346 #endif
1347 }
1348 
unassigned_mem_accepts(void * opaque,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1349 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1350                                    unsigned size, bool is_write,
1351                                    MemTxAttrs attrs)
1352 {
1353     return false;
1354 }
1355 
1356 const MemoryRegionOps unassigned_mem_ops = {
1357     .valid.accepts = unassigned_mem_accepts,
1358     .endianness = DEVICE_NATIVE_ENDIAN,
1359 };
1360 
memory_region_ram_device_read(void * opaque,hwaddr addr,unsigned size)1361 static uint64_t memory_region_ram_device_read(void *opaque,
1362                                               hwaddr addr, unsigned size)
1363 {
1364     MemoryRegion *mr = opaque;
1365     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1366 
1367     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1368 
1369     return data;
1370 }
1371 
memory_region_ram_device_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)1372 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1373                                            uint64_t data, unsigned size)
1374 {
1375     MemoryRegion *mr = opaque;
1376 
1377     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1378 
1379     stn_he_p(mr->ram_block->host + addr, size, data);
1380 }
1381 
1382 static const MemoryRegionOps ram_device_mem_ops = {
1383     .read = memory_region_ram_device_read,
1384     .write = memory_region_ram_device_write,
1385     .endianness = HOST_BIG_ENDIAN ? DEVICE_BIG_ENDIAN : DEVICE_LITTLE_ENDIAN,
1386     .valid = {
1387         .min_access_size = 1,
1388         .max_access_size = 8,
1389         .unaligned = true,
1390     },
1391     .impl = {
1392         .min_access_size = 1,
1393         .max_access_size = 8,
1394         .unaligned = true,
1395     },
1396 };
1397 
memory_region_access_valid(MemoryRegion * mr,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1398 bool memory_region_access_valid(MemoryRegion *mr,
1399                                 hwaddr addr,
1400                                 unsigned size,
1401                                 bool is_write,
1402                                 MemTxAttrs attrs)
1403 {
1404     if (mr->ops->valid.accepts
1405         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1406         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1407                       ", size %u, region '%s', reason: rejected\n",
1408                       is_write ? "write" : "read",
1409                       addr, size, memory_region_name(mr));
1410         return false;
1411     }
1412 
1413     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1414         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1415                       ", size %u, region '%s', reason: unaligned\n",
1416                       is_write ? "write" : "read",
1417                       addr, size, memory_region_name(mr));
1418         return false;
1419     }
1420 
1421     /* Treat zero as compatibility all valid */
1422     if (!mr->ops->valid.max_access_size) {
1423         return true;
1424     }
1425 
1426     if (size > mr->ops->valid.max_access_size
1427         || size < mr->ops->valid.min_access_size) {
1428         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1429                       ", size %u, region '%s', reason: invalid size "
1430                       "(min:%u max:%u)\n",
1431                       is_write ? "write" : "read",
1432                       addr, size, memory_region_name(mr),
1433                       mr->ops->valid.min_access_size,
1434                       mr->ops->valid.max_access_size);
1435         return false;
1436     }
1437     return true;
1438 }
1439 
memory_region_dispatch_read1(MemoryRegion * mr,hwaddr addr,uint64_t * pval,unsigned size,MemTxAttrs attrs)1440 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1441                                                 hwaddr addr,
1442                                                 uint64_t *pval,
1443                                                 unsigned size,
1444                                                 MemTxAttrs attrs)
1445 {
1446     *pval = 0;
1447 
1448     if (mr->ops->read) {
1449         return access_with_adjusted_size(addr, pval, size,
1450                                          mr->ops->impl.min_access_size,
1451                                          mr->ops->impl.max_access_size,
1452                                          memory_region_read_accessor,
1453                                          mr, attrs);
1454     } else {
1455         return access_with_adjusted_size(addr, pval, size,
1456                                          mr->ops->impl.min_access_size,
1457                                          mr->ops->impl.max_access_size,
1458                                          memory_region_read_with_attrs_accessor,
1459                                          mr, attrs);
1460     }
1461 }
1462 
memory_region_dispatch_read(MemoryRegion * mr,hwaddr addr,uint64_t * pval,MemOp op,MemTxAttrs attrs)1463 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1464                                         hwaddr addr,
1465                                         uint64_t *pval,
1466                                         MemOp op,
1467                                         MemTxAttrs attrs)
1468 {
1469     unsigned size = memop_size(op);
1470     MemTxResult r;
1471 
1472     if (mr->alias) {
1473         return memory_region_dispatch_read(mr->alias,
1474                                            mr->alias_offset + addr,
1475                                            pval, op, attrs);
1476     }
1477     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1478         *pval = unassigned_mem_read(mr, addr, size);
1479         return MEMTX_DECODE_ERROR;
1480     }
1481 
1482     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1483     adjust_endianness(mr, pval, op);
1484     return r;
1485 }
1486 
1487 /* Return true if an eventfd was signalled */
memory_region_dispatch_write_eventfds(MemoryRegion * mr,hwaddr addr,uint64_t data,unsigned size,MemTxAttrs attrs)1488 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1489                                                     hwaddr addr,
1490                                                     uint64_t data,
1491                                                     unsigned size,
1492                                                     MemTxAttrs attrs)
1493 {
1494     MemoryRegionIoeventfd ioeventfd = {
1495         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1496         .data = data,
1497     };
1498     unsigned i;
1499 
1500     for (i = 0; i < mr->ioeventfd_nb; i++) {
1501         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1502         ioeventfd.e = mr->ioeventfds[i].e;
1503 
1504         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1505             event_notifier_set(ioeventfd.e);
1506             return true;
1507         }
1508     }
1509 
1510     return false;
1511 }
1512 
memory_region_dispatch_write(MemoryRegion * mr,hwaddr addr,uint64_t data,MemOp op,MemTxAttrs attrs)1513 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1514                                          hwaddr addr,
1515                                          uint64_t data,
1516                                          MemOp op,
1517                                          MemTxAttrs attrs)
1518 {
1519     unsigned size = memop_size(op);
1520 
1521     if (mr->alias) {
1522         return memory_region_dispatch_write(mr->alias,
1523                                             mr->alias_offset + addr,
1524                                             data, op, attrs);
1525     }
1526     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1527         unassigned_mem_write(mr, addr, data, size);
1528         return MEMTX_DECODE_ERROR;
1529     }
1530 
1531     adjust_endianness(mr, &data, op);
1532 
1533     /*
1534      * FIXME: it's not clear why under KVM the write would be processed
1535      * directly, instead of going through eventfd.  This probably should
1536      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1537      */
1538     if (!kvm_enabled() &&
1539         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1540         return MEMTX_OK;
1541     }
1542 
1543     if (mr->ops->write) {
1544         return access_with_adjusted_size(addr, &data, size,
1545                                          mr->ops->impl.min_access_size,
1546                                          mr->ops->impl.max_access_size,
1547                                          memory_region_write_accessor, mr,
1548                                          attrs);
1549     } else {
1550         return
1551             access_with_adjusted_size(addr, &data, size,
1552                                       mr->ops->impl.min_access_size,
1553                                       mr->ops->impl.max_access_size,
1554                                       memory_region_write_with_attrs_accessor,
1555                                       mr, attrs);
1556     }
1557 }
1558 
memory_region_init_io(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size)1559 void memory_region_init_io(MemoryRegion *mr,
1560                            Object *owner,
1561                            const MemoryRegionOps *ops,
1562                            void *opaque,
1563                            const char *name,
1564                            uint64_t size)
1565 {
1566     memory_region_init(mr, owner, name, size);
1567     mr->ops = ops ? ops : &unassigned_mem_ops;
1568     mr->opaque = opaque;
1569     mr->terminates = true;
1570 }
1571 
memory_region_init_ram_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1572 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1573                                       Object *owner,
1574                                       const char *name,
1575                                       uint64_t size,
1576                                       Error **errp)
1577 {
1578     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1579                                                   size, 0, errp);
1580 }
1581 
memory_region_init_ram_flags_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,Error ** errp)1582 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1583                                             Object *owner,
1584                                             const char *name,
1585                                             uint64_t size,
1586                                             uint32_t ram_flags,
1587                                             Error **errp)
1588 {
1589     Error *err = NULL;
1590     memory_region_init(mr, owner, name, size);
1591     mr->ram = true;
1592     mr->terminates = true;
1593     mr->destructor = memory_region_destructor_ram;
1594     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1595     if (err) {
1596         mr->size = int128_zero();
1597         object_unparent(OBJECT(mr));
1598         error_propagate(errp, err);
1599         return false;
1600     }
1601     return true;
1602 }
1603 
memory_region_init_resizeable_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t max_size,void (* resized)(const char *,uint64_t length,void * host),Error ** errp)1604 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1605                                        Object *owner,
1606                                        const char *name,
1607                                        uint64_t size,
1608                                        uint64_t max_size,
1609                                        void (*resized)(const char*,
1610                                                        uint64_t length,
1611                                                        void *host),
1612                                        Error **errp)
1613 {
1614     Error *err = NULL;
1615     memory_region_init(mr, owner, name, size);
1616     mr->ram = true;
1617     mr->terminates = true;
1618     mr->destructor = memory_region_destructor_ram;
1619     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1620                                               mr, &err);
1621     if (err) {
1622         mr->size = int128_zero();
1623         object_unparent(OBJECT(mr));
1624         error_propagate(errp, err);
1625         return false;
1626     }
1627     return true;
1628 }
1629 
1630 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
memory_region_init_ram_from_file(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t align,uint32_t ram_flags,const char * path,ram_addr_t offset,Error ** errp)1631 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1632                                       Object *owner,
1633                                       const char *name,
1634                                       uint64_t size,
1635                                       uint64_t align,
1636                                       uint32_t ram_flags,
1637                                       const char *path,
1638                                       ram_addr_t offset,
1639                                       Error **errp)
1640 {
1641     Error *err = NULL;
1642     memory_region_init(mr, owner, name, size);
1643     mr->ram = true;
1644     mr->readonly = !!(ram_flags & RAM_READONLY);
1645     mr->terminates = true;
1646     mr->destructor = memory_region_destructor_ram;
1647     mr->align = align;
1648     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1649                                              offset, &err);
1650     if (err) {
1651         mr->size = int128_zero();
1652         object_unparent(OBJECT(mr));
1653         error_propagate(errp, err);
1654         return false;
1655     }
1656     return true;
1657 }
1658 
memory_region_init_ram_from_fd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,int fd,ram_addr_t offset,Error ** errp)1659 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1660                                     Object *owner,
