xref: /linux/drivers/firewire/core-card.c (revision 7061835997daba9e73c723c85bd70bc4c44aef77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
4  */
5 
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
24 
25 #include "core.h"
26 #include <trace/events/firewire.h>
27 
28 #define define_fw_printk_level(func, kern_level)		\
29 void func(const struct fw_card *card, const char *fmt, ...)	\
30 {								\
31 	struct va_format vaf;					\
32 	va_list args;						\
33 								\
34 	va_start(args, fmt);					\
35 	vaf.fmt = fmt;						\
36 	vaf.va = &args;						\
37 	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
38 	       dev_name(card->device), &vaf);			\
39 	va_end(args);						\
40 }
41 define_fw_printk_level(fw_err, KERN_ERR);
42 define_fw_printk_level(fw_notice, KERN_NOTICE);
43 
fw_compute_block_crc(__be32 * block)44 int fw_compute_block_crc(__be32 *block)
45 {
46 	int length;
47 	u16 crc;
48 
49 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51 	*block |= cpu_to_be32(crc);
52 
53 	return length;
54 }
55 
56 static DEFINE_MUTEX(card_mutex);
57 static LIST_HEAD(card_list);
58 
59 static LIST_HEAD(descriptor_list);
60 static int descriptor_count;
61 
62 static __be32 tmp_config_rom[256];
63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64 static size_t config_rom_length = 1 + 4 + 1 + 1;
65 
66 #define BIB_CRC(v)		((v) <<  0)
67 #define BIB_CRC_LENGTH(v)	((v) << 16)
68 #define BIB_INFO_LENGTH(v)	((v) << 24)
69 #define BIB_BUS_NAME		0x31333934 /* "1394" */
70 #define BIB_LINK_SPEED(v)	((v) <<  0)
71 #define BIB_GENERATION(v)	((v) <<  4)
72 #define BIB_MAX_ROM(v)		((v) <<  8)
73 #define BIB_MAX_RECEIVE(v)	((v) << 12)
74 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
75 #define BIB_PMC			((1) << 27)
76 #define BIB_BMC			((1) << 28)
77 #define BIB_ISC			((1) << 29)
78 #define BIB_CMC			((1) << 30)
79 #define BIB_IRMC		((1) << 31)
80 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81 
82 /*
83  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84  * but we have to make it longer because there are many devices whose firmware
85  * is just too slow for that.
86  */
87 #define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
88 
89 #define CANON_OUI		0x000085
90 
generate_config_rom(struct fw_card * card,__be32 * config_rom)91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92 {
93 	struct fw_descriptor *desc;
94 	int i, j, k, length;
95 
96 	/*
97 	 * Initialize contents of config rom buffer.  On the OHCI
98 	 * controller, block reads to the config rom accesses the host
99 	 * memory, but quadlet read access the hardware bus info block
100 	 * registers.  That's just crack, but it means we should make
101 	 * sure the contents of bus info block in host memory matches
102 	 * the version stored in the OHCI registers.
