xref: /linux/kernel/kthread.c (revision 63467137ecc0ff6f804d53903ad87a2f0397a18b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 static LIST_HEAD(kthreads_hotplug);
39 static DEFINE_MUTEX(kthreads_hotplug_lock);
40 
41 struct kthread_create_info
42 {
43 	/* Information passed to kthread() from kthreadd. */
44 	char *full_name;
45 	int (*threadfn)(void *data);
46 	void *data;
47 	int node;
48 
49 	/* Result passed back to kthread_create() from kthreadd. */
50 	struct task_struct *result;
51 	struct completion *done;
52 
53 	struct list_head list;
54 };
55 
56 struct kthread {
57 	unsigned long flags;
58 	unsigned int cpu;
59 	unsigned int node;
60 	int started;
61 	int result;
62 	int (*threadfn)(void *);
63 	void *data;
64 	struct completion parked;
65 	struct completion exited;
66 #ifdef CONFIG_BLK_CGROUP
67 	struct cgroup_subsys_state *blkcg_css;
68 #endif
69 	/* To store the full name if task comm is truncated. */
70 	char *full_name;
71 	struct task_struct *task;
72 	struct list_head hotplug_node;
73 	struct cpumask *preferred_affinity;
74 };
75 
76 enum KTHREAD_BITS {
77 	KTHREAD_IS_PER_CPU = 0,
78 	KTHREAD_SHOULD_STOP,
79 	KTHREAD_SHOULD_PARK,
80 };
81 
to_kthread(struct task_struct * k)82 static inline struct kthread *to_kthread(struct task_struct *k)
83 {
84 	WARN_ON(!(k->flags & PF_KTHREAD));
85 	return k->worker_private;
86 }
87 
88 /*
89  * Variant of to_kthread() that doesn't assume @p is a kthread.
90  *
91  * When "(p->flags & PF_KTHREAD)" is set the task is a kthread and will
92  * always remain a kthread.  For kthreads p->worker_private always
93  * points to a struct kthread.  For tasks that are not kthreads
94  * p->worker_private is used to point to other things.
95  *
96  * Return NULL for any task that is not a kthread.
97  */
__to_kthread(struct task_struct * p)98 static inline struct kthread *__to_kthread(struct task_struct *p)
99 {
100 	void *kthread = p->worker_private;
101 	if (kthread && !(p->flags & PF_KTHREAD))
102 		kthread = NULL;
103 	return kthread;
104 }
105 
get_kthread_comm(char * buf,size_t buf_size,struct task_struct * tsk)106 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
107 {
108 	struct kthread *kthread = to_kthread(tsk);
109 
110 	if (!kthread || !kthread->full_name) {
111 		strscpy(buf, tsk->comm, buf_size);
112 		return;
113 	}
114 
115 	strscpy_pad(buf, kthread->full_name, buf_size);
116 }
117 
set_kthread_struct(struct task_struct * p)118 bool set_kthread_struct(struct task_struct *p)
119 {
120 	struct kthread *kthread;
121 
122 	if (WARN_ON_ONCE(to_kthread(p)))
123 		return false;
124 
125 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
126 	if (!kthread)
127 		return false;
128 
129 	init_completion(&kthread->exited);
130 	init_completion(&kthread->parked);
131 	INIT_LIST_HEAD(&kthread->hotplug_node);
132 	p->vfork_done = &kthread->exited;
133 
134 	kthread->task = p;
135 	kthread->node = tsk_fork_get_node(current);
136 	p->worker_private = kthread;
137 	return true;
138 }
139 
free_kthread_struct(struct task_struct * k)140 void free_kthread_struct(struct task_struct *k)
141 {
142 	struct kthread *kthread;
143 
144 	/*
145 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
146 	 */
147 	kthread = to_kthread(k);
148 	if (!kthread)
149 		return;
150 
151 #ifdef CONFIG_BLK_CGROUP
152 	WARN_ON_ONCE(kthread->blkcg_css);
153 #endif
154 	k->worker_private = NULL;
155 	kfree(kthread->full_name);
156 	kfree(kthread);
157 }
158 
159 /**
160  * kthread_should_stop - should this kthread return now?
161  *
162  * When someone calls kthread_stop() on your kthread, it will be woken
163  * and this will return true.  You should then return, and your return
164  * value will be passed through to kthread_stop().
165  */
kthread_should_stop(void)166 bool kthread_should_stop(void)
167 {
168 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
169 }
170 EXPORT_SYMBOL(kthread_should_stop);
171 
__kthread_should_park(struct task_struct * k)172 static bool __kthread_should_park(struct task_struct *k)
173 {
174 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
175 }
176 
177 /**
178  * kthread_should_park - should this kthread park now?
179  *
180  * When someone calls kthread_park() on your kthread, it will be woken
181  * and this will return true.  You should then do the necessary
182  * cleanup and call kthread_parkme()
183  *
184  * Similar to kthread_should_stop(), but this keeps the thread alive
185  * and in a park position. kthread_unpark() "restarts" the thread and
186  * calls the thread function again.
187  */
kthread_should_park(void)188 bool kthread_should_park(void)
189 {
190 	return __kthread_should_park(current);
191 }
192 EXPORT_SYMBOL_GPL(kthread_should_park);
193 
kthread_should_stop_or_park(void)194 bool kthread_should_stop_or_park(void)
195 {
196 	struct kthread *kthread = __to_kthread(current);
197 
198 	if (!kthread)
199 		return false;
200 
201 	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
202 }
203 
204 /**
205  * kthread_freezable_should_stop - should this freezable kthread return now?
206  * @was_frozen: optional out parameter, indicates whether %current was frozen
207  *
208  * kthread_should_stop() for freezable kthreads, which will enter
209  * refrigerator if necessary.  This function is safe from kthread_stop() /
210  * freezer deadlock and freezable kthreads should use this function instead
211  * of calling try_to_freeze() directly.
212  */
kthread_freezable_should_stop(bool * was_frozen)213 bool kthread_freezable_should_stop(bool *was_frozen)
214 {
215 	bool frozen = false;
216 
217 	might_sleep();
218 
219 	if (unlikely(freezing(current)))
220 		frozen = __refrigerator(true);
221 
222 	if (was_frozen)
223 		*was_frozen = frozen;
224 
225 	return kthread_should_stop();
226 }
227 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
228 
229 /**
230  * kthread_func - return the function specified on kthread creation
231  * @task: kthread task in question
232  *
233  * Returns NULL if the task is not a kthread.
234  */
kthread_func(struct task_struct * task)235 void *kthread_func(struct task_struct *task)
236 {
237 	struct kthread *kthread = __to_kthread(task);
238 	if (kthread)
239 		return kthread->threadfn;
240 	return NULL;
241 }
242 EXPORT_SYMBOL_GPL(kthread_func);
243 
244 /**
245  * kthread_data - return data value specified on kthread creation
246  * @task: kthread task in question
247  *
248  * Return the data value specified when kthread @task was created.
249  * The caller is responsible for ensuring the validity of @task when
250  * calling this function.