1661                                     const char *name,
1662                                     uint64_t size,
1663                                     uint32_t ram_flags,
1664                                     int fd,
1665                                     ram_addr_t offset,
1666                                     Error **errp)
1667 {
1668     Error *err = NULL;
1669     memory_region_init(mr, owner, name, size);
1670     mr->ram = true;
1671     mr->readonly = !!(ram_flags & RAM_READONLY);
1672     mr->terminates = true;
1673     mr->destructor = memory_region_destructor_ram;
1674     mr->ram_block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd,
1675                                            offset, false, &err);
1676     if (err) {
1677         mr->size = int128_zero();
1678         object_unparent(OBJECT(mr));
1679         error_propagate(errp, err);
1680         return false;
1681     }
1682     return true;
1683 }
1684 #endif
1685 
memory_region_init_ram_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1686 void memory_region_init_ram_ptr(MemoryRegion *mr,
1687                                 Object *owner,
1688                                 const char *name,
1689                                 uint64_t size,
1690                                 void *ptr)
1691 {
1692     memory_region_init(mr, owner, name, size);
1693     mr->ram = true;
1694     mr->terminates = true;
1695     mr->destructor = memory_region_destructor_ram;
1696 
1697     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1698     assert(ptr != NULL);
1699     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1700 }
1701 
memory_region_init_ram_device_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1702 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1703                                        Object *owner,
1704                                        const char *name,
1705                                        uint64_t size,
1706                                        void *ptr)
1707 {
1708     memory_region_init(mr, owner, name, size);
1709     mr->ram = true;
1710     mr->terminates = true;
1711     mr->ram_device = true;
1712     mr->ops = &ram_device_mem_ops;
1713     mr->opaque = mr;
1714     mr->destructor = memory_region_destructor_ram;
1715 
1716     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1717     assert(ptr != NULL);
1718     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1719 }
1720 
memory_region_init_alias(MemoryRegion * mr,Object * owner,const char * name,MemoryRegion * orig,hwaddr offset,uint64_t size)1721 void memory_region_init_alias(MemoryRegion *mr,
1722                               Object *owner,
1723                               const char *name,
1724                               MemoryRegion *orig,
1725                               hwaddr offset,
1726                               uint64_t size)
1727 {
1728     memory_region_init(mr, owner, name, size);
1729     mr->alias = orig;
1730     mr->alias_offset = offset;
1731 }
1732 
memory_region_init_rom_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1733 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1734                                       Object *owner,
1735                                       const char *name,
1736                                       uint64_t size,
1737                                       Error **errp)
1738 {
1739     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1740                                                 size, 0, errp)) {
1741          return false;
1742     }
1743     mr->readonly = true;
1744 
1745     return true;
1746 }
1747 
memory_region_init_rom_device_nomigrate(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)1748 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1749                                              Object *owner,
1750                                              const MemoryRegionOps *ops,
1751                                              void *opaque,
1752                                              const char *name,
1753                                              uint64_t size,
1754                                              Error **errp)
1755 {
1756     Error *err = NULL;
1757     assert(ops);
1758     memory_region_init(mr, owner, name, size);
1759     mr->ops = ops;
1760     mr->opaque = opaque;
1761     mr->terminates = true;
1762     mr->rom_device = true;
1763     mr->destructor = memory_region_destructor_ram;
1764     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1765     if (err) {
1766         mr->size = int128_zero();
1767         object_unparent(OBJECT(mr));
1768         error_propagate(errp, err);
1769         return false;
1770     }
1771     return true;
1772 }
1773 
memory_region_init_iommu(void * _iommu_mr,size_t instance_size,const char * mrtypename,Object * owner,const char * name,uint64_t size)1774 void memory_region_init_iommu(void *_iommu_mr,
1775                               size_t instance_size,
1776                               const char *mrtypename,
1777                               Object *owner,
1778                               const char *name,
1779                               uint64_t size)
1780 {
1781     struct IOMMUMemoryRegion *iommu_mr;
1782     struct MemoryRegion *mr;
1783 
1784     object_initialize(_iommu_mr, instance_size, mrtypename);
1785     mr = MEMORY_REGION(_iommu_mr);
1786     memory_region_do_init(mr, owner, name, size);
1787     iommu_mr = IOMMU_MEMORY_REGION(mr);
1788     mr->terminates = true;  /* then re-forwards */
1789     QLIST_INIT(&iommu_mr->iommu_notify);
1790     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1791 }
1792 
memory_region_finalize(Object * obj)1793 static void memory_region_finalize(Object *obj)
1794 {
1795     MemoryRegion *mr = MEMORY_REGION(obj);
1796 
1797     assert(!mr->container);
1798 
1799     /* We know the region is not visible in any address space (it
1800      * does not have a container and cannot be a root either because
1801      * it has no references, so we can blindly clear mr->enabled.
1802      * memory_region_set_enabled instead could trigger a transaction
1803      * and cause an infinite loop.
1804      */
1805     mr->enabled = false;
1806     memory_region_transaction_begin();
1807     while (!QTAILQ_EMPTY(&mr->subregions)) {
1808         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1809         memory_region_del_subregion(mr, subregion);
1810     }
1811     memory_region_transaction_commit();
1812 
1813     mr->destructor(mr);
1814     memory_region_clear_coalescing(mr);
1815     g_free((char *)mr->name);
1816     g_free(mr->ioeventfds);
1817 }
1818 
memory_region_owner(MemoryRegion * mr)1819 Object *memory_region_owner(MemoryRegion *mr)
1820 {
1821     Object *obj = OBJECT(mr);
1822     return obj->parent;
1823 }
1824 
memory_region_ref(MemoryRegion * mr)1825 void memory_region_ref(MemoryRegion *mr)
1826 {
1827     /* MMIO callbacks most likely will access data that belongs
1828      * to the owner, hence the need to ref/unref the owner whenever
1829      * the memory region is in use.
1830      *
1831      * The memory region is a child of its owner.  As long as the
1832      * owner doesn't call unparent itself on the memory region,
1833      * ref-ing the owner will also keep the memory region alive.
1834      * Memory regions without an owner are supposed to never go away;
1835      * we do not ref/unref them because it slows down DMA sensibly.
1836      */
1837     if (mr && mr->owner) {
1838         object_ref(mr->owner);
1839     }
1840 }
1841 
memory_region_unref(MemoryRegion * mr)1842 void memory_region_unref(MemoryRegion *mr)
1843 {
1844     if (mr && mr->owner) {
1845         object_unref(mr->owner);
1846     }
1847 }
1848 
memory_region_size(MemoryRegion * mr)1849 uint64_t memory_region_size(MemoryRegion *mr)
1850 {
1851     if (int128_eq(mr->size, int128_2_64())) {
1852         return UINT64_MAX;
1853     }
1854     return int128_get64(mr->size);
1855 }
1856 
memory_region_name(const MemoryRegion * mr)1857 const char *memory_region_name(const MemoryRegion *mr)
1858 {
1859     if (!mr->name) {
1860         ((MemoryRegion *)mr)->name =
1861             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1862     }
1863     return mr->name;
1864 }
1865 
memory_region_is_ram_device(MemoryRegion * mr)1866 bool memory_region_is_ram_device(MemoryRegion *mr)
1867 {
1868     return mr->ram_device;
1869 }
1870 
memory_region_is_protected(MemoryRegion * mr)1871 bool memory_region_is_protected(MemoryRegion *mr)
1872 {
1873     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1874 }
1875 
memory_region_has_guest_memfd(MemoryRegion * mr)1876 bool memory_region_has_guest_memfd(MemoryRegion *mr)
1877 {
1878     return mr->ram_block && mr->ram_block->guest_memfd >= 0;
1879 }
1880 
memory_region_get_dirty_log_mask(MemoryRegion * mr)1881 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1882 {
1883     uint8_t mask = mr->dirty_log_mask;
1884     RAMBlock *rb = mr->ram_block;
1885 
1886     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1887                              memory_region_is_iommu(mr))) {
1888         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1889     }
1890 
1891     if (tcg_enabled() && rb) {
1892         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1893         mask |= (1 << DIRTY_MEMORY_CODE);
1894     }
1895     return mask;
1896 }
1897 
memory_region_is_logging(MemoryRegion * mr,uint8_t client)1898 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1899 {
1900     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1901 }
1902 
memory_region_update_iommu_notify_flags(IOMMUMemoryRegion * iommu_mr,Error ** errp)1903 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1904                                                    Error **errp)
1905 {
1906     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1907     IOMMUNotifier *iommu_notifier;
1908     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1909     int ret = 0;
1910 
1911     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1912         flags |= iommu_notifier->notifier_flags;
1913     }
1914 
1915     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1916         ret = imrc->notify_flag_changed(iommu_mr,
1917                                         iommu_mr->iommu_notify_flags,
1918                                         flags, errp);
1919     }
1920 
1921     if (!ret) {
1922         iommu_mr->iommu_notify_flags = flags;
1923     }
1924     return ret;
1925 }
1926 
memory_region_register_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n,Error ** errp)1927 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1928                                           IOMMUNotifier *n, Error **errp)
1929 {
1930     IOMMUMemoryRegion *iommu_mr;
1931     int ret;
1932 
1933     if (mr->alias) {
1934         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1935     }
1936 
1937     /* We need to register for at least one bitfield */
1938     iommu_mr = IOMMU_MEMORY_REGION(mr);
1939     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1940     assert(n->start <= n->end);
1941     assert(n->iommu_idx >= 0 &&
1942            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1943 
1944     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1945     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1946     if (ret) {
1947         QLIST_REMOVE(n, node);
1948     }
1949     return ret;
1950 }
1951 
memory_region_iommu_get_min_page_size(IOMMUMemoryRegion * iommu_mr)1952 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1953 {
1954     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1955 
1956     if (imrc->get_min_page_size) {
1957         return imrc->get_min_page_size(iommu_mr);
1958     }
1959     return TARGET_PAGE_SIZE;
1960 }
1961 
memory_region_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)1962 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1963 {
1964     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1965     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1966     hwaddr addr, granularity;
1967     IOMMUTLBEntry iotlb;
1968 
1969     /* If the IOMMU has its own replay callback, override */
1970     if (imrc->replay) {
1971         imrc->replay(iommu_mr, n);
1972         return;
1973     }
1974 
1975     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1976 
1977     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1978         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1979         if (iotlb.perm != IOMMU_NONE) {
1980             n->notify(n, &iotlb);
1981         }
1982 
1983         /* if (2^64 - MR size) < granularity, it's possible to get an
1984          * infinite loop here.  This should catch such a wraparound */
1985         if ((addr + granularity) < addr) {
1986             break;
1987         }
1988     }
1989 }
1990 
memory_region_unregister_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n)1991 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1992                                              IOMMUNotifier *n)
1993 {
1994     IOMMUMemoryRegion *iommu_mr;
1995 
1996     if (mr->alias) {
1997         memory_region_unregister_iommu_notifier(mr->alias, n);
1998         return;
1999     }
2000     QLIST_REMOVE(n, node);
2001     iommu_mr = IOMMU_MEMORY_REGION(mr);
2002     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2003 }
2004 
memory_region_notify_iommu_one(IOMMUNotifier * notifier,const IOMMUTLBEvent * event)2005 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2006                                     const IOMMUTLBEvent *event)
2007 {
2008     const IOMMUTLBEntry *entry = &event->entry;
2009     hwaddr entry_end = entry->iova + entry->addr_mask;
2010     IOMMUTLBEntry tmp = *entry;
2011 
2012     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2013         assert(entry->perm == IOMMU_NONE);
2014     }
2015 
2016     /*
2017      * Skip the notification if the notification does not overlap
2018      * with registered range.