103 	 */
104 
105 	config_rom[0] = cpu_to_be32(
106 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108 	config_rom[2] = cpu_to_be32(
109 		BIB_LINK_SPEED(card->link_speed) |
110 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111 		BIB_MAX_ROM(2) |
112 		BIB_MAX_RECEIVE(card->max_receive) |
113 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114 	config_rom[3] = cpu_to_be32(card->guid >> 32);
115 	config_rom[4] = cpu_to_be32(card->guid);
116 
117 	/* Generate root directory. */
118 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119 	i = 7;
120 	j = 7 + descriptor_count;
121 
122 	/* Generate root directory entries for descriptors. */
123 	list_for_each_entry (desc, &descriptor_list, link) {
124 		if (desc->immediate > 0)
125 			config_rom[i++] = cpu_to_be32(desc->immediate);
126 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
127 		i++;
128 		j += desc->length;
129 	}
130 
131 	/* Update root directory length. */
132 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133 
134 	/* End of root directory, now copy in descriptors. */
135 	list_for_each_entry (desc, &descriptor_list, link) {
136 		for (k = 0; k < desc->length; k++)
137 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
138 		i += desc->length;
139 	}
140 
141 	/* Calculate CRCs for all blocks in the config rom.  This
142 	 * assumes that CRC length and info length are identical for
143 	 * the bus info block, which is always the case for this
144 	 * implementation. */
145 	for (i = 0; i < j; i += length + 1)
146 		length = fw_compute_block_crc(config_rom + i);
147 
148 	WARN_ON(j != config_rom_length);
149 }
150 
update_config_roms(void)151 static void update_config_roms(void)
152 {
153 	struct fw_card *card;
154 
155 	list_for_each_entry (card, &card_list, link) {
156 		generate_config_rom(card, tmp_config_rom);
157 		card->driver->set_config_rom(card, tmp_config_rom,
158 					     config_rom_length);
159 	}
160 }
161 
required_space(struct fw_descriptor * desc)162 static size_t required_space(struct fw_descriptor *desc)
163 {
164 	/* descriptor + entry into root dir + optional immediate entry */
165 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166 }
167 
fw_core_add_descriptor(struct fw_descriptor * desc)168 int fw_core_add_descriptor(struct fw_descriptor *desc)
169 {
170 	size_t i;
171 
172 	/*
173 	 * Check descriptor is valid; the length of all blocks in the
174 	 * descriptor has to add up to exactly the length of the
175 	 * block.
176 	 */
177 	i = 0;
178 	while (i < desc->length)
179 		i += (desc->data[i] >> 16) + 1;
180 
181 	if (i != desc->length)
182 		return -EINVAL;
183 
184 	guard(mutex)(&card_mutex);
185 
186 	if (config_rom_length + required_space(desc) > 256)
187 		return -EBUSY;
188 
189 	list_add_tail(&desc->link, &descriptor_list);
190 	config_rom_length += required_space(desc);
191 	descriptor_count++;
192 	if (desc->immediate > 0)
193 		descriptor_count++;
194 	update_config_roms();
195 
196 	return 0;
197 }
198 EXPORT_SYMBOL(fw_core_add_descriptor);
199 
fw_core_remove_descriptor(struct fw_descriptor * desc)200 void fw_core_remove_descriptor(struct fw_descriptor *desc)
201 {
202 	guard(mutex)(&card_mutex);
203 
204 	list_del(&desc->link);
205 	config_rom_length -= required_space(desc);
206 	descriptor_count--;
207 	if (desc->immediate > 0)
208 		descriptor_count--;
209 	update_config_roms();
210 }
211 EXPORT_SYMBOL(fw_core_remove_descriptor);
212 
reset_bus(struct fw_card * card,bool short_reset)213 static int reset_bus(struct fw_card *card, bool short_reset)
214 {
215 	int reg = short_reset ? 5 : 1;
216 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217 
218 	trace_bus_reset_initiate(card->index, card->generation, short_reset);
219 
220 	return card->driver->update_phy_reg(card, reg, 0, bit);
221 }
222 
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)223 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224 {
225 	trace_bus_reset_schedule(card->index, card->generation, short_reset);
226 
227 	/* We don't try hard to sort out requests of long vs. short resets. */
228 	card->br_short = short_reset;
229 
230 	/* Use an arbitrary short delay to combine multiple reset requests. */
231 	fw_card_get(card);
232 	if (!queue_delayed_work(fw_workqueue, &card->br_work,
233 				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
234 		fw_card_put(card);
235 }
236 EXPORT_SYMBOL(fw_schedule_bus_reset);
237 
br_work(struct work_struct * work)238 static void br_work(struct work_struct *work)
239 {
240 	struct fw_card *card = from_work(card, work, br_work.work);
241 
242 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
243 	if (card->reset_jiffies != 0 &&
244 	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
245 		trace_bus_reset_postpone(card->index, card->generation, card->br_short);
246 
247 		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248 			fw_card_put(card);
249 		return;
250 	}
251 