251  */
kthread_data(struct task_struct * task)252 void *kthread_data(struct task_struct *task)
253 {
254 	return to_kthread(task)->data;
255 }
256 EXPORT_SYMBOL_GPL(kthread_data);
257 
258 /**
259  * kthread_probe_data - speculative version of kthread_data()
260  * @task: possible kthread task in question
261  *
262  * @task could be a kthread task.  Return the data value specified when it
263  * was created if accessible.  If @task isn't a kthread task or its data is
264  * inaccessible for any reason, %NULL is returned.  This function requires
265  * that @task itself is safe to dereference.
266  */
kthread_probe_data(struct task_struct * task)267 void *kthread_probe_data(struct task_struct *task)
268 {
269 	struct kthread *kthread = __to_kthread(task);
270 	void *data = NULL;
271 
272 	if (kthread)
273 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
274 	return data;
275 }
276 
__kthread_parkme(struct kthread * self)277 static void __kthread_parkme(struct kthread *self)
278 {
279 	for (;;) {
280 		/*
281 		 * TASK_PARKED is a special state; we must serialize against
282 		 * possible pending wakeups to avoid store-store collisions on
283 		 * task->state.
284 		 *
285 		 * Such a collision might possibly result in the task state
286 		 * changin from TASK_PARKED and us failing the
287 		 * wait_task_inactive() in kthread_park().
288 		 */
289 		set_special_state(TASK_PARKED);
290 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
291 			break;
292 
293 		/*
294 		 * Thread is going to call schedule(), do not preempt it,
295 		 * or the caller of kthread_park() may spend more time in
296 		 * wait_task_inactive().
297 		 */
298 		preempt_disable();
299 		complete(&self->parked);
300 		schedule_preempt_disabled();
301 		preempt_enable();
302 	}
303 	__set_current_state(TASK_RUNNING);
304 }
305 
kthread_parkme(void)306 void kthread_parkme(void)
307 {
308 	__kthread_parkme(to_kthread(current));
309 }
310 EXPORT_SYMBOL_GPL(kthread_parkme);
311 
312 /**
313  * kthread_exit - Cause the current kthread return @result to kthread_stop().
314  * @result: The integer value to return to kthread_stop().
315  *
316  * While kthread_exit can be called directly, it exists so that
317  * functions which do some additional work in non-modular code such as
318  * module_put_and_kthread_exit can be implemented.
319  *
320  * Does not return.
321  */
kthread_exit(long result)322 void __noreturn kthread_exit(long result)
323 {
324 	struct kthread *kthread = to_kthread(current);
325 	kthread->result = result;
326 	if (!list_empty(&kthread->hotplug_node)) {
327 		mutex_lock(&kthreads_hotplug_lock);
328 		list_del(&kthread->hotplug_node);
329 		mutex_unlock(&kthreads_hotplug_lock);
330 
331 		if (kthread->preferred_affinity) {
332 			kfree(kthread->preferred_affinity);
333 			kthread->preferred_affinity = NULL;
334 		}
335 	}
336 	do_exit(0);
337 }
338 EXPORT_SYMBOL(kthread_exit);
339 
340 /**
341  * kthread_complete_and_exit - Exit the current kthread.
342  * @comp: Completion to complete
343  * @code: The integer value to return to kthread_stop().
344  *
345  * If present, complete @comp and then return code to kthread_stop().
346  *
347  * A kernel thread whose module may be removed after the completion of
348  * @comp can use this function to exit safely.
349  *
350  * Does not return.
351  */
kthread_complete_and_exit(struct completion * comp,long code)352 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
353 {
354 	if (comp)
355 		complete(comp);
356 
357 	kthread_exit(code);
358 }
359 EXPORT_SYMBOL(kthread_complete_and_exit);
360 
kthread_fetch_affinity(struct kthread * kthread,struct cpumask * cpumask)361 static void kthread_fetch_affinity(struct kthread *kthread, struct cpumask *cpumask)
362 {
363 	const struct cpumask *pref;
364 
365 	if (kthread->preferred_affinity) {
366 		pref = kthread->preferred_affinity;
367 	} else {
368 		if (WARN_ON_ONCE(kthread->node == NUMA_NO_NODE))
369 			return;
370 		pref = cpumask_of_node(kthread->node);
371 	}
372 
373 	cpumask_and(cpumask, pref, housekeeping_cpumask(HK_TYPE_KTHREAD));
374 	if (cpumask_empty(cpumask))
375 		cpumask_copy(cpumask, housekeeping_cpumask(HK_TYPE_KTHREAD));
376 }
377 
kthread_affine_node(void)378 static void kthread_affine_node(void)
379 {
380 	struct kthread *kthread = to_kthread(current);
381 	cpumask_var_t affinity;
382 
383 	WARN_ON_ONCE(kthread_is_per_cpu(current));
384 
385 	if (kthread->node == NUMA_NO_NODE) {
386 		housekeeping_affine(current, HK_TYPE_KTHREAD);
387 	} else {
388 		if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) {
389 			WARN_ON_ONCE(1);
390 			return;
391 		}
392 
393 		mutex_lock(&kthreads_hotplug_lock);
394 		WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
395 		list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
396 		/*
397 		 * The node cpumask is racy when read from kthread() but:
398 		 * - a racing CPU going down will either fail on the subsequent
399 		 *   call to set_cpus_allowed_ptr() or be migrated to housekeepers
400 		 *   afterwards by the scheduler.
401 		 * - a racing CPU going up will be handled by kthreads_online_cpu()
402 		 */
403 		kthread_fetch_affinity(kthread, affinity);
404 		set_cpus_allowed_ptr(current, affinity);
405 		mutex_unlock(&kthreads_hotplug_lock);
406 
407 		free_cpumask_var(affinity);
408 	}
409 }
410 
kthread(void * _create)411 static int kthread(void *_create)
412 {
413 	static const struct sched_param param = { .sched_priority = 0 };
414 	/* Copy data: it's on kthread's stack */
415 	struct kthread_create_info *create = _create;
416 	int (*threadfn)(void *data) = create->threadfn;
417 	void *data = create->data;
418 	struct completion *done;
419 	struct kthread *self;
420 	int ret;
421 
422 	self = to_kthread(current);
423 
424 	/* Release the structure when caller killed by a fatal signal. */
425 	done = xchg(&create->done, NULL);
426 	if (!done) {
427 		kfree(create->full_name);
428 		kfree(create);
429 		kthread_exit(-EINTR);
430 	}
431 
432 	self->full_name = create->full_name;
433 	self->threadfn = threadfn;
434 	self->data = data;
435 
436 	/*
437 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
438 	 * back to default in case they have been changed.
439 	 */
440 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
441 
442 	/* OK, tell user we're spawned, wait for stop or wakeup */
443 	__set_current_state(TASK_UNINTERRUPTIBLE);
444 	create->result = current;
445 	/*
446 	 * Thread is going to call schedule(), do not preempt it,
447 	 * or the creator may spend more time in wait_task_inactive().