2019      */
2020     if (notifier->start > entry_end || notifier->end < entry->iova) {
2021         return;
2022     }
2023 
2024     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2025         /* Crop (iova, addr_mask) to range */
2026         tmp.iova = MAX(tmp.iova, notifier->start);
2027         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2028     } else {
2029         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2030     }
2031 
2032     if (event->type & notifier->notifier_flags) {
2033         notifier->notify(notifier, &tmp);
2034     }
2035 }
2036 
memory_region_unmap_iommu_notifier_range(IOMMUNotifier * notifier)2037 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2038 {
2039     IOMMUTLBEvent event;
2040 
2041     event.type = IOMMU_NOTIFIER_UNMAP;
2042     event.entry.target_as = &address_space_memory;
2043     event.entry.iova = notifier->start;
2044     event.entry.perm = IOMMU_NONE;
2045     event.entry.addr_mask = notifier->end - notifier->start;
2046 
2047     memory_region_notify_iommu_one(notifier, &event);
2048 }
2049 
memory_region_notify_iommu(IOMMUMemoryRegion * iommu_mr,int iommu_idx,const IOMMUTLBEvent event)2050 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2051                                 int iommu_idx,
2052                                 const IOMMUTLBEvent event)
2053 {
2054     IOMMUNotifier *iommu_notifier;
2055 
2056     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2057 
2058     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2059         if (iommu_notifier->iommu_idx == iommu_idx) {
2060             memory_region_notify_iommu_one(iommu_notifier, &event);
2061         }
2062     }
2063 }
2064 
memory_region_iommu_get_attr(IOMMUMemoryRegion * iommu_mr,enum IOMMUMemoryRegionAttr attr,void * data)2065 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2066                                  enum IOMMUMemoryRegionAttr attr,
2067                                  void *data)
2068 {
2069     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2070 
2071     if (!imrc->get_attr) {
2072         return -EINVAL;
2073     }
2074 
2075     return imrc->get_attr(iommu_mr, attr, data);
2076 }
2077 
memory_region_iommu_attrs_to_index(IOMMUMemoryRegion * iommu_mr,MemTxAttrs attrs)2078 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2079                                        MemTxAttrs attrs)
2080 {
2081     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2082 
2083     if (!imrc->attrs_to_index) {
2084         return 0;
2085     }
2086 
2087     return imrc->attrs_to_index(iommu_mr, attrs);
2088 }
2089 
memory_region_iommu_num_indexes(IOMMUMemoryRegion * iommu_mr)2090 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2091 {
2092     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2093 
2094     if (!imrc->num_indexes) {
2095         return 1;
2096     }
2097 
2098     return imrc->num_indexes(iommu_mr);
2099 }
2100 
memory_region_get_ram_discard_manager(MemoryRegion * mr)2101 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2102 {
2103     if (!memory_region_is_ram(mr)) {
2104         return NULL;
2105     }
2106     return mr->rdm;
2107 }
2108 
memory_region_set_ram_discard_manager(MemoryRegion * mr,RamDiscardManager * rdm)2109 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2110                                           RamDiscardManager *rdm)
2111 {
2112     g_assert(memory_region_is_ram(mr));
2113     if (mr->rdm && rdm) {
2114         return -EBUSY;
2115     }
2116 
2117     mr->rdm = rdm;
2118     return 0;
2119 }
2120 
ram_discard_manager_get_min_granularity(const RamDiscardManager * rdm,const MemoryRegion * mr)2121 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2122                                                  const MemoryRegion *mr)
2123 {
2124     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2125 
2126     g_assert(rdmc->get_min_granularity);
2127     return rdmc->get_min_granularity(rdm, mr);
2128 }
2129 
ram_discard_manager_is_populated(const RamDiscardManager * rdm,const MemoryRegionSection * section)2130 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2131                                       const MemoryRegionSection *section)
2132 {
2133     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2134 
2135     g_assert(rdmc->is_populated);
2136     return rdmc->is_populated(rdm, section);
2137 }
2138 
ram_discard_manager_replay_populated(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamDiscardState replay_fn,void * opaque)2139 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2140                                          MemoryRegionSection *section,
2141                                          ReplayRamDiscardState replay_fn,
2142                                          void *opaque)
2143 {
2144     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2145 
2146     g_assert(rdmc->replay_populated);
2147     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2148 }
2149 
ram_discard_manager_replay_discarded(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamDiscardState replay_fn,void * opaque)2150 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2151                                          MemoryRegionSection *section,
2152                                          ReplayRamDiscardState replay_fn,
2153                                          void *opaque)
2154 {
2155     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2156 
2157     g_assert(rdmc->replay_discarded);
2158     return rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2159 }
2160 
ram_discard_manager_register_listener(RamDiscardManager * rdm,RamDiscardListener * rdl,MemoryRegionSection * section)2161 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2162                                            RamDiscardListener *rdl,
2163                                            MemoryRegionSection *section)
2164 {
2165     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2166 
2167     g_assert(rdmc->register_listener);
2168     rdmc->register_listener(rdm, rdl, section);
2169 }
2170 
ram_discard_manager_unregister_listener(RamDiscardManager * rdm,RamDiscardListener * rdl)2171 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2172                                              RamDiscardListener *rdl)
2173 {
2174     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2175 
2176     g_assert(rdmc->unregister_listener);
2177     rdmc->unregister_listener(rdm, rdl);
2178 }
2179 
2180 /* Called with rcu_read_lock held.  */
memory_translate_iotlb(IOMMUTLBEntry * iotlb,hwaddr * xlat_p,Error ** errp)2181 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
2182                                      Error **errp)
2183 {
2184     MemoryRegion *mr;
2185     hwaddr xlat;
2186     hwaddr len = iotlb->addr_mask + 1;
2187     bool writable = iotlb->perm & IOMMU_WO;
2188 
2189     /*
2190      * The IOMMU TLB entry we have just covers translation through
2191      * this IOMMU to its immediate target.  We need to translate
2192      * it the rest of the way through to memory.
2193      */
2194     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2195                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2196     if (!memory_region_is_ram(mr)) {
2197         error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2198         return NULL;
2199     } else if (memory_region_has_ram_discard_manager(mr)) {
2200         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2201         MemoryRegionSection tmp = {
2202             .mr = mr,
2203             .offset_within_region = xlat,
2204             .size = int128_make64(len),
2205         };
2206         /*
2207          * Malicious VMs can map memory into the IOMMU, which is expected
2208          * to remain discarded. vfio will pin all pages, populating memory.
2209          * Disallow that. vmstate priorities make sure any RamDiscardManager
2210          * were already restored before IOMMUs are restored.
2211          */
2212         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2213             error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2214                          " via virtio-mem): %" HWADDR_PRIx "",
2215                          iotlb->translated_addr);
2216             return NULL;
2217         }
2218     }
2219 
2220     /*
2221      * Translation truncates length to the IOMMU page size,
2222      * check that it did not truncate too much.
2223      */
2224     if (len & iotlb->addr_mask) {
2225         error_setg(errp, "iommu has granularity incompatible with target AS");
2226         return NULL;
2227     }
2228 
2229     *xlat_p = xlat;
2230     return mr;
2231 }
2232 
memory_region_set_log(MemoryRegion * mr,bool log,unsigned client)2233 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2234 {
2235     uint8_t mask = 1 << client;
2236     uint8_t old_logging;
2237 
2238     assert(client == DIRTY_MEMORY_VGA);
2239     old_logging = mr->vga_logging_count;
2240     mr->vga_logging_count += log ? 1 : -1;
2241     if (!!old_logging == !!mr->vga_logging_count) {
2242         return;
2243     }
2244 
2245     memory_region_transaction_begin();
2246     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2247     memory_region_update_pending |= mr->enabled;
2248     memory_region_transaction_commit();
2249 }
2250 
memory_region_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size)2251 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2252                              hwaddr size)
2253 {
2254     assert(mr->ram_block);
2255     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2256                                         size,
2257                                         memory_region_get_dirty_log_mask(mr));
2258 }
2259 
2260 /*
2261  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2262  * dirty bitmap for the specified memory region.