252 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254 	reset_bus(card, card->br_short);
255 	fw_card_put(card);
256 }
257 
allocate_broadcast_channel(struct fw_card * card,int generation)258 static void allocate_broadcast_channel(struct fw_card *card, int generation)
259 {
260 	int channel, bandwidth = 0;
261 
262 	if (!card->broadcast_channel_allocated) {
263 		fw_iso_resource_manage(card, generation, 1ULL << 31,
264 				       &channel, &bandwidth, true);
265 		if (channel != 31) {
266 			fw_notice(card, "failed to allocate broadcast channel\n");
267 			return;
268 		}
269 		card->broadcast_channel_allocated = true;
270 	}
271 
272 	device_for_each_child(card->device, (void *)(long)generation,
273 			      fw_device_set_broadcast_channel);
274 }
275 
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)276 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
277 {
278 	fw_card_get(card);
279 	if (!schedule_delayed_work(&card->bm_work, delay))
280 		fw_card_put(card);
281 }
282 
bm_work(struct work_struct * work)283 static void bm_work(struct work_struct *work)
284 {
285 	static const char gap_count_table[] = {
286 		63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
287 	};
288 	struct fw_card *card = from_work(card, work, bm_work.work);
289 	struct fw_device *root_device, *irm_device;
290 	struct fw_node *root_node;
291 	int root_id, new_root_id, irm_id, bm_id, local_id;
292 	int gap_count, generation, grace, rcode;
293 	bool do_reset = false;
294 	bool root_device_is_running;
295 	bool root_device_is_cmc;
296 	bool irm_is_1394_1995_only;
297 	bool keep_this_irm;
298 	__be32 transaction_data[2];
299 
300 	spin_lock_irq(&card->lock);
301 
302 	if (card->local_node == NULL) {
303 		spin_unlock_irq(&card->lock);
304 		goto out_put_card;
305 	}
306 
307 	generation = card->generation;
308 
309 	root_node = card->root_node;
310 	fw_node_get(root_node);
311 	root_device = root_node->data;
312 	root_device_is_running = root_device &&
313 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
314 	root_device_is_cmc = root_device && root_device->cmc;
315 
316 	irm_device = card->irm_node->data;
317 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
318 			(irm_device->config_rom[2] & 0x000000f0) == 0;
319 
320 	/* Canon MV5i works unreliably if it is not root node. */
321 	keep_this_irm = irm_device && irm_device->config_rom &&
322 			irm_device->config_rom[3] >> 8 == CANON_OUI;
323 
324 	root_id  = root_node->node_id;
325 	irm_id   = card->irm_node->node_id;
326 	local_id = card->local_node->node_id;
327 
328 	grace = time_after64(get_jiffies_64(),
329 			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
330 
331 	if ((is_next_generation(generation, card->bm_generation) &&
332 	     !card->bm_abdicate) ||
333 	    (card->bm_generation != generation && grace)) {
334 		/*
335 		 * This first step is to figure out who is IRM and
336 		 * then try to become bus manager.  If the IRM is not
337 		 * well defined (e.g. does not have an active link
338 		 * layer or does not responds to our lock request, we
339 		 * will have to do a little vigilante bus management.
340 		 * In that case, we do a goto into the gap count logic
341 		 * so that when we do the reset, we still optimize the
342 		 * gap count.  That could well save a reset in the
343 		 * next generation.
344 		 */
345 
346 		if (!card->irm_node->link_on) {
347 			new_root_id = local_id;
348 			fw_notice(card, "%s, making local node (%02x) root\n",
349 				  "IRM has link off", new_root_id);
350 			goto pick_me;
351 		}
352 
353 		if (irm_is_1394_1995_only && !keep_this_irm) {
354 			new_root_id = local_id;
355 			fw_notice(card, "%s, making local node (%02x) root\n",
356 				  "IRM is not 1394a compliant", new_root_id);
357 			goto pick_me;
358 		}
359 
360 		transaction_data[0] = cpu_to_be32(0x3f);
361 		transaction_data[1] = cpu_to_be32(local_id);
362 
363 		spin_unlock_irq(&card->lock);
364 
365 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
366 				irm_id, generation, SCODE_100,
367 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
368 				transaction_data, 8);
369 
370 		if (rcode == RCODE_GENERATION)
371 			/* Another bus reset, BM work has been rescheduled. */
372 			goto out;
373 
374 		bm_id = be32_to_cpu(transaction_data[0]);
375 
376 		scoped_guard(spinlock_irq, &card->lock) {
377 			if (rcode == RCODE_COMPLETE && generation == card->generation)
378 				card->bm_node_id =
379 				    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
380 		}
381 
382 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
383 			/* Somebody else is BM.  Only act as IRM. */
384 			if (local_id == irm_id)
385 				allocate_broadcast_channel(card, generation);
386 
387 			goto out;
388 		}
389 
390 		if (rcode == RCODE_SEND_ERROR) {
391 			/*
392 			 * We have been unable to send the lock request due to
393 			 * some local problem.  Let's try again later and hope
394 			 * that the problem has gone away by then.