448 	 */
449 	preempt_disable();
450 	complete(done);
451 	schedule_preempt_disabled();
452 	preempt_enable();
453 
454 	self->started = 1;
455 
456 	if (!(current->flags & PF_NO_SETAFFINITY) && !self->preferred_affinity)
457 		kthread_affine_node();
458 
459 	ret = -EINTR;
460 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
461 		cgroup_kthread_ready();
462 		__kthread_parkme(self);
463 		ret = threadfn(data);
464 	}
465 	kthread_exit(ret);
466 }
467 
468 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)469 int tsk_fork_get_node(struct task_struct *tsk)
470 {
471 #ifdef CONFIG_NUMA
472 	if (tsk == kthreadd_task)
473 		return tsk->pref_node_fork;
474 #endif
475 	return NUMA_NO_NODE;
476 }
477 
create_kthread(struct kthread_create_info * create)478 static void create_kthread(struct kthread_create_info *create)
479 {
480 	int pid;
481 
482 #ifdef CONFIG_NUMA
483 	current->pref_node_fork = create->node;
484 #endif
485 	/* We want our own signal handler (we take no signals by default). */
486 	pid = kernel_thread(kthread, create, create->full_name,
487 			    CLONE_FS | CLONE_FILES | SIGCHLD);
488 	if (pid < 0) {
489 		/* Release the structure when caller killed by a fatal signal. */
490 		struct completion *done = xchg(&create->done, NULL);
491 
492 		kfree(create->full_name);
493 		if (!done) {
494 			kfree(create);
495 			return;
496 		}
497 		create->result = ERR_PTR(pid);
498 		complete(done);
499 	}
500 }
501 
502 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)503 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
504 						    void *data, int node,
505 						    const char namefmt[],
506 						    va_list args)
507 {
508 	DECLARE_COMPLETION_ONSTACK(done);
509 	struct task_struct *task;
510 	struct kthread_create_info *create = kmalloc(sizeof(*create),
511 						     GFP_KERNEL);
512 
513 	if (!create)
514 		return ERR_PTR(-ENOMEM);
515 	create->threadfn = threadfn;
516 	create->data = data;
517 	create->node = node;
518 	create->done = &done;
519 	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
520 	if (!create->full_name) {
521 		task = ERR_PTR(-ENOMEM);
522 		goto free_create;
523 	}
524 
525 	spin_lock(&kthread_create_lock);
526 	list_add_tail(&create->list, &kthread_create_list);
527 	spin_unlock(&kthread_create_lock);
528 
529 	wake_up_process(kthreadd_task);
530 	/*
531 	 * Wait for completion in killable state, for I might be chosen by
532 	 * the OOM killer while kthreadd is trying to allocate memory for
533 	 * new kernel thread.
534 	 */
535 	if (unlikely(wait_for_completion_killable(&done))) {
536 		/*
537 		 * If I was killed by a fatal signal before kthreadd (or new
538 		 * kernel thread) calls complete(), leave the cleanup of this
539 		 * structure to that thread.
540 		 */
541 		if (xchg(&create->done, NULL))
542 			return ERR_PTR(-EINTR);
543 		/*
544 		 * kthreadd (or new kernel thread) will call complete()
545 		 * shortly.
546 		 */
547 		wait_for_completion(&done);
548 	}
549 	task = create->result;
550 free_create:
551 	kfree(create);
552 	return task;
553 }
554 
555 /**
556  * kthread_create_on_node - create a kthread.
557  * @threadfn: the function to run until signal_pending(current).
558  * @data: data ptr for @threadfn.
559  * @node: task and thread structures for the thread are allocated on this node
560  * @namefmt: printf-style name for the thread.
561  *
562  * Description: This helper function creates and names a kernel
563  * thread.  The thread will be stopped: use wake_up_process() to start
564  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
565  * is affine to all CPUs.
566  *
567  * If thread is going to be bound on a particular cpu, give its node
568  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
569  * When woken, the thread will run @threadfn() with @data as its
570  * argument. @threadfn() can either return directly if it is a
571  * standalone thread for which no one will call kthread_stop(), or
572  * return when 'kthread_should_stop()' is true (which means
573  * kthread_stop() has been called).  The return value should be zero
574  * or a negative error number; it will be passed to kthread_stop().
575  *
576  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
577  */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)578 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
579 					   void *data, int node,
580 					   const char namefmt[],
581 					   ...)
582 {
583 	struct task_struct *task;
584 	va_list args;
585 
586 	va_start(args, namefmt);
587 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
588 	va_end(args);
589 
590 	return task;
591 }
592 EXPORT_SYMBOL(kthread_create_on_node);
593 
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)594 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
595 {
596 	unsigned long flags;
597 
598 	if (!wait_task_inactive(p, state)) {
599 		WARN_ON(1);
600 		return;
601 	}
602 
603 	/* It's safe because the task is inactive. */
604 	raw_spin_lock_irqsave(&p->pi_lock, flags);
605 	do_set_cpus_allowed(p, mask);
606 	p->flags |= PF_NO_SETAFFINITY;
607 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
608 }
609 
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)610 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
611 {
612 	__kthread_bind_mask(p, cpumask_of(cpu), state);
613 }
614 
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)615 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
616 {
617 	struct kthread *kthread = to_kthread(p);
618 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
619 	WARN_ON_ONCE(kthread->started);
620 }
621 
622 /**
623  * kthread_bind - bind a just-created kthread to a cpu.
624  * @p: thread created by kthread_create().
625  * @cpu: cpu (might not be online, must be possible) for @k to run on.
626  *
627  * Description: This function is equivalent to set_cpus_allowed(),
628  * except that @cpu doesn't need to be online, and the thread must be
629  * stopped (i.e., just returned from kthread_create()).
630  */
kthread_bind(struct task_struct * p,unsigned int cpu)631 void kthread_bind(struct task_struct *p, unsigned int cpu)
632 {
633 	struct kthread *kthread = to_kthread(p);
634 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
635 	WARN_ON_ONCE(kthread->started);
636 }
637 EXPORT_SYMBOL(kthread_bind);
638 
639 /**
640  * kthread_create_on_cpu - Create a cpu bound kthread
641  * @threadfn: the function to run until signal_pending(current).
642  * @data: data ptr for @threadfn.
643  * @cpu: The cpu on which the thread should be bound,
644  * @namefmt: printf-style name for the thread. Format is restricted
645  *	     to "name.*%u". Code fills in cpu number.
646  *
647  * Description: This helper function creates and names a kernel thread
648  */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)649 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
650 					  void *data, unsigned int cpu,
651 					  const char *namefmt)
652 {
653 	struct task_struct *p;
654 
655 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
656 				   cpu);
657 	if (IS_ERR(p))
658 		return p;
659 	kthread_bind(p, cpu);
660 	/* CPU hotplug need to bind once again when unparking the thread. */
661 	to_kthread(p)->cpu = cpu;
662 	return p;
663 }
664 EXPORT_SYMBOL(kthread_create_on_cpu);
665 
kthread_set_per_cpu(struct task_struct * k,int cpu)666 void kthread_set_per_cpu(struct task_struct *k, int cpu)
667 {
668 	struct kthread *kthread = to_kthread(k);
669 	if (!kthread)
670 		return;
671 
672 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
673 
674 	if (cpu < 0) {
675 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
676 		return;
677 	}
678 
679 	kthread->cpu = cpu;
680 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
681 }
682 
kthread_is_per_cpu(struct task_struct * p)683 bool kthread_is_per_cpu(struct task_struct *p)
684 {
685 	struct kthread *kthread = __to_kthread(p);
686 	if (!kthread)
687 		return false;
688 
689 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
690 }
691 
692 /**
693  * kthread_unpark - unpark a thread created by kthread_create().