2263  */
memory_region_sync_dirty_bitmap(MemoryRegion * mr,bool last_stage)2264 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2265 {
2266     MemoryListener *listener;
2267     AddressSpace *as;
2268     FlatView *view;
2269     FlatRange *fr;
2270 
2271     /* If the same address space has multiple log_sync listeners, we
2272      * visit that address space's FlatView multiple times.  But because
2273      * log_sync listeners are rare, it's still cheaper than walking each
2274      * address space once.
2275      */
2276     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2277         if (listener->log_sync) {
2278             as = listener->address_space;
2279             view = address_space_get_flatview(as);
2280             FOR_EACH_FLAT_RANGE(fr, view) {
2281                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2282                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2283                     listener->log_sync(listener, &mrs);
2284                 }
2285             }
2286             flatview_unref(view);
2287             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2288         } else if (listener->log_sync_global) {
2289             /*
2290              * No matter whether MR is specified, what we can do here
2291              * is to do a global sync, because we are not capable to
2292              * sync in a finer granularity.
2293              */
2294             listener->log_sync_global(listener, last_stage);
2295             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2296         }
2297     }
2298 }
2299 
memory_region_clear_dirty_bitmap(MemoryRegion * mr,hwaddr start,hwaddr len)2300 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2301                                       hwaddr len)
2302 {
2303     MemoryRegionSection mrs;
2304     MemoryListener *listener;
2305     AddressSpace *as;
2306     FlatView *view;
2307     FlatRange *fr;
2308     hwaddr sec_start, sec_end, sec_size;
2309 
2310     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2311         if (!listener->log_clear) {
2312             continue;
2313         }
2314         as = listener->address_space;
2315         view = address_space_get_flatview(as);
2316         FOR_EACH_FLAT_RANGE(fr, view) {
2317             if (!fr->dirty_log_mask || fr->mr != mr) {
2318                 /*
2319                  * Clear dirty bitmap operation only applies to those
2320                  * regions whose dirty logging is at least enabled
2321                  */
2322                 continue;
2323             }
2324 
2325             mrs = section_from_flat_range(fr, view);
2326 
2327             sec_start = MAX(mrs.offset_within_region, start);
2328             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2329             sec_end = MIN(sec_end, start + len);
2330 
2331             if (sec_start >= sec_end) {
2332                 /*
2333                  * If this memory region section has no intersection
2334                  * with the requested range, skip.
2335                  */
2336                 continue;
2337             }
2338 
2339             /* Valid case; shrink the section if needed */
2340             mrs.offset_within_address_space +=
2341                 sec_start - mrs.offset_within_region;
2342             mrs.offset_within_region = sec_start;
2343             sec_size = sec_end - sec_start;
2344             mrs.size = int128_make64(sec_size);
2345             listener->log_clear(listener, &mrs);
2346         }
2347         flatview_unref(view);
2348     }
2349 }
2350 
memory_region_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2351 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2352                                                             hwaddr addr,
2353                                                             hwaddr size,
2354                                                             unsigned client)
2355 {
2356     DirtyBitmapSnapshot *snapshot;
2357     assert(mr->ram_block);
2358     memory_region_sync_dirty_bitmap(mr, false);
2359     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2360     memory_global_after_dirty_log_sync();
2361     return snapshot;
2362 }
2363 
memory_region_snapshot_get_dirty(MemoryRegion * mr,DirtyBitmapSnapshot * snap,hwaddr addr,hwaddr size)2364 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2365                                       hwaddr addr, hwaddr size)
2366 {
2367     assert(mr->ram_block);
2368     return cpu_physical_memory_snapshot_get_dirty(snap,
2369                 memory_region_get_ram_addr(mr) + addr, size);
2370 }
2371 
memory_region_set_readonly(MemoryRegion * mr,bool readonly)2372 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2373 {
2374     if (mr->readonly != readonly) {
2375         memory_region_transaction_begin();
2376         mr->readonly = readonly;
2377         memory_region_update_pending |= mr->enabled;
2378         memory_region_transaction_commit();
2379     }
2380 }
2381 
memory_region_set_nonvolatile(MemoryRegion * mr,bool nonvolatile)2382 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2383 {
2384     if (mr->nonvolatile != nonvolatile) {
2385         memory_region_transaction_begin();
2386         mr->nonvolatile = nonvolatile;
2387         memory_region_update_pending |= mr->enabled;
2388         memory_region_transaction_commit();
2389     }
2390 }
2391 
memory_region_rom_device_set_romd(MemoryRegion * mr,bool romd_mode)2392 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2393 {
2394     if (mr->romd_mode != romd_mode) {
2395         memory_region_transaction_begin();
2396         mr->romd_mode = romd_mode;
2397         memory_region_update_pending |= mr->enabled;
2398         memory_region_transaction_commit();
2399     }
2400 }
2401 
memory_region_reset_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2402 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2403                                hwaddr size, unsigned client)
2404 {
2405     assert(mr->ram_block);
2406     cpu_physical_memory_test_and_clear_dirty(
2407         memory_region_get_ram_addr(mr) + addr, size, client);
2408 }
2409 
memory_region_get_fd(MemoryRegion * mr)2410 int memory_region_get_fd(MemoryRegion *mr)
2411 {
2412     RCU_READ_LOCK_GUARD();
2413     while (mr->alias) {
2414         mr = mr->alias;
2415     }
2416     return mr->ram_block->fd;
2417 }
2418 
memory_region_get_ram_ptr(MemoryRegion * mr)2419 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2420 {
2421     uint64_t offset = 0;
2422 
2423     RCU_READ_LOCK_GUARD();
2424     while (mr->alias) {
2425         offset += mr->alias_offset;
2426         mr = mr->alias;
2427     }
2428     assert(mr->ram_block);
2429     return qemu_map_ram_ptr(mr->ram_block, offset);
2430 }
2431 
memory_region_from_host(void * ptr,ram_addr_t * offset)2432 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2433 {
2434     RAMBlock *block;
2435 
2436     block = qemu_ram_block_from_host(ptr, false, offset);
2437     if (!block) {
2438         return NULL;
2439     }
2440 
2441     return block->mr;
2442 }
2443 
memory_region_get_ram_addr(MemoryRegion * mr)2444 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2445 {
2446     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2447 }
2448 
memory_region_ram_resize(MemoryRegion * mr,ram_addr_t newsize,Error ** errp)2449 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2450 {
2451     assert(mr->ram_block);
2452 
2453     qemu_ram_resize(mr->ram_block, newsize, errp);
2454 }
2455 
memory_region_msync(MemoryRegion * mr,hwaddr addr,hwaddr size)2456 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2457 {
2458     if (mr->ram_block) {
2459         qemu_ram_msync(mr->ram_block, addr, size);
2460     }
2461 }
2462 
memory_region_writeback(MemoryRegion * mr,hwaddr addr,hwaddr size)2463 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2464 {
2465     /*
2466      * Might be extended case needed to cover
2467      * different types of memory regions
2468      */
2469     if (mr->dirty_log_mask) {
2470         memory_region_msync(mr, addr, size);
2471     }
2472 }
2473 
2474 /*
2475  * Call proper memory listeners about the change on the newly
2476  * added/removed CoalescedMemoryRange.