395 			 */
396 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
397 			goto out;
398 		}
399 
400 		spin_lock_irq(&card->lock);
401 
402 		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
403 			/*
404 			 * The lock request failed, maybe the IRM
405 			 * isn't really IRM capable after all. Let's
406 			 * do a bus reset and pick the local node as
407 			 * root, and thus, IRM.
408 			 */
409 			new_root_id = local_id;
410 			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
411 				  fw_rcode_string(rcode), new_root_id);
412 			goto pick_me;
413 		}
414 	} else if (card->bm_generation != generation) {
415 		/*
416 		 * We weren't BM in the last generation, and the last
417 		 * bus reset is less than 125ms ago.  Reschedule this job.
418 		 */
419 		spin_unlock_irq(&card->lock);
420 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
421 		goto out;
422 	}
423 
424 	/*
425 	 * We're bus manager for this generation, so next step is to
426 	 * make sure we have an active cycle master and do gap count
427 	 * optimization.
428 	 */
429 	card->bm_generation = generation;
430 
431 	if (card->gap_count == 0) {
432 		/*
433 		 * If self IDs have inconsistent gap counts, do a
434 		 * bus reset ASAP. The config rom read might never
435 		 * complete, so don't wait for it. However, still
436 		 * send a PHY configuration packet prior to the
437 		 * bus reset. The PHY configuration packet might
438 		 * fail, but 1394-2008 8.4.5.2 explicitly permits
439 		 * it in this case, so it should be safe to try.
440 		 */
441 		new_root_id = local_id;
442 		/*
443 		 * We must always send a bus reset if the gap count
444 		 * is inconsistent, so bypass the 5-reset limit.
445 		 */
446 		card->bm_retries = 0;
447 	} else if (root_device == NULL) {
448 		/*
449 		 * Either link_on is false, or we failed to read the
450 		 * config rom.  In either case, pick another root.
451 		 */
452 		new_root_id = local_id;
453 	} else if (!root_device_is_running) {
454 		/*
455 		 * If we haven't probed this device yet, bail out now
456 		 * and let's try again once that's done.
457 		 */
458 		spin_unlock_irq(&card->lock);
459 		goto out;
460 	} else if (root_device_is_cmc) {
461 		/*
462 		 * We will send out a force root packet for this
463 		 * node as part of the gap count optimization.
464 		 */
465 		new_root_id = root_id;
466 	} else {
467 		/*
468 		 * Current root has an active link layer and we
469 		 * successfully read the config rom, but it's not
470 		 * cycle master capable.
471 		 */
472 		new_root_id = local_id;
473 	}
474 
475  pick_me:
476 	/*
477 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
478 	 * the typically much larger 1394b beta repeater delays though.
479 	 */
480 	if (!card->beta_repeaters_present &&
481 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
482 		gap_count = gap_count_table[root_node->max_hops];
483 	else
484 		gap_count = 63;
485 
486 	/*
487 	 * Finally, figure out if we should do a reset or not.  If we have
488 	 * done less than 5 resets with the same physical topology and we
489 	 * have either a new root or a new gap count setting, let's do it.
490 	 */
491 
492 	if (card->bm_retries++ < 5 &&
493 	    (card->gap_count != gap_count || new_root_id != root_id))
494 		do_reset = true;
495 
496 	spin_unlock_irq(&card->lock);
497 
498 	if (do_reset) {
499 		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
500 			  new_root_id, gap_count);
501 		fw_send_phy_config(card, new_root_id, generation, gap_count);
502 		/*
503 		 * Where possible, use a short bus reset to minimize
504 		 * disruption to isochronous transfers. But in the event
505 		 * of a gap count inconsistency, use a long bus reset.