694  * @k:		thread created by kthread_create().
695  *
696  * Sets kthread_should_park() for @k to return false, wakes it, and
697  * waits for it to return. If the thread is marked percpu then its
698  * bound to the cpu again.
699  */
kthread_unpark(struct task_struct * k)700 void kthread_unpark(struct task_struct *k)
701 {
702 	struct kthread *kthread = to_kthread(k);
703 
704 	if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
705 		return;
706 	/*
707 	 * Newly created kthread was parked when the CPU was offline.
708 	 * The binding was lost and we need to set it again.
709 	 */
710 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
711 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
712 
713 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
714 	/*
715 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
716 	 */
717 	wake_up_state(k, TASK_PARKED);
718 }
719 EXPORT_SYMBOL_GPL(kthread_unpark);
720 
721 /**
722  * kthread_park - park a thread created by kthread_create().
723  * @k: thread created by kthread_create().
724  *
725  * Sets kthread_should_park() for @k to return true, wakes it, and
726  * waits for it to return. This can also be called after kthread_create()
727  * instead of calling wake_up_process(): the thread will park without
728  * calling threadfn().
729  *
730  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
731  * If called by the kthread itself just the park bit is set.
732  */
kthread_park(struct task_struct * k)733 int kthread_park(struct task_struct *k)
734 {
735 	struct kthread *kthread = to_kthread(k);
736 
737 	if (WARN_ON(k->flags & PF_EXITING))
738 		return -ENOSYS;
739 
740 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
741 		return -EBUSY;
742 
743 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
744 	if (k != current) {
745 		wake_up_process(k);
746 		/*
747 		 * Wait for __kthread_parkme() to complete(), this means we
748 		 * _will_ have TASK_PARKED and are about to call schedule().
749 		 */
750 		wait_for_completion(&kthread->parked);
751 		/*
752 		 * Now wait for that schedule() to complete and the task to
753 		 * get scheduled out.
754 		 */
755 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
756 	}
757 
758 	return 0;
759 }
760 EXPORT_SYMBOL_GPL(kthread_park);
761 
762 /**
763  * kthread_stop - stop a thread created by kthread_create().
764  * @k: thread created by kthread_create().
765  *
766  * Sets kthread_should_stop() for @k to return true, wakes it, and
767  * waits for it to exit. This can also be called after kthread_create()
768  * instead of calling wake_up_process(): the thread will exit without
769  * calling threadfn().
770  *
771  * If threadfn() may call kthread_exit() itself, the caller must ensure
772  * task_struct can't go away.
773  *
774  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
775  * was never called.
776  */
kthread_stop(struct task_struct * k)777 int kthread_stop(struct task_struct *k)
778 {
779 	struct kthread *kthread;
780 	int ret;
781 
782 	trace_sched_kthread_stop(k);
783 
784 	get_task_struct(k);
785 	kthread = to_kthread(k);
786 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
787 	kthread_unpark(k);
788 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
789 	wake_up_process(k);
790 	wait_for_completion(&kthread->exited);
791 	ret = kthread->result;
792 	put_task_struct(k);
793 
794 	trace_sched_kthread_stop_ret(ret);
795 	return ret;
796 }
797 EXPORT_SYMBOL(kthread_stop);
798 
799 /**
800  * kthread_stop_put - stop a thread and put its task struct
801  * @k: thread created by kthread_create().
802  *
803  * Stops a thread created by kthread_create() and put its task_struct.
804  * Only use when holding an extra task struct reference obtained by
805  * calling get_task_struct().
806  */
kthread_stop_put(struct task_struct * k)807 int kthread_stop_put(struct task_struct *k)
808 {
809 	int ret;
810 
811 	ret = kthread_stop(k);
812 	put_task_struct(k);
813 	return ret;
814 }
815 EXPORT_SYMBOL(kthread_stop_put);
816 
kthreadd(void * unused)817 int kthreadd(void *unused)
818 {
819 	static const char comm[TASK_COMM_LEN] = "kthreadd";
820 	struct task_struct *tsk = current;
821 
822 	/* Setup a clean context for our children to inherit. */
823 	set_task_comm(tsk, comm);
824 	ignore_signals(tsk);
825 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
826 	set_mems_allowed(node_states[N_MEMORY]);
827 
828 	current->flags |= PF_NOFREEZE;
829 	cgroup_init_kthreadd();
830 
831 	for (;;) {
832 		set_current_state(TASK_INTERRUPTIBLE);
833 		if (list_empty(&kthread_create_list))
834 			schedule();
835 		__set_current_state(TASK_RUNNING);
836 
837 		spin_lock(&kthread_create_lock);
838 		while (!list_empty(&kthread_create_list)) {
839 			struct kthread_create_info *create;
840 
841 			create = list_entry(kthread_create_list.next,
842 					    struct kthread_create_info, list);
843 			list_del_init(&create->list);
844 			spin_unlock(&kthread_create_lock);
845 
846 			create_kthread(create);
847 
848 			spin_lock(&kthread_create_lock);
849 		}
850 		spin_unlock(&kthread_create_lock);
851 	}
852 
853 	return 0;
854 }
855 
kthread_affine_preferred(struct task_struct * p,const struct cpumask * mask)856 int kthread_affine_preferred(struct task_struct *p, const struct cpumask *mask)
857 {
858 	struct kthread *kthread = to_kthread(p);
859 	cpumask_var_t affinity;
860 	unsigned long flags;
861 	int ret = 0;
862 
863 	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE) || kthread->started) {
864 		WARN_ON(1);
865 		return -EINVAL;
866 	}
867 
868 	WARN_ON_ONCE(kthread->preferred_affinity);
869 
870 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
871 		return -ENOMEM;
872 
873 	kthread->preferred_affinity = kzalloc(sizeof(struct cpumask), GFP_KERNEL);
874 	if (!kthread->preferred_affinity) {
875 		ret = -ENOMEM;
876 		goto out;
877 	}
878 
879 	mutex_lock(&kthreads_hotplug_lock);
880 	cpumask_copy(kthread->preferred_affinity, mask);
881 	WARN_ON_ONCE(!list_empty(&kthread->hotplug_node));
882 	list_add_tail(&kthread->hotplug_node, &kthreads_hotplug);
883 	kthread_fetch_affinity(kthread, affinity);
884 
885 	/* It's safe because the task is inactive. */
886 	raw_spin_lock_irqsave(&p->pi_lock, flags);
887 	do_set_cpus_allowed(p, affinity);
888 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
889 
890 	mutex_unlock(&kthreads_hotplug_lock);
891 out:
892 	free_cpumask_var(affinity);
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(kthread_affine_preferred);
897 
898 /*
899  * Re-affine kthreads according to their preferences
900  * and the newly online CPU. The CPU down part is handled
901  * by select_fallback_rq() which default re-affines to
902  * housekeepers from other nodes in case the preferred
903  * affinity doesn't apply anymore.