2477  */
memory_region_update_coalesced_range(MemoryRegion * mr,CoalescedMemoryRange * cmr,bool add)2478 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2479                                                  CoalescedMemoryRange *cmr,
2480                                                  bool add)
2481 {
2482     AddressSpace *as;
2483     FlatView *view;
2484     FlatRange *fr;
2485 
2486     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2487         view = address_space_get_flatview(as);
2488         FOR_EACH_FLAT_RANGE(fr, view) {
2489             if (fr->mr == mr) {
2490                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2491             }
2492         }
2493         flatview_unref(view);
2494     }
2495 }
2496 
memory_region_set_coalescing(MemoryRegion * mr)2497 void memory_region_set_coalescing(MemoryRegion *mr)
2498 {
2499     memory_region_clear_coalescing(mr);
2500     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2501 }
2502 
memory_region_add_coalescing(MemoryRegion * mr,hwaddr offset,uint64_t size)2503 void memory_region_add_coalescing(MemoryRegion *mr,
2504                                   hwaddr offset,
2505                                   uint64_t size)
2506 {
2507     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2508 
2509     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2510     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2511     memory_region_update_coalesced_range(mr, cmr, true);
2512     memory_region_set_flush_coalesced(mr);
2513 }
2514 
memory_region_clear_coalescing(MemoryRegion * mr)2515 void memory_region_clear_coalescing(MemoryRegion *mr)
2516 {
2517     CoalescedMemoryRange *cmr;
2518 
2519     if (QTAILQ_EMPTY(&mr->coalesced)) {
2520         return;
2521     }
2522 
2523     qemu_flush_coalesced_mmio_buffer();
2524     mr->flush_coalesced_mmio = false;
2525 
2526     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2527         cmr = QTAILQ_FIRST(&mr->coalesced);
2528         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2529         memory_region_update_coalesced_range(mr, cmr, false);
2530         g_free(cmr);
2531     }
2532 }
2533 
memory_region_set_flush_coalesced(MemoryRegion * mr)2534 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2535 {
2536     mr->flush_coalesced_mmio = true;
2537 }
2538 
memory_region_clear_flush_coalesced(MemoryRegion * mr)2539 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2540 {
2541     qemu_flush_coalesced_mmio_buffer();
2542     if (QTAILQ_EMPTY(&mr->coalesced)) {
2543         mr->flush_coalesced_mmio = false;
2544     }
2545 }
2546 
memory_region_add_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2547 void memory_region_add_eventfd(MemoryRegion *mr,
2548                                hwaddr addr,
2549                                unsigned size,
2550                                bool match_data,
2551                                uint64_t data,
2552                                EventNotifier *e)
2553 {
2554     MemoryRegionIoeventfd mrfd = {
2555         .addr.start = int128_make64(addr),
2556         .addr.size = int128_make64(size),
2557         .match_data = match_data,
2558         .data = data,
2559         .e = e,
2560     };
2561     unsigned i;
2562 
2563     if (size) {
2564         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2565         adjust_endianness(mr, &mrfd.data, mop);
2566     }
2567     memory_region_transaction_begin();
2568     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2569         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2570             break;
2571         }
2572     }
2573     ++mr->ioeventfd_nb;
2574     mr->ioeventfds = g_realloc(mr->ioeventfds,
2575                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2576     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2577             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2578     mr->ioeventfds[i] = mrfd;
2579     ioeventfd_update_pending |= mr->enabled;
2580     memory_region_transaction_commit();
2581 }
2582 
memory_region_del_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2583 void memory_region_del_eventfd(MemoryRegion *mr,
2584                                hwaddr addr,
2585                                unsigned size,
2586                                bool match_data,
2587                                uint64_t data,
2588                                EventNotifier *e)
2589 {
2590     MemoryRegionIoeventfd mrfd = {
2591         .addr.start = int128_make64(addr),
2592         .addr.size = int128_make64(size),
2593         .match_data = match_data,
2594         .data = data,
2595         .e = e,
2596     };
2597     unsigned i;
2598 
2599     if (size) {
2600         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2601         adjust_endianness(mr, &mrfd.data, mop);
2602     }
2603     memory_region_transaction_begin();
2604     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2605         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2606             break;
2607         }
2608     }
2609     assert(i != mr->ioeventfd_nb);
2610     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2611             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2612     --mr->ioeventfd_nb;
2613     mr->ioeventfds = g_realloc(mr->ioeventfds,
2614                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2615     ioeventfd_update_pending |= mr->enabled;
2616     memory_region_transaction_commit();
2617 }
2618 
memory_region_update_container_subregions(MemoryRegion * subregion)2619 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2620 {
2621     MemoryRegion *mr = subregion->container;
2622     MemoryRegion *other;
2623 
2624     memory_region_transaction_begin();
2625 
2626     memory_region_ref(subregion);
2627     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2628         if (subregion->priority >= other->priority) {
2629             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2630             goto done;
2631         }
2632     }
2633     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2634 done:
2635     memory_region_update_pending |= mr->enabled && subregion->enabled;
2636     memory_region_transaction_commit();
2637 }
2638 
memory_region_add_subregion_common(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2639 static void memory_region_add_subregion_common(MemoryRegion *mr,
2640                                                hwaddr offset,
2641                                                MemoryRegion *subregion)
2642 {
2643     MemoryRegion *alias;
2644 
2645     assert(!subregion->container);
2646     subregion->container = mr;
2647     for (alias = subregion->alias; alias; alias = alias->alias) {
2648         alias->mapped_via_alias++;
2649     }
2650     subregion->addr = offset;
2651     memory_region_update_container_subregions(subregion);
2652 }
2653 
memory_region_add_subregion(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2654 void memory_region_add_subregion(MemoryRegion *mr,
2655                                  hwaddr offset,
2656                                  MemoryRegion *subregion)
2657 {
2658     subregion->priority = 0;
2659     memory_region_add_subregion_common(mr, offset, subregion);
2660 }
2661 
memory_region_add_subregion_overlap(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion,int priority)2662 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2663                                          hwaddr offset,
2664                                          MemoryRegion *subregion,
2665                                          int priority)
2666 {
2667     subregion->priority = priority;
2668     memory_region_add_subregion_common(mr, offset, subregion);
2669 }
2670 
memory_region_del_subregion(MemoryRegion * mr,MemoryRegion * subregion)2671 void memory_region_del_subregion(MemoryRegion *mr,
2672                                  MemoryRegion *subregion)
2673 {
2674     MemoryRegion *alias;
2675 
2676     memory_region_transaction_begin();
2677     assert(subregion->container == mr);
2678     subregion->container = NULL;
2679     for (alias = subregion->alias; alias; alias = alias->alias) {
2680         alias->mapped_via_alias--;
2681         assert(alias->mapped_via_alias >= 0);
2682     }
2683     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2684     memory_region_unref(subregion);
2685     memory_region_update_pending |= mr->enabled && subregion->enabled;
2686     memory_region_transaction_commit();
2687 }
2688 
memory_region_set_enabled(MemoryRegion * mr,bool enabled)2689 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2690 {
2691     if (enabled == mr->enabled) {
2692         return;
2693     }
2694     memory_region_transaction_begin();
2695     mr->enabled = enabled;
2696     memory_region_update_pending = true;
2697     memory_region_transaction_commit();
2698 }
2699 
memory_region_set_size(MemoryRegion * mr,uint64_t size)2700 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2701 {
2702     Int128 s = int128_make64(size);
2703 
2704     if (size == UINT64_MAX) {
2705         s = int128_2_64();
2706     }
2707     if (int128_eq(s, mr->size)) {
2708         return;
2709     }
2710     memory_region_transaction_begin();
2711     mr->size = s;
2712     memory_region_update_pending = true;
2713     memory_region_transaction_commit();
2714 }
2715 
memory_region_readd_subregion(MemoryRegion * mr)2716 static void memory_region_readd_subregion(MemoryRegion *mr)
2717 {
2718     MemoryRegion *container = mr->container;
2719 
2720     if (container) {
2721         memory_region_transaction_begin();
2722         memory_region_ref(mr);
2723         memory_region_del_subregion(container, mr);
2724         memory_region_add_subregion_common(container, mr->addr, mr);
2725         memory_region_unref(mr);
2726         memory_region_transaction_commit();
2727     }
2728 }
2729 
memory_region_set_address(MemoryRegion * mr,hwaddr addr)2730 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2731 {
2732     if (addr != mr->addr) {
2733         mr->addr = addr;
2734         memory_region_readd_subregion(mr);
2735     }
2736 }
2737 
memory_region_set_alias_offset(MemoryRegion * mr,hwaddr offset)2738 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2739 {
2740     assert(mr->alias);
2741 
2742     if (offset == mr->alias_offset) {
2743         return;
2744     }
2745 
2746     memory_region_transaction_begin();
2747     mr->alias_offset = offset;
2748     memory_region_update_pending |= mr->enabled;
2749     memory_region_transaction_commit();
2750 }
2751 
memory_region_set_unmergeable(MemoryRegion * mr,bool unmergeable)2752 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2753 {
2754     if (unmergeable == mr->unmergeable) {
2755         return;
2756     }
2757 
2758     memory_region_transaction_begin();
2759     mr->unmergeable = unmergeable;
2760     memory_region_update_pending |= mr->enabled;
2761     memory_region_transaction_commit();
2762 }
2763 
memory_region_get_alignment(const MemoryRegion * mr)2764 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2765 {
2766     return mr->align;
2767 }
2768 
cmp_flatrange_addr(const void * addr_,const void * fr_)2769 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2770 {
2771     const AddrRange *addr = addr_;
2772     const FlatRange *fr = fr_;
2773 
2774     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2775         return -1;
2776     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2777         return 1;
2778     }
2779     return 0;
2780 }
2781 
flatview_lookup(FlatView * view,AddrRange addr)2782 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2783 {
2784     return bsearch(&addr, view->ranges, view->nr,
2785                    sizeof(FlatRange), cmp_flatrange_addr);
2786 }
2787 
memory_region_is_mapped(MemoryRegion * mr)2788 bool memory_region_is_mapped(MemoryRegion *mr)
2789 {
2790     return !!mr->container || mr->mapped_via_alias;
2791 }
2792 
2793 /* Same as memory_region_find, but it does not add a reference to the
2794  * returned region.  It must be called from an RCU critical section.
2795  */
memory_region_find_rcu(MemoryRegion * mr,hwaddr addr,uint64_t size)2796 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2797                                                   hwaddr addr, uint64_t size)
2798 {
2799     MemoryRegionSection ret = { .mr = NULL };
2800     MemoryRegion *root;
2801     AddressSpace *as;
2802     AddrRange range;
2803     FlatView *view;
2804     FlatRange *fr;
2805 
2806     addr += mr->addr;
2807     for (root = mr; root->container; ) {
2808         root = root->container;
2809         addr += root->addr;
2810     }
2811 
2812     as = memory_region_to_address_space(root);
2813     if (!as) {
2814         return ret;
2815     }
2816     range = addrrange_make(int128_make64(addr), int128_make64(size));
2817 
2818     view = address_space_to_flatview(as);
2819     fr = flatview_lookup(view, range);
2820     if (!fr) {
2821         return ret;
2822     }
2823 
2824     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2825         --fr;
2826     }
2827 
2828     ret.mr = fr->mr;
2829     ret.fv = view;
2830     range = addrrange_intersection(range, fr->addr);
2831     ret.offset_within_region = fr->offset_in_region;
2832     ret.offset_within_region += int128_get64(int128_sub(range.start,
2833                                                         fr->addr.start));
2834     ret.size = range.size;
2835     ret.offset_within_address_space = int128_get64(range.start);
2836     ret.readonly = fr->readonly;
2837     ret.nonvolatile = fr->nonvolatile;
2838     return ret;
2839 }
2840 
memory_region_find(MemoryRegion * mr,hwaddr addr,uint64_t size)2841 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2842                                        hwaddr addr, uint64_t size)
2843 {
2844     MemoryRegionSection ret;
2845     RCU_READ_LOCK_GUARD();
2846     ret = memory_region_find_rcu(mr, addr, size);
2847     if (ret.mr) {
2848         memory_region_ref(ret.mr);
2849     }
2850     return ret;
2851 }
2852 
memory_region_section_new_copy(MemoryRegionSection * s)2853 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2854 {
2855     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2856 
2857     *tmp = *s;
2858     if (tmp->mr) {
2859         memory_region_ref(tmp->mr);
2860     }
2861     if (tmp->fv) {
2862         bool ret  = flatview_ref(tmp->fv);
2863 
2864         g_assert(ret);
2865     }
2866     return tmp;
2867 }
2868 
memory_region_section_free_copy(MemoryRegionSection * s)2869 void memory_region_section_free_copy(MemoryRegionSection *s)
2870 {
2871     if (s->fv) {
2872         flatview_unref(s->fv);
2873     }
2874     if (s->mr) {
2875         memory_region_unref(s->mr);
2876     }
2877     g_free(s);
2878 }
2879 
memory_region_present(MemoryRegion * container,hwaddr addr)2880 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2881 {
2882     MemoryRegion *mr;
2883 
2884     RCU_READ_LOCK_GUARD();
2885     mr = memory_region_find_rcu(container, addr, 1).mr;
2886     return mr && mr != container;
2887 }
2888 
memory_global_dirty_log_sync(bool last_stage)2889 void memory_global_dirty_log_sync(bool last_stage)
2890 {
2891     memory_region_sync_dirty_bitmap(NULL, last_stage);
2892 }
2893 
memory_global_after_dirty_log_sync(void)2894 void memory_global_after_dirty_log_sync(void)
2895 {
2896     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2897 }
2898 
2899 /*
2900  * Dirty track stop flags that are postponed due to VM being stopped.  Should
2901  * only be used within vmstate_change hook.