506 		 *
507 		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
508 		 * may set different gap counts after a bus reset. On a mixed
509 		 * 1394/1394a bus, a short bus reset can get doubled. Some
510 		 * nodes may treat the double reset as one bus reset and others
511 		 * may treat it as two, causing a gap count inconsistency
512 		 * again. Using a long bus reset prevents this.
513 		 */
514 		reset_bus(card, card->gap_count != 0);
515 		/* Will allocate broadcast channel after the reset. */
516 		goto out;
517 	}
518 
519 	if (root_device_is_cmc) {
520 		/*
521 		 * Make sure that the cycle master sends cycle start packets.
522 		 */
523 		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
524 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
525 				root_id, generation, SCODE_100,
526 				CSR_REGISTER_BASE + CSR_STATE_SET,
527 				transaction_data, 4);
528 		if (rcode == RCODE_GENERATION)
529 			goto out;
530 	}
531 
532 	if (local_id == irm_id)
533 		allocate_broadcast_channel(card, generation);
534 
535  out:
536 	fw_node_put(root_node);
537  out_put_card:
538 	fw_card_put(card);
539 }
540 
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)541 void fw_card_initialize(struct fw_card *card,
542 			const struct fw_card_driver *driver,
543 			struct device *device)
544 {
545 	static atomic_t index = ATOMIC_INIT(-1);
546 
547 	card->index = atomic_inc_return(&index);
548 	card->driver = driver;
549 	card->device = device;
550 	card->current_tlabel = 0;
551 	card->tlabel_mask = 0;
552 	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
553 	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
554 	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
555 	card->split_timeout_jiffies =
556 			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
557 	card->color = 0;
558 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
559 
560 	kref_init(&card->kref);
561 	init_completion(&card->done);
562 	INIT_LIST_HEAD(&card->transaction_list);
563 	INIT_LIST_HEAD(&card->phy_receiver_list);
564 	spin_lock_init(&card->lock);
565 
566 	card->local_node = NULL;
567 
568 	INIT_DELAYED_WORK(&card->br_work, br_work);
569 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
570 }
571 EXPORT_SYMBOL(fw_card_initialize);
572 
fw_card_add(struct fw_card * card,u32 max_receive,u32 link_speed,u64 guid,unsigned int supported_isoc_contexts)573 int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
574 		unsigned int supported_isoc_contexts)
575 {
576 	int ret;
577 
578 	// This workqueue should be:
579 	//  * != WQ_BH			Sleepable.
580 	//  * == WQ_UNBOUND		Any core can process data for isoc context. The
581 	//				implementation of unit protocol could consumes the core
582 	//				longer somehow.
583 	//  * != WQ_MEM_RECLAIM		Not used for any backend of block device.
584 	//  * == WQ_FREEZABLE		Isochronous communication is at regular interval in real
585 	//				time, thus should be drained if possible at freeze phase.
586 	//  * == WQ_HIGHPRI		High priority to process semi-realtime timestamped data.
587 	//  * == WQ_SYSFS		Parameters are available via sysfs.
588 	//  * max_active == n_it + n_ir	A hardIRQ could notify events for multiple isochronous
589 	//				contexts if they are scheduled to the same cycle.
590 	card->isoc_wq = alloc_workqueue("firewire-isoc-card%u",
591 					WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
592 					supported_isoc_contexts, card->index);
593 	if (!card->isoc_wq)
594 		return -ENOMEM;
595 
596 	// This workqueue should be:
597 	//  * != WQ_BH			Sleepable.
598 	//  * == WQ_UNBOUND		Any core can process data for asynchronous context.
599 	//  * == WQ_MEM_RECLAIM		Used for any backend of block device.
600 	//  * == WQ_FREEZABLE		The target device would not be available when being freezed.
601 	//  * == WQ_HIGHPRI		High priority to process semi-realtime timestamped data.
602 	//  * == WQ_SYSFS		Parameters are available via sysfs.
603 	//  * max_active == 4		A hardIRQ could notify events for a pair of requests and
604 	//				response AR/AT contexts.