904  */
kthreads_online_cpu(unsigned int cpu)905 static int kthreads_online_cpu(unsigned int cpu)
906 {
907 	cpumask_var_t affinity;
908 	struct kthread *k;
909 	int ret;
910 
911 	guard(mutex)(&kthreads_hotplug_lock);
912 
913 	if (list_empty(&kthreads_hotplug))
914 		return 0;
915 
916 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
917 		return -ENOMEM;
918 
919 	ret = 0;
920 
921 	list_for_each_entry(k, &kthreads_hotplug, hotplug_node) {
922 		if (WARN_ON_ONCE((k->task->flags & PF_NO_SETAFFINITY) ||
923 				 kthread_is_per_cpu(k->task))) {
924 			ret = -EINVAL;
925 			continue;
926 		}
927 		kthread_fetch_affinity(k, affinity);
928 		set_cpus_allowed_ptr(k->task, affinity);
929 	}
930 
931 	free_cpumask_var(affinity);
932 
933 	return ret;
934 }
935 
kthreads_init(void)936 static int kthreads_init(void)
937 {
938 	return cpuhp_setup_state(CPUHP_AP_KTHREADS_ONLINE, "kthreads:online",
939 				kthreads_online_cpu, NULL);
940 }
941 early_initcall(kthreads_init);
942 
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)943 void __kthread_init_worker(struct kthread_worker *worker,
944 				const char *name,
945 				struct lock_class_key *key)
946 {
947 	memset(worker, 0, sizeof(struct kthread_worker));
948 	raw_spin_lock_init(&worker->lock);
949 	lockdep_set_class_and_name(&worker->lock, key, name);
950 	INIT_LIST_HEAD(&worker->work_list);
951 	INIT_LIST_HEAD(&worker->delayed_work_list);
952 }
953 EXPORT_SYMBOL_GPL(__kthread_init_worker);
954 
955 /**
956  * kthread_worker_fn - kthread function to process kthread_worker
957  * @worker_ptr: pointer to initialized kthread_worker
958  *
959  * This function implements the main cycle of kthread worker. It processes
960  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
961  * is empty.
962  *
963  * The works are not allowed to keep any locks, disable preemption or interrupts
964  * when they finish. There is defined a safe point for freezing when one work
965  * finishes and before a new one is started.
966  *
967  * Also the works must not be handled by more than one worker at the same time,
968  * see also kthread_queue_work().
969  */
kthread_worker_fn(void * worker_ptr)970 int kthread_worker_fn(void *worker_ptr)
971 {
972 	struct kthread_worker *worker = worker_ptr;
973 	struct kthread_work *work;
974 
975 	/*
976 	 * FIXME: Update the check and remove the assignment when all kthread
977 	 * worker users are created using kthread_create_worker*() functions.
978 	 */
979 	WARN_ON(worker->task && worker->task != current);
980 	worker->task = current;
981 
982 	if (worker->flags & KTW_FREEZABLE)
983 		set_freezable();
984 
985 repeat:
986 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
987 
988 	if (kthread_should_stop()) {
989 		__set_current_state(TASK_RUNNING);
990 		raw_spin_lock_irq(&worker->lock);
991 		worker->task = NULL;
992 		raw_spin_unlock_irq(&worker->lock);
993 		return 0;
994 	}
995 
996 	work = NULL;
997 	raw_spin_lock_irq(&worker->lock);
998 	if (!list_empty(&worker->work_list)) {
999 		work = list_first_entry(&worker->work_list,
1000 					struct kthread_work, node);
1001 		list_del_init(&work->node);
1002 	}
1003 	worker->current_work = work;
1004 	raw_spin_unlock_irq(&worker->lock);
1005 
1006 	if (work) {
1007 		kthread_work_func_t func = work->func;
1008 		__set_current_state(TASK_RUNNING);
1009 		trace_sched_kthread_work_execute_start(work);
1010 		work->func(work);
1011 		/*
1012 		 * Avoid dereferencing work after this point.  The trace
1013 		 * event only cares about the address.
1014 		 */
1015 		trace_sched_kthread_work_execute_end(work, func);
1016 	} else if (!freezing(current)) {
1017 		schedule();
1018 	} else {
1019 		/*
1020 		 * Handle the case where the current remains
1021 		 * TASK_INTERRUPTIBLE. try_to_freeze() expects
1022 		 * the current to be TASK_RUNNING.
1023 		 */
1024 		__set_current_state(TASK_RUNNING);
1025 	}
1026 
1027 	try_to_freeze();
1028 	cond_resched();
1029 	goto repeat;
1030 }
1031 EXPORT_SYMBOL_GPL(kthread_worker_fn);
1032 
1033 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker_on_node(unsigned int flags,int node,const char namefmt[],va_list args)1034 __kthread_create_worker_on_node(unsigned int flags, int node,
1035 				const char namefmt[], va_list args)
1036 {
1037 	struct kthread_worker *worker;
1038 	struct task_struct *task;
1039 
1040 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1041 	if (!worker)
1042 		return ERR_PTR(-ENOMEM);
1043 
1044 	kthread_init_worker(worker);
1045 
1046 	task = __kthread_create_on_node(kthread_worker_fn, worker,
1047 					node, namefmt, args);
1048 	if (IS_ERR(task))
1049 		goto fail_task;
1050 
1051 	worker->flags = flags;
1052 	worker->task = task;
1053 
1054 	return worker;
1055 
1056 fail_task:
1057 	kfree(worker);
1058 	return ERR_CAST(task);
1059 }
1060 
1061 /**
1062  * kthread_create_worker_on_node - create a kthread worker
1063  * @flags: flags modifying the default behavior of the worker
1064  * @node: task structure for the thread is allocated on this node
1065  * @namefmt: printf-style name for the kthread worker (task).
1066  *
1067  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1068  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1069  * when the caller was killed by a fatal signal.
1070  */
1071 struct kthread_worker *
kthread_create_worker_on_node(unsigned int flags,int node,const char namefmt[],...)1072 kthread_create_worker_on_node(unsigned int flags, int node, const char namefmt[], ...)
1073 {
1074 	struct kthread_worker *worker;
1075 	va_list args;
1076 
1077 	va_start(args, namefmt);
1078 	worker = __kthread_create_worker_on_node(flags, node, namefmt, args);
1079 	va_end(args);
1080 
1081 	return worker;
1082 }
1083 EXPORT_SYMBOL(kthread_create_worker_on_node);
1084 
1085 /**
1086  * kthread_create_worker_on_cpu - create a kthread worker and bind it
1087  *	to a given CPU and the associated NUMA node.
1088  * @cpu: CPU number
1089  * @flags: flags modifying the default behavior of the worker
1090  * @namefmt: printf-style name for the thread. Format is restricted
1091  *	     to "name.*%u". Code fills in cpu number.
1092  *
1093  * Use a valid CPU number if you want to bind the kthread worker
1094  * to the given CPU and the associated NUMA node.