2902  */
2903 static unsigned int postponed_stop_flags;
2904 static VMChangeStateEntry *vmstate_change;
2905 static void memory_global_dirty_log_stop_postponed_run(void);
2906 
memory_global_dirty_log_do_start(Error ** errp)2907 static bool memory_global_dirty_log_do_start(Error **errp)
2908 {
2909     MemoryListener *listener;
2910 
2911     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2912         if (listener->log_global_start) {
2913             if (!listener->log_global_start(listener, errp)) {
2914                 goto err;
2915             }
2916         }
2917     }
2918     return true;
2919 
2920 err:
2921     while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
2922         if (listener->log_global_stop) {
2923             listener->log_global_stop(listener);
2924         }
2925     }
2926 
2927     return false;
2928 }
2929 
memory_global_dirty_log_start(unsigned int flags,Error ** errp)2930 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
2931 {
2932     unsigned int old_flags;
2933 
2934     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2935 
2936     if (vmstate_change) {
2937         /* If there is postponed stop(), operate on it first */
2938         postponed_stop_flags &= ~flags;
2939         memory_global_dirty_log_stop_postponed_run();
2940     }
2941 
2942     flags &= ~global_dirty_tracking;
2943     if (!flags) {
2944         return true;
2945     }
2946 
2947     old_flags = global_dirty_tracking;
2948     global_dirty_tracking |= flags;
2949     trace_global_dirty_changed(global_dirty_tracking);
2950 
2951     if (!old_flags) {
2952         if (!memory_global_dirty_log_do_start(errp)) {
2953             global_dirty_tracking &= ~flags;
2954             trace_global_dirty_changed(global_dirty_tracking);
2955             return false;
2956         }
2957 
2958         memory_region_transaction_begin();
2959         memory_region_update_pending = true;
2960         memory_region_transaction_commit();
2961     }
2962     return true;
2963 }
2964 
memory_global_dirty_log_do_stop(unsigned int flags)2965 static void memory_global_dirty_log_do_stop(unsigned int flags)
2966 {
2967     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2968     assert((global_dirty_tracking & flags) == flags);
2969     global_dirty_tracking &= ~flags;
2970 
2971     trace_global_dirty_changed(global_dirty_tracking);
2972 
2973     if (!global_dirty_tracking) {
2974         memory_region_transaction_begin();
2975         memory_region_update_pending = true;
2976         memory_region_transaction_commit();
2977         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2978     }
2979 }
2980 
2981 /*
2982  * Execute the postponed dirty log stop operations if there is, then reset
2983  * everything (including the flags and the vmstate change hook).
2984  */
memory_global_dirty_log_stop_postponed_run(void)2985 static void memory_global_dirty_log_stop_postponed_run(void)
2986 {
2987     /* This must be called with the vmstate handler registered */
2988     assert(vmstate_change);
2989 
2990     /* Note: postponed_stop_flags can be cleared in log start routine */
2991     if (postponed_stop_flags) {
2992         memory_global_dirty_log_do_stop(postponed_stop_flags);
2993         postponed_stop_flags = 0;
2994     }
2995 
2996     qemu_del_vm_change_state_handler(vmstate_change);
2997     vmstate_change = NULL;
2998 }
2999 
memory_vm_change_state_handler(void * opaque,bool running,RunState state)3000 static void memory_vm_change_state_handler(void *opaque, bool running,
3001                                            RunState state)
3002 {
3003     if (running) {
3004         memory_global_dirty_log_stop_postponed_run();
3005     }
3006 }
3007 
memory_global_dirty_log_stop(unsigned int flags)3008 void memory_global_dirty_log_stop(unsigned int flags)
3009 {
3010     if (!runstate_is_running()) {
3011         /* Postpone the dirty log stop, e.g., to when VM starts again */
3012         if (vmstate_change) {
3013             /* Batch with previous postponed flags */
3014             postponed_stop_flags |= flags;
3015         } else {
3016             postponed_stop_flags = flags;
3017             vmstate_change = qemu_add_vm_change_state_handler(
3018                 memory_vm_change_state_handler, NULL);
3019         }
3020         return;
3021     }
3022 
3023     memory_global_dirty_log_do_stop(flags);
3024 }
3025 
listener_add_address_space(MemoryListener * listener,AddressSpace * as)3026 static void listener_add_address_space(MemoryListener *listener,
3027                                        AddressSpace *as)
3028 {
3029     unsigned i;
3030     FlatView *view;
3031     FlatRange *fr;
3032     MemoryRegionIoeventfd *fd;
3033 
3034     if (listener->begin) {
3035         listener->begin(listener);
3036     }
3037     if (global_dirty_tracking) {
3038         /*
3039          * Currently only VFIO can fail log_global_start(), and it's not
3040          * yet allowed to hotplug any PCI device during migration. So this
3041          * should never fail when invoked, guard it with error_abort.  If
3042          * it can start to fail in the future, we need to be able to fail
3043          * the whole listener_add_address_space() and its callers.
3044          */
3045         if (listener->log_global_start) {
3046             listener->log_global_start(listener, &error_abort);
3047         }
3048     }
3049 
3050     view = address_space_get_flatview(as);
3051     FOR_EACH_FLAT_RANGE(fr, view) {
3052         MemoryRegionSection section = section_from_flat_range(fr, view);
3053 
3054         if (listener->region_add) {
3055             listener->region_add(listener, &section);
3056         }
3057 
3058         /* send coalesced io add notifications */
3059         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3060                                                         listener, as, true);
3061 
3062         if (fr->dirty_log_mask && listener->log_start) {
3063             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3064         }
3065     }
3066 
3067     /*
3068      * register all eventfds for this address space for the newly registered
3069      * listener.
3070      */
3071     for (i = 0; i < as->ioeventfd_nb; i++) {
3072         fd = &as->ioeventfds[i];
3073         MemoryRegionSection section = (MemoryRegionSection) {
3074             .fv = view,
3075             .offset_within_address_space = int128_get64(fd->addr.start),
3076             .size = fd->addr.size,
3077         };
3078 
3079         if (listener->eventfd_add) {
3080             listener->eventfd_add(listener, &section,
3081                                   fd->match_data, fd->data, fd->e);
3082         }
3083     }
3084 
3085     if (listener->commit) {
3086         listener->commit(listener);
3087     }
3088     flatview_unref(view);
3089 }
3090 
listener_del_address_space(MemoryListener * listener,AddressSpace * as)3091 static void listener_del_address_space(MemoryListener *listener,
3092                                        AddressSpace *as)
3093 {
3094     unsigned i;
3095     FlatView *view;
3096     FlatRange *fr;
3097     MemoryRegionIoeventfd *fd;
3098 
3099     if (listener->begin) {
3100         listener->begin(listener);
3101     }
3102     view = address_space_get_flatview(as);
3103     FOR_EACH_FLAT_RANGE(fr, view) {
3104         MemoryRegionSection section = section_from_flat_range(fr, view);
3105 
3106         if (fr->dirty_log_mask && listener->log_stop) {
3107             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3108         }
3109 
3110         /* send coalesced io del notifications */
3111         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3112                                                         listener, as, false);
3113         if (listener->region_del) {
3114             listener->region_del(listener, &section);
3115         }
3116     }
3117 
3118     /*
3119      * de-register all eventfds for this address space for the current
3120      * listener.