1095  *
1096  * A good practice is to add the cpu number also into the worker name.
1097  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
1098  *
1099  * CPU hotplug:
1100  * The kthread worker API is simple and generic. It just provides a way
1101  * to create, use, and destroy workers.
1102  *
1103  * It is up to the API user how to handle CPU hotplug. They have to decide
1104  * how to handle pending work items, prevent queuing new ones, and
1105  * restore the functionality when the CPU goes off and on. There are a
1106  * few catches:
1107  *
1108  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
1109  *
1110  *    - The worker might not exist when the CPU was off when the user
1111  *      created the workers.
1112  *
1113  * Good practice is to implement two CPU hotplug callbacks and to
1114  * destroy/create the worker when the CPU goes down/up.
1115  *
1116  * Return:
1117  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
1118  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
1119  * when the caller was killed by a fatal signal.
1120  */
1121 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[])1122 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
1123 			     const char namefmt[])
1124 {
1125 	struct kthread_worker *worker;
1126 
1127 	worker = kthread_create_worker_on_node(flags, cpu_to_node(cpu), namefmt, cpu);
1128 	if (!IS_ERR(worker))
1129 		kthread_bind(worker->task, cpu);
1130 
1131 	return worker;
1132 }
1133 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
1134 
1135 /*
1136  * Returns true when the work could not be queued at the moment.
1137  * It happens when it is already pending in a worker list
1138  * or when it is being cancelled.
1139  */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)1140 static inline bool queuing_blocked(struct kthread_worker *worker,
1141 				   struct kthread_work *work)
1142 {
1143 	lockdep_assert_held(&worker->lock);
1144 
1145 	return !list_empty(&work->node) || work->canceling;
1146 }
1147 
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)1148 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
1149 					     struct kthread_work *work)
1150 {
1151 	lockdep_assert_held(&worker->lock);
1152 	WARN_ON_ONCE(!list_empty(&work->node));
1153 	/* Do not use a work with >1 worker, see kthread_queue_work() */
1154 	WARN_ON_ONCE(work->worker && work->worker != worker);
1155 }
1156 
1157 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)1158 static void kthread_insert_work(struct kthread_worker *worker,
1159 				struct kthread_work *work,
1160 				struct list_head *pos)
1161 {
1162 	kthread_insert_work_sanity_check(worker, work);
1163 
1164 	trace_sched_kthread_work_queue_work(worker, work);
1165 
1166 	list_add_tail(&work->node, pos);
1167 	work->worker = worker;
1168 	if (!worker->current_work && likely(worker->task))
1169 		wake_up_process(worker->task);
1170 }
1171 
1172 /**
1173  * kthread_queue_work - queue a kthread_work
1174  * @worker: target kthread_worker
1175  * @work: kthread_work to queue
1176  *
1177  * Queue @work to work processor @task for async execution.  @task
1178  * must have been created with kthread_create_worker().  Returns %true
1179  * if @work was successfully queued, %false if it was already pending.
1180  *
1181  * Reinitialize the work if it needs to be used by another worker.
1182  * For example, when the worker was stopped and started again.
1183  */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)1184 bool kthread_queue_work(struct kthread_worker *worker,
1185 			struct kthread_work *work)
1186 {
1187 	bool ret = false;
1188 	unsigned long flags;
1189 
1190 	raw_spin_lock_irqsave(&worker->lock, flags);
1191 	if (!queuing_blocked(worker, work)) {
1192 		kthread_insert_work(worker, work, &worker->work_list);
1193 		ret = true;
1194 	}
1195 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(kthread_queue_work);
1199 
1200 /**
1201  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1202  *	delayed work when the timer expires.
1203  * @t: pointer to the expired timer
1204  *
1205  * The format of the function is defined by struct timer_list.
1206  * It should have been called from irqsafe timer with irq already off.
1207  */
kthread_delayed_work_timer_fn(struct timer_list * t)1208 void kthread_delayed_work_timer_fn(struct timer_list *t)
1209 {
1210 	struct kthread_delayed_work *dwork = timer_container_of(dwork, t,
1211 								timer);
1212 	struct kthread_work *work = &dwork->work;
1213 	struct kthread_worker *worker = work->worker;
1214 	unsigned long flags;
1215 
1216 	/*
1217 	 * This might happen when a pending work is reinitialized.
1218 	 * It means that it is used a wrong way.
1219 	 */
1220 	if (WARN_ON_ONCE(!worker))
1221 		return;
1222 
1223 	raw_spin_lock_irqsave(&worker->lock, flags);
1224 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1225 	WARN_ON_ONCE(work->worker != worker);
1226 
1227 	/* Move the work from worker->delayed_work_list. */
1228 	WARN_ON_ONCE(list_empty(&work->node));
1229 	list_del_init(&work->node);
1230 	if (!work->canceling)
1231 		kthread_insert_work(worker, work, &worker->work_list);
1232 
1233 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1234 }
1235 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1236 
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1237 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1238 					 struct kthread_delayed_work *dwork,
1239 					 unsigned long delay)
1240 {
1241 	struct timer_list *timer = &dwork->timer;
1242 	struct kthread_work *work = &dwork->work;
1243 
1244 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1245 
1246 	/*
1247 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1248 	 * both optimization and correctness.  The earliest @timer can
1249 	 * expire is on the closest next tick and delayed_work users depend
1250 	 * on that there's no such delay when @delay is 0.
1251 	 */
1252 	if (!delay) {
1253 		kthread_insert_work(worker, work, &worker->work_list);
1254 		return;
1255 	}
1256 
1257 	/* Be paranoid and try to detect possible races already now. */
1258 	kthread_insert_work_sanity_check(worker, work);
1259 
1260 	list_add(&work->node, &worker->delayed_work_list);
1261 	work->worker = worker;
1262 	timer->expires = jiffies + delay;
1263 	add_timer(timer);
1264 }
1265 
1266 /**
1267  * kthread_queue_delayed_work - queue the associated kthread work
1268  *	after a delay.
1269  * @worker: target kthread_worker
1270  * @dwork: kthread_delayed_work to queue
1271  * @delay: number of jiffies to wait before queuing
1272  *
1273  * If the work has not been pending it starts a timer that will queue
1274  * the work after the given @delay. If @delay is zero, it queues the
1275  * work immediately.
1276  *
1277  * Return: %false if the @work has already been pending. It means that
1278  * either the timer was running or the work was queued. It returns %true
1279  * otherwise.
1280  */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1281 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1282 				struct kthread_delayed_work *dwork,
1283 				unsigned long delay)
1284 {
1285 	struct kthread_work *work = &dwork->work;
1286 	unsigned long flags;
1287 	bool ret = false;
1288 
1289 	raw_spin_lock_irqsave(&worker->lock, flags);
1290 
1291 	if (!queuing_blocked(worker, work)) {
1292 		__kthread_queue_delayed_work(worker, dwork, delay);
1293 		ret = true;
1294 	}
1295 
1296 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1297 	return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1300 
1301 struct kthread_flush_work {
1302 	struct kthread_work	work;
1303 	struct completion	done;
1304 };
1305 
kthread_flush_work_fn(struct kthread_work * work)1306 static void kthread_flush_work_fn(struct kthread_work *work)
1307 {
1308 	struct kthread_flush_work *fwork =
1309 		container_of(work, struct kthread_flush_work, work);
1310 	complete(&fwork->done);
1311 }
1312 
1313 /**
1314  * kthread_flush_work - flush a kthread_work
1315  * @work: work to flush
1316  *
1317  * If @work is queued or executing, wait for it to finish execution.