3121      */
3122     for (i = 0; i < as->ioeventfd_nb; i++) {
3123         fd = &as->ioeventfds[i];
3124         MemoryRegionSection section = (MemoryRegionSection) {
3125             .fv = view,
3126             .offset_within_address_space = int128_get64(fd->addr.start),
3127             .size = fd->addr.size,
3128         };
3129 
3130         if (listener->eventfd_del) {
3131             listener->eventfd_del(listener, &section,
3132                                   fd->match_data, fd->data, fd->e);
3133         }
3134     }
3135 
3136     if (listener->commit) {
3137         listener->commit(listener);
3138     }
3139     flatview_unref(view);
3140 }
3141 
memory_listener_register(MemoryListener * listener,AddressSpace * as)3142 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3143 {
3144     MemoryListener *other = NULL;
3145 
3146     /* Only one of them can be defined for a listener */
3147     assert(!(listener->log_sync && listener->log_sync_global));
3148 
3149     listener->address_space = as;
3150     if (QTAILQ_EMPTY(&memory_listeners)
3151         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3152         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3153     } else {
3154         QTAILQ_FOREACH(other, &memory_listeners, link) {
3155             if (listener->priority < other->priority) {
3156                 break;
3157             }
3158         }
3159         QTAILQ_INSERT_BEFORE(other, listener, link);
3160     }
3161 
3162     if (QTAILQ_EMPTY(&as->listeners)
3163         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3164         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3165     } else {
3166         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3167             if (listener->priority < other->priority) {
3168                 break;
3169             }
3170         }
3171         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3172     }
3173 
3174     listener_add_address_space(listener, as);
3175 
3176     if (listener->eventfd_add || listener->eventfd_del) {
3177         as->ioeventfd_notifiers++;
3178     }
3179 }
3180 
memory_listener_unregister(MemoryListener * listener)3181 void memory_listener_unregister(MemoryListener *listener)
3182 {
3183     if (!listener->address_space) {
3184         return;
3185     }
3186 
3187     if (listener->eventfd_add || listener->eventfd_del) {
3188         listener->address_space->ioeventfd_notifiers--;
3189     }
3190 
3191     listener_del_address_space(listener, listener->address_space);
3192     QTAILQ_REMOVE(&memory_listeners, listener, link);
3193     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3194     listener->address_space = NULL;
3195 }
3196 
address_space_remove_listeners(AddressSpace * as)3197 void address_space_remove_listeners(AddressSpace *as)
3198 {
3199     while (!QTAILQ_EMPTY(&as->listeners)) {
3200         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3201     }
3202 }
3203 
address_space_init(AddressSpace * as,MemoryRegion * root,const char * name)3204 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3205 {
3206     memory_region_ref(root);
3207     as->root = root;
3208     as->current_map = NULL;
3209     as->ioeventfd_nb = 0;
3210     as->ioeventfds = NULL;
3211     QTAILQ_INIT(&as->listeners);
3212     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3213     as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3214     as->bounce_buffer_size = 0;
3215     qemu_mutex_init(&as->map_client_list_lock);
3216     QLIST_INIT(&as->map_client_list);
3217     as->name = g_strdup(name ? name : "anonymous");
3218     address_space_update_topology(as);
3219     address_space_update_ioeventfds(as);
3220 }
3221 
do_address_space_destroy(AddressSpace * as)3222 static void do_address_space_destroy(AddressSpace *as)
3223 {
3224     assert(qatomic_read(&as->bounce_buffer_size) == 0);
3225     assert(QLIST_EMPTY(&as->map_client_list));
3226     qemu_mutex_destroy(&as->map_client_list_lock);
3227 
3228     assert(QTAILQ_EMPTY(&as->listeners));
3229 
3230     flatview_unref(as->current_map);
3231     g_free(as->name);
3232     g_free(as->ioeventfds);
3233     memory_region_unref(as->root);
3234 }
3235 
address_space_destroy(AddressSpace * as)3236 void address_space_destroy(AddressSpace *as)
3237 {
3238     MemoryRegion *root = as->root;
3239 
3240     /* Flush out anything from MemoryListeners listening in on this */
3241     memory_region_transaction_begin();
3242     as->root = NULL;
3243     memory_region_transaction_commit();
3244     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3245 
3246     /* At this point, as->dispatch and as->current_map are dummy
3247      * entries that the guest should never use.  Wait for the old
3248      * values to expire before freeing the data.
3249      */
3250     as->root = root;
3251     call_rcu(as, do_address_space_destroy, rcu);
3252 }
3253 
memory_region_type(MemoryRegion * mr)3254 static const char *memory_region_type(MemoryRegion *mr)
3255 {
3256     if (mr->alias) {
3257         return memory_region_type(mr->alias);
3258     }
3259     if (memory_region_is_ram_device(mr)) {
3260         return "ramd";
3261     } else if (memory_region_is_romd(mr)) {
3262         return "romd";
3263     } else if (memory_region_is_rom(mr)) {
3264         return "rom";
3265     } else if (memory_region_is_ram(mr)) {
3266         return "ram";
3267     } else {
3268         return "i/o";
3269     }
3270 }
3271 
3272 typedef struct MemoryRegionList MemoryRegionList;
3273 
3274 struct MemoryRegionList {
3275     const MemoryRegion *mr;
3276     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3277 };
3278 
3279 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3280 
3281 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3282                            int128_sub((size), int128_one())) : 0)
3283 #define MTREE_INDENT "  "
3284 
mtree_expand_owner(const char * label,Object * obj)3285 static void mtree_expand_owner(const char *label, Object *obj)
3286 {
3287     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3288 
3289     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3290     if (dev && dev->id) {
3291         qemu_printf(" id=%s", dev->id);
3292     } else {
3293         char *canonical_path = object_get_canonical_path(obj);
3294         if (canonical_path) {
3295             qemu_printf(" path=%s", canonical_path);
3296             g_free(canonical_path);
3297         } else {
3298             qemu_printf(" type=%s", object_get_typename(obj));
3299         }
3300     }
3301     qemu_printf("}");
3302 }
3303 
mtree_print_mr_owner(const MemoryRegion * mr)3304 static void mtree_print_mr_owner(const MemoryRegion *mr)
3305 {
3306     Object *owner = mr->owner;
3307     Object *parent = memory_region_owner((MemoryRegion *)mr);
3308 
3309     if (!owner && !parent) {
3310         qemu_printf(" orphan");
3311         return;
3312     }
3313     if (owner) {
3314         mtree_expand_owner("owner", owner);
3315     }
3316     if (parent && parent != owner) {
3317         mtree_expand_owner("parent", parent);
3318     }
3319 }
3320 
mtree_print_mr(const MemoryRegion * mr,unsigned int level,hwaddr base,MemoryRegionListHead * alias_print_queue,bool owner,bool display_disabled)3321 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3322                            hwaddr base,
3323                            MemoryRegionListHead *alias_print_queue,
3324                            bool owner, bool display_disabled)
3325 {
3326     MemoryRegionList *new_ml, *ml, *next_ml;
3327     MemoryRegionListHead submr_print_queue;
3328     const MemoryRegion *submr;
3329     unsigned int i;
3330     hwaddr cur_start, cur_end;
3331 
3332     if (!mr) {
3333         return;
3334     }
3335 
3336     cur_start = base + mr->addr;
3337     cur_end = cur_start + MR_SIZE(mr->size);
3338 
3339     /*
3340      * Try to detect overflow of memory region. This should never
3341      * happen normally. When it happens, we dump something to warn the
3342      * user who is observing this.
3343      */
3344     if (cur_start < base || cur_end < cur_start) {
3345         qemu_printf("[DETECTED OVERFLOW!] ");
3346     }
3347 
3348     if (mr->alias) {
3349         bool found = false;
3350 
3351         /* check if the alias is already in the queue */
3352         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3353             if (ml->mr == mr->alias) {
3354                 found = true;
3355             }
3356         }
3357 
3358         if (!found) {
3359             ml = g_new(MemoryRegionList, 1);
3360             ml->mr = mr->alias;
3361             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3362         }
3363         if (mr->enabled || display_disabled) {
3364             for (i = 0; i < level; i++) {
3365                 qemu_printf(MTREE_INDENT);
3366             }
3367             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3368                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3369                         "-" HWADDR_FMT_plx "%s",
3370                         cur_start, cur_end,
3371                         mr->priority,
3372                         mr->nonvolatile ? "nv-" : "",
3373                         memory_region_type((MemoryRegion *)mr),
3374                         memory_region_name(mr),
3375                         memory_region_name(mr->alias),
3376                         mr->alias_offset,
3377                         mr->alias_offset + MR_SIZE(mr->size),
3378                         mr->enabled ? "" : " [disabled]");
3379             if (owner) {
3380                 mtree_print_mr_owner(mr);
3381             }
3382             qemu_printf("\n");
3383         }
3384     } else {
3385         if (mr->enabled || display_disabled) {
3386             for (i = 0; i < level; i++) {
3387                 qemu_printf(MTREE_INDENT);
3388             }
3389             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3390                         " (prio %d, %s%s): %s%s",
3391                         cur_start, cur_end,
3392                         mr->priority,
3393                         mr->nonvolatile ? "nv-" : "",
3394                         memory_region_type((MemoryRegion *)mr),
3395                         memory_region_name(mr),
3396                         mr->enabled ? "" : " [disabled]");
3397             if (owner) {
3398                 mtree_print_mr_owner(mr);
3399             }
3400             qemu_printf("\n");
3401         }
3402     }
3403 
3404     QTAILQ_INIT(&submr_print_queue);
3405 
3406     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3407         new_ml = g_new(MemoryRegionList, 1);
3408         new_ml->mr = submr;
3409         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3410             if (new_ml->mr->addr < ml->mr->addr ||
3411                 (new_ml->mr->addr == ml->mr->addr &&
3412                  new_ml->mr->priority > ml->mr->priority)) {
3413                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3414                 new_ml = NULL;
3415                 break;
3416             }
3417         }
3418         if (new_ml) {
3419             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3420         }
3421     }
3422 
3423     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3424         mtree_print_mr(ml->mr, level + 1, cur_start,
3425                        alias_print_queue, owner, display_disabled);
3426     }
3427 
3428     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3429         g_free(ml);
3430     }
3431 }
3432 
3433 struct FlatViewInfo {
3434     int counter;
3435     bool dispatch_tree;
3436     bool owner;
3437     AccelClass *ac;
3438 };
3439 
mtree_print_flatview(gpointer key,gpointer value,gpointer user_data)3440 static void mtree_print_flatview(gpointer key, gpointer value,
3441                                  gpointer user_data)
3442 {
3443     FlatView *view = key;
3444     GArray *fv_address_spaces = value;
3445     struct FlatViewInfo *fvi = user_data;
3446     FlatRange *range = &view->ranges[0];
3447     MemoryRegion *mr;
3448     int n = view->nr;
3449     int i;
3450     AddressSpace *as;
3451 
3452     qemu_printf("FlatView #%d\n", fvi->counter);
3453     ++fvi->counter;
3454 
3455     for (i = 0; i < fv_address_spaces->len; ++i) {
3456         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3457         qemu_printf(" AS \"%s\", root: %s",
3458                     as->name, memory_region_name(as->root));
3459         if (as->root->alias) {
3460             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3461         }
3462         qemu_printf("\n");
3463     }
3464 
3465     qemu_printf(" Root memory region: %s\n",
3466       view->root ? memory_region_name(view->root) : "(none)");
3467 
3468     if (n <= 0) {
3469         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3470         return;
3471     }
3472 
3473     while (n--) {