1318  */
kthread_flush_work(struct kthread_work * work)1319 void kthread_flush_work(struct kthread_work *work)
1320 {
1321 	struct kthread_flush_work fwork = {
1322 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1323 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1324 	};
1325 	struct kthread_worker *worker;
1326 	bool noop = false;
1327 
1328 	worker = work->worker;
1329 	if (!worker)
1330 		return;
1331 
1332 	raw_spin_lock_irq(&worker->lock);
1333 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1334 	WARN_ON_ONCE(work->worker != worker);
1335 
1336 	if (!list_empty(&work->node))
1337 		kthread_insert_work(worker, &fwork.work, work->node.next);
1338 	else if (worker->current_work == work)
1339 		kthread_insert_work(worker, &fwork.work,
1340 				    worker->work_list.next);
1341 	else
1342 		noop = true;
1343 
1344 	raw_spin_unlock_irq(&worker->lock);
1345 
1346 	if (!noop)
1347 		wait_for_completion(&fwork.done);
1348 }
1349 EXPORT_SYMBOL_GPL(kthread_flush_work);
1350 
1351 /*
1352  * Make sure that the timer is neither set nor running and could
1353  * not manipulate the work list_head any longer.
1354  *
1355  * The function is called under worker->lock. The lock is temporary
1356  * released but the timer can't be set again in the meantime.
1357  */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1358 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1359 					      unsigned long *flags)
1360 {
1361 	struct kthread_delayed_work *dwork =
1362 		container_of(work, struct kthread_delayed_work, work);
1363 	struct kthread_worker *worker = work->worker;
1364 
1365 	/*
1366 	 * timer_delete_sync() must be called to make sure that the timer
1367 	 * callback is not running. The lock must be temporary released
1368 	 * to avoid a deadlock with the callback. In the meantime,
1369 	 * any queuing is blocked by setting the canceling counter.
1370 	 */
1371 	work->canceling++;
1372 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1373 	timer_delete_sync(&dwork->timer);
1374 	raw_spin_lock_irqsave(&worker->lock, *flags);
1375 	work->canceling--;
1376 }
1377 
1378 /*
1379  * This function removes the work from the worker queue.
1380  *
1381  * It is called under worker->lock. The caller must make sure that
1382  * the timer used by delayed work is not running, e.g. by calling
1383  * kthread_cancel_delayed_work_timer().
1384  *
1385  * The work might still be in use when this function finishes. See the
1386  * current_work proceed by the worker.
1387  *
1388  * Return: %true if @work was pending and successfully canceled,
1389  *	%false if @work was not pending
1390  */
__kthread_cancel_work(struct kthread_work * work)1391 static bool __kthread_cancel_work(struct kthread_work *work)
1392 {
1393 	/*
1394 	 * Try to remove the work from a worker list. It might either
1395 	 * be from worker->work_list or from worker->delayed_work_list.
1396 	 */
1397 	if (!list_empty(&work->node)) {
1398 		list_del_init(&work->node);
1399 		return true;
1400 	}
1401 
1402 	return false;
1403 }
1404 
1405 /**
1406  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1407  * @worker: kthread worker to use
1408  * @dwork: kthread delayed work to queue
1409  * @delay: number of jiffies to wait before queuing
1410  *
1411  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1412  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1413  * @work is guaranteed to be queued immediately.
1414  *
1415  * Return: %false if @dwork was idle and queued, %true otherwise.
1416  *
1417  * A special case is when the work is being canceled in parallel.
1418  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1419  * or yet another kthread_mod_delayed_work() call. We let the other command
1420  * win and return %true here. The return value can be used for reference
1421  * counting and the number of queued works stays the same. Anyway, the caller
1422  * is supposed to synchronize these operations a reasonable way.
1423  *
1424  * This function is safe to call from any context including IRQ handler.
1425  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1426  * for details.
1427  */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1428 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1429 			      struct kthread_delayed_work *dwork,
1430 			      unsigned long delay)
1431 {
1432 	struct kthread_work *work = &dwork->work;
1433 	unsigned long flags;
1434 	int ret;
1435 
1436 	raw_spin_lock_irqsave(&worker->lock, flags);
1437 
1438 	/* Do not bother with canceling when never queued. */
1439 	if (!work->worker) {
1440 		ret = false;
1441 		goto fast_queue;
1442 	}
1443 
1444 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1445 	WARN_ON_ONCE(work->worker != worker);
1446 
1447 	/*
1448 	 * Temporary cancel the work but do not fight with another command
1449 	 * that is canceling the work as well.
1450 	 *
1451 	 * It is a bit tricky because of possible races with another
1452 	 * mod_delayed_work() and cancel_delayed_work() callers.
1453 	 *
1454 	 * The timer must be canceled first because worker->lock is released
1455 	 * when doing so. But the work can be removed from the queue (list)
1456 	 * only when it can be queued again so that the return value can
1457 	 * be used for reference counting.
1458 	 */
1459 	kthread_cancel_delayed_work_timer(work, &flags);
1460 	if (work->canceling) {
1461 		/* The number of works in the queue does not change. */
1462 		ret = true;
1463 		goto out;
1464 	}
1465 	ret = __kthread_cancel_work(work);
1466 
1467 fast_queue:
1468 	__kthread_queue_delayed_work(worker, dwork, delay);
1469 out:
1470 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1474 
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1475 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1476 {
1477 	struct kthread_worker *worker = work->worker;
1478 	unsigned long flags;
1479 	int ret = false;
1480 
1481 	if (!worker)
1482 		goto out;
1483 
1484 	raw_spin_lock_irqsave(&worker->lock, flags);
1485 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1486 	WARN_ON_ONCE(work->worker != worker);
1487 
1488 	if (is_dwork)
1489 		kthread_cancel_delayed_work_timer(work, &flags);
1490 
1491 	ret = __kthread_cancel_work(work);
1492 
1493 	if (worker->current_work != work)
1494 		goto out_fast;
1495 
1496 	/*
1497 	 * The work is in progress and we need to wait with the lock released.
1498 	 * In the meantime, block any queuing by setting the canceling counter.
1499 	 */
1500 	work->canceling++;
1501 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1502 	kthread_flush_work(work);
1503 	raw_spin_lock_irqsave(&worker->lock, flags);
1504 	work->canceling--;
1505 
1506 out_fast:
1507 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1508 out:
1509 	return ret;
1510 }
1511 
1512 /**
1513  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1514  * @work: the kthread work to cancel
1515  *
1516  * Cancel @work and wait for its execution to finish.  This function
1517  * can be used even if the work re-queues itself. On return from this
1518  * function, @work is guaranteed to be not pending or executing on any CPU.