3474         mr = range->mr;
3475         if (range->offset_in_region) {
3476             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3477                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3478                         int128_get64(range->addr.start),
3479                         int128_get64(range->addr.start)
3480                         + MR_SIZE(range->addr.size),
3481                         mr->priority,
3482                         range->nonvolatile ? "nv-" : "",
3483                         range->readonly ? "rom" : memory_region_type(mr),
3484                         memory_region_name(mr),
3485                         range->offset_in_region);
3486         } else {
3487             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3488                         " (prio %d, %s%s): %s",
3489                         int128_get64(range->addr.start),
3490                         int128_get64(range->addr.start)
3491                         + MR_SIZE(range->addr.size),
3492                         mr->priority,
3493                         range->nonvolatile ? "nv-" : "",
3494                         range->readonly ? "rom" : memory_region_type(mr),
3495                         memory_region_name(mr));
3496         }
3497         if (fvi->owner) {
3498             mtree_print_mr_owner(mr);
3499         }
3500 
3501         if (fvi->ac) {
3502             for (i = 0; i < fv_address_spaces->len; ++i) {
3503                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3504                 if (fvi->ac->has_memory(current_machine, as,
3505                                         int128_get64(range->addr.start),
3506                                         MR_SIZE(range->addr.size) + 1)) {
3507                     qemu_printf(" %s", fvi->ac->name);
3508                 }
3509             }
3510         }
3511         qemu_printf("\n");
3512         range++;
3513     }
3514 
3515 #if !defined(CONFIG_USER_ONLY)
3516     if (fvi->dispatch_tree && view->root) {
3517         mtree_print_dispatch(view->dispatch, view->root);
3518     }
3519 #endif
3520 
3521     qemu_printf("\n");
3522 }
3523 
mtree_info_flatview_free(gpointer key,gpointer value,gpointer user_data)3524 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3525                                       gpointer user_data)
3526 {
3527     FlatView *view = key;
3528     GArray *fv_address_spaces = value;
3529 
3530     g_array_unref(fv_address_spaces);
3531     flatview_unref(view);
3532 
3533     return true;
3534 }
3535 
mtree_info_flatview(bool dispatch_tree,bool owner)3536 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3537 {
3538     struct FlatViewInfo fvi = {
3539         .counter = 0,
3540         .dispatch_tree = dispatch_tree,
3541         .owner = owner,
3542     };
3543     AddressSpace *as;
3544     FlatView *view;
3545     GArray *fv_address_spaces;
3546     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3547     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3548 
3549     if (ac->has_memory) {
3550         fvi.ac = ac;
3551     }
3552 
3553     /* Gather all FVs in one table */
3554     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3555         view = address_space_get_flatview(as);
3556 
3557         fv_address_spaces = g_hash_table_lookup(views, view);
3558         if (!fv_address_spaces) {
3559             fv_address_spaces = g_array_new(false, false, sizeof(as));
3560             g_hash_table_insert(views, view, fv_address_spaces);
3561         }
3562 
3563         g_array_append_val(fv_address_spaces, as);
3564     }
3565 
3566     /* Print */
3567     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3568 
3569     /* Free */
3570     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3571     g_hash_table_unref(views);
3572 }
3573 
3574 struct AddressSpaceInfo {
3575     MemoryRegionListHead *ml_head;
3576     bool owner;
3577     bool disabled;
3578 };
3579 
3580 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
address_space_compare_name(gconstpointer a,gconstpointer b)3581 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3582 {
3583     const AddressSpace *as_a = a;
3584     const AddressSpace *as_b = b;
3585 
3586     return g_strcmp0(as_a->name, as_b->name);
3587 }
3588 
mtree_print_as_name(gpointer data,gpointer user_data)3589 static void mtree_print_as_name(gpointer data, gpointer user_data)
3590 {
3591     AddressSpace *as = data;
3592 
3593     qemu_printf("address-space: %s\n", as->name);
3594 }
3595 
mtree_print_as(gpointer key,gpointer value,gpointer user_data)3596 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3597 {
3598     MemoryRegion *mr = key;
3599     GSList *as_same_root_mr_list = value;
3600     struct AddressSpaceInfo *asi = user_data;
3601 
3602     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3603     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3604     qemu_printf("\n");
3605 }
3606 
mtree_info_as_free(gpointer key,gpointer value,gpointer user_data)3607 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3608                                    gpointer user_data)
3609 {
3610     GSList *as_same_root_mr_list = value;
3611 
3612     g_slist_free(as_same_root_mr_list);
3613 
3614     return true;
3615 }
3616 
mtree_info_as(bool dispatch_tree,bool owner,bool disabled)3617 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3618 {
3619     MemoryRegionListHead ml_head;
3620     MemoryRegionList *ml, *ml2;
3621     AddressSpace *as;
3622     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3623     GSList *as_same_root_mr_list;
3624     struct AddressSpaceInfo asi = {
3625         .ml_head = &ml_head,
3626         .owner = owner,
3627         .disabled = disabled,
3628     };
3629 
3630     QTAILQ_INIT(&ml_head);
3631 
3632     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3633         /* Create hashtable, key=AS root MR, value = list of AS */
3634         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3635         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3636                                                      address_space_compare_name);
3637         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3638     }
3639 
3640     /* print address spaces */
3641     g_hash_table_foreach(views, mtree_print_as, &asi);
3642     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3643     g_hash_table_unref(views);
3644 
3645     /* print aliased regions */
3646     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3647         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3648         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3649         qemu_printf("\n");
3650     }
3651 
3652     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3653         g_free(ml);
3654     }
3655 }
3656 
mtree_info(bool flatview,bool dispatch_tree,bool owner,bool disabled)3657 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3658 {
3659     if (flatview) {
3660         mtree_info_flatview(dispatch_tree, owner);
3661     } else {
3662         mtree_info_as(dispatch_tree, owner, disabled);
3663     }
3664 }
3665 
memory_region_init_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3666 bool memory_region_init_ram(MemoryRegion *mr,
3667                             Object *owner,
3668                             const char *name,
3669                             uint64_t size,
3670                             Error **errp)
3671 {
3672     DeviceState *owner_dev;
3673 
3674     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3675         return false;
3676     }
3677     /* This will assert if owner is neither NULL nor a DeviceState.
3678      * We only want the owner here for the purposes of defining a
3679      * unique name for migration. TODO: Ideally we should implement
3680      * a naming scheme for Objects which are not DeviceStates, in
3681      * which case we can relax this restriction.
3682      */
3683     owner_dev = DEVICE(owner);
3684     vmstate_register_ram(mr, owner_dev);
3685 
3686     return true;
3687 }
3688 
memory_region_init_ram_guest_memfd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3689 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3690                                         Object *owner,
3691                                         const char *name,
3692                                         uint64_t size,
3693                                         Error **errp)
3694 {
3695     DeviceState *owner_dev;
3696 
3697     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3698                                                 RAM_GUEST_MEMFD, errp)) {
3699         return false;
3700     }
3701     /* This will assert if owner is neither NULL nor a DeviceState.
3702      * We only want the owner here for the purposes of defining a
3703      * unique name for migration. TODO: Ideally we should implement
3704      * a naming scheme for Objects which are not DeviceStates, in
3705      * which case we can relax this restriction.
3706      */
3707     owner_dev = DEVICE(owner);
3708     vmstate_register_ram(mr, owner_dev);
3709 
3710     return true;
3711 }
3712 
memory_region_init_rom(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3713 bool memory_region_init_rom(MemoryRegion *mr,
3714                             Object *owner,
3715                             const char *name,
3716                             uint64_t size,
3717                             Error **errp)
3718 {
3719     DeviceState *owner_dev;
3720 
3721     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3722         return false;
3723     }
3724     /* This will assert if owner is neither NULL nor a DeviceState.
3725      * We only want the owner here for the purposes of defining a
3726      * unique name for migration. TODO: Ideally we should implement
3727      * a naming scheme for Objects which are not DeviceStates, in
3728      * which case we can relax this restriction.
3729      */
3730     owner_dev = DEVICE(owner);
3731     vmstate_register_ram(mr, owner_dev);
3732 
3733     return true;
3734 }
3735 
memory_region_init_rom_device(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)3736 bool memory_region_init_rom_device(MemoryRegion *mr,
3737                                    Object *owner,
3738                                    const MemoryRegionOps *ops,
3739                                    void *opaque,
3740                                    const char *name,
3741                                    uint64_t size,
3742                                    Error **errp)
3743 {
3744     DeviceState *owner_dev;
3745 
3746     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3747                                                  name, size, errp)) {
3748         return false;
3749     }
3750     /* This will assert if owner is neither NULL nor a DeviceState.
3751      * We only want the owner here for the purposes of defining a
3752      * unique name for migration. TODO: Ideally we should implement
3753      * a naming scheme for Objects which are not DeviceStates, in
3754      * which case we can relax this restriction.
3755      */
3756     owner_dev = DEVICE(owner);
3757     vmstate_register_ram(mr, owner_dev);
3758 
3759     return true;
3760 }
3761 
3762 /*
3763  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3764  * the fuzz_dma_read_cb callback
3765  */
3766 #ifdef CONFIG_FUZZ
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)3767 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3768                       size_t len,
3769                       MemoryRegion *mr)
3770 {
3771 }
3772 #endif
3773 
3774 static const TypeInfo memory_region_info = {
3775     .parent             = TYPE_OBJECT,
3776     .name               = TYPE_MEMORY_REGION,
3777     .class_size         = sizeof(MemoryRegionClass),
3778     .instance_size      = sizeof(MemoryRegion),
3779     .instance_init      = memory_region_initfn,
3780     .instance_finalize  = memory_region_finalize,
3781 };
3782 
3783 static const TypeInfo iommu_memory_region_info = {
3784     .parent             = TYPE_MEMORY_REGION,
3785     .name               = TYPE_IOMMU_MEMORY_REGION,
3786     .class_size         = sizeof(IOMMUMemoryRegionClass),
3787     .instance_size      = sizeof(IOMMUMemoryRegion),
3788     .instance_init      = iommu_memory_region_initfn,
3789     .abstract           = true,
3790 };
3791 
3792 static const TypeInfo ram_discard_manager_info = {
3793     .parent             = TYPE_INTERFACE,
3794     .name               = TYPE_RAM_DISCARD_MANAGER,
3795     .class_size         = sizeof(RamDiscardManagerClass),
3796 };
3797 
memory_register_types(void)3798 static void memory_register_types(void)
3799 {
3800     type_register_static(&memory_region_info);
3801     type_register_static(&iommu_memory_region_info);
3802     type_register_static(&ram_discard_manager_info);
3803 }
3804 
3805 type_init(memory_register_types)
3806