1519  *
1520  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1521  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1522  *
1523  * The caller must ensure that the worker on which @work was last
1524  * queued can't be destroyed before this function returns.
1525  *
1526  * Return: %true if @work was pending, %false otherwise.
1527  */
kthread_cancel_work_sync(struct kthread_work * work)1528 bool kthread_cancel_work_sync(struct kthread_work *work)
1529 {
1530 	return __kthread_cancel_work_sync(work, false);
1531 }
1532 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1533 
1534 /**
1535  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1536  *	wait for it to finish.
1537  * @dwork: the kthread delayed work to cancel
1538  *
1539  * This is kthread_cancel_work_sync() for delayed works.
1540  *
1541  * Return: %true if @dwork was pending, %false otherwise.
1542  */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1543 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1544 {
1545 	return __kthread_cancel_work_sync(&dwork->work, true);
1546 }
1547 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1548 
1549 /**
1550  * kthread_flush_worker - flush all current works on a kthread_worker
1551  * @worker: worker to flush
1552  *
1553  * Wait until all currently executing or pending works on @worker are
1554  * finished.
1555  */
kthread_flush_worker(struct kthread_worker * worker)1556 void kthread_flush_worker(struct kthread_worker *worker)
1557 {
1558 	struct kthread_flush_work fwork = {
1559 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1560 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1561 	};
1562 
1563 	kthread_queue_work(worker, &fwork.work);
1564 	wait_for_completion(&fwork.done);
1565 }
1566 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1567 
1568 /**
1569  * kthread_destroy_worker - destroy a kthread worker
1570  * @worker: worker to be destroyed
1571  *
1572  * Flush and destroy @worker.  The simple flush is enough because the kthread
1573  * worker API is used only in trivial scenarios.  There are no multi-step state
1574  * machines needed.
1575  *
1576  * Note that this function is not responsible for handling delayed work, so
1577  * caller should be responsible for queuing or canceling all delayed work items
1578  * before invoke this function.
1579  */
kthread_destroy_worker(struct kthread_worker * worker)1580 void kthread_destroy_worker(struct kthread_worker *worker)
1581 {
1582 	struct task_struct *task;
1583 
1584 	task = worker->task;
1585 	if (WARN_ON(!task))
1586 		return;
1587 
1588 	kthread_flush_worker(worker);
1589 	kthread_stop(task);
1590 	WARN_ON(!list_empty(&worker->delayed_work_list));
1591 	WARN_ON(!list_empty(&worker->work_list));
1592 	kfree(worker);
1593 }
1594 EXPORT_SYMBOL(kthread_destroy_worker);
1595 
1596 /**
1597  * kthread_use_mm - make the calling kthread operate on an address space
1598  * @mm: address space to operate on
1599  */
kthread_use_mm(struct mm_struct * mm)1600 void kthread_use_mm(struct mm_struct *mm)
1601 {
1602 	struct mm_struct *active_mm;
1603 	struct task_struct *tsk = current;
1604 
1605 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1606 	WARN_ON_ONCE(tsk->mm);
1607 
1608 	/*
1609 	 * It is possible for mm to be the same as tsk->active_mm, but
1610 	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1611 	 * because these references are not equivalent.
1612 	 */
1613 	mmgrab(mm);
1614 
1615 	task_lock(tsk);
1616 	/* Hold off tlb flush IPIs while switching mm's */
1617 	local_irq_disable();
1618 	active_mm = tsk->active_mm;
1619 	tsk->active_mm = mm;
1620 	tsk->mm = mm;
1621 	membarrier_update_current_mm(mm);
1622 	switch_mm_irqs_off(active_mm, mm, tsk);
1623 	local_irq_enable();
1624 	task_unlock(tsk);
1625 #ifdef finish_arch_post_lock_switch
1626 	finish_arch_post_lock_switch();
1627 #endif
1628 
1629 	/*
1630 	 * When a kthread starts operating on an address space, the loop
1631 	 * in membarrier_{private,global}_expedited() may not observe
1632 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1633 	 * memory barrier after storing to tsk->mm, before accessing
1634 	 * user-space memory. A full memory barrier for membarrier
1635 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1636 	 * mmdrop_lazy_tlb().
1637 	 */
1638 	mmdrop_lazy_tlb(active_mm);
1639 }
1640 EXPORT_SYMBOL_GPL(kthread_use_mm);
1641 
1642 /**
1643  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1644  * @mm: address space to operate on
1645  */
kthread_unuse_mm(struct mm_struct * mm)1646 void kthread_unuse_mm(struct mm_struct *mm)
1647 {
1648 	struct task_struct *tsk = current;
1649 
1650 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1651 	WARN_ON_ONCE(!tsk->mm);
1652 
1653 	task_lock(tsk);
1654 	/*
1655 	 * When a kthread stops operating on an address space, the loop
1656 	 * in membarrier_{private,global}_expedited() may not observe
1657 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1658 	 * memory barrier after accessing user-space memory, before
1659 	 * clearing tsk->mm.
1660 	 */
1661 	smp_mb__after_spinlock();
1662 	local_irq_disable();
1663 	tsk->mm = NULL;
1664 	membarrier_update_current_mm(NULL);
1665 	mmgrab_lazy_tlb(mm);
1666 	/* active_mm is still 'mm' */
1667 	enter_lazy_tlb(mm, tsk);
1668 	local_irq_enable();
1669 	task_unlock(tsk);
1670 
1671 	mmdrop(mm);
1672 }
1673 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1674 
1675 #ifdef CONFIG_BLK_CGROUP
1676 /**
1677  * kthread_associate_blkcg - associate blkcg to current kthread
1678  * @css: the cgroup info
1679  *
1680  * Current thread must be a kthread. The thread is running jobs on behalf of
1681  * other threads. In some cases, we expect the jobs attach cgroup info of
1682  * original threads instead of that of current thread. This function stores
1683  * original thread's cgroup info in current kthread context for later
1684  * retrieval.
1685  */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1686 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1687 {
1688 	struct kthread *kthread;
1689 
1690 	if (!(current->flags & PF_KTHREAD))
1691 		return;
1692 	kthread = to_kthread(current);
1693 	if (!kthread)
1694 		return;
1695 
1696 	if (kthread->blkcg_css) {
1697 		css_put(kthread->blkcg_css);
1698 		kthread->blkcg_css = NULL;
1699 	}
1700 	if (css) {
1701 		css_get(css);
1702 		kthread->blkcg_css = css;
1703 	}
1704 }
1705 EXPORT_SYMBOL(kthread_associate_blkcg);
1706 
1707 /**
1708  * kthread_blkcg - get associated blkcg css of current kthread
1709  *
1710  * Current thread must be a kthread.
1711  */
kthread_blkcg(void)1712 struct cgroup_subsys_state *kthread_blkcg(void)
1713 {
1714 	struct kthread *kthread;
1715 
1716 	if (current->flags & PF_KTHREAD) {
1717 		kthread = to_kthread(current);
1718 		if (kthread)
1719 			return kthread->blkcg_css;
1720 	}
1721 	return NULL;
1722 }
1723 #endif
1724