605 	card->async_wq = alloc_workqueue("firewire-async-card%u",
606 					 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
607 					 4, card->index);
608 	if (!card->async_wq) {
609 		ret = -ENOMEM;
610 		goto err_isoc;
611 	}
612 
613 	card->max_receive = max_receive;
614 	card->link_speed = link_speed;
615 	card->guid = guid;
616 
617 	scoped_guard(mutex, &card_mutex) {
618 		generate_config_rom(card, tmp_config_rom);
619 		ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
620 		if (ret < 0)
621 			goto err_async;
622 
623 		list_add_tail(&card->link, &card_list);
624 	}
625 
626 	return 0;
627 err_async:
628 	destroy_workqueue(card->async_wq);
629 err_isoc:
630 	destroy_workqueue(card->isoc_wq);
631 	return ret;
632 }
633 EXPORT_SYMBOL(fw_card_add);
634 
635 /*
636  * The next few functions implement a dummy driver that is used once a card
637  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
638  * as all IO to the card will be handled (and failed) by the dummy driver
639  * instead of calling into the module.  Only functions for iso context
640  * shutdown still need to be provided by the card driver.
641  *
642  * .read/write_csr() should never be called anymore after the dummy driver
643  * was bound since they are only used within request handler context.
644  * .set_config_rom() is never called since the card is taken out of card_list
645  * before switching to the dummy driver.
646  */
647 
dummy_read_phy_reg(struct fw_card * card,int address)648 static int dummy_read_phy_reg(struct fw_card *card, int address)
649 {
650 	return -ENODEV;
651 }
652 
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)653 static int dummy_update_phy_reg(struct fw_card *card, int address,
654 				int clear_bits, int set_bits)
655 {
656 	return -ENODEV;
657 }
658 
dummy_send_request(struct fw_card * card,struct fw_packet * packet)659 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
660 {
661 	packet->callback(packet, card, RCODE_CANCELLED);
662 }
663 
dummy_send_response(struct fw_card * card,struct fw_packet * packet)664 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
665 {
666 	packet->callback(packet, card, RCODE_CANCELLED);
667 }
668 
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)669 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
670 {
671 	return -ENOENT;
672 }
673 
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)674 static int dummy_enable_phys_dma(struct fw_card *card,
675 				 int node_id, int generation)
676 {
677 	return -ENODEV;
678 }
679 
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)680 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
681 				int type, int channel, size_t header_size)
682 {
683 	return ERR_PTR(-ENODEV);
684 }
685 
dummy_read_csr(struct fw_card * card,int csr_offset)686 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
687 {
688 	return 0;
689 }
690 
dummy_write_csr(struct fw_card * card,int csr_offset,u32 value)691 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
692 {
693 }
694 
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)695 static int dummy_start_iso(struct fw_iso_context *ctx,
696 			   s32 cycle, u32 sync, u32 tags)
697 {
698 	return -ENODEV;
699 }
700 
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)701 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
702 {
703 	return -ENODEV;
704 }
705 
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)706 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
707 			   struct fw_iso_buffer *buffer, unsigned long payload)
708 {
709 	return -ENODEV;
710 }
711 
dummy_flush_queue_iso(struct fw_iso_context * ctx)712 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
713 {
714 }
715 
dummy_flush_iso_completions(struct fw_iso_context * ctx)716 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
717 {
718 	return -ENODEV;
719 }
720 
721 static const struct fw_card_driver dummy_driver_template = {
722 	.read_phy_reg		= dummy_read_phy_reg,
723 	.update_phy_reg		= dummy_update_phy_reg,
724 	.send_request		= dummy_send_request,
725 	.send_response		= dummy_send_response,
726 	.cancel_packet		= dummy_cancel_packet,
727 	.enable_phys_dma	= dummy_enable_phys_dma,
728 	.read_csr		= dummy_read_csr,
729 	.write_csr		= dummy_write_csr,
730 	.allocate_iso_context	= dummy_allocate_iso_context,
731 	.start_iso		= dummy_start_iso,
732 	.set_iso_channels	= dummy_set_iso_channels,
733 	.queue_iso		= dummy_queue_iso,
734 	.flush_queue_iso	= dummy_flush_queue_iso,
735 	.flush_iso_completions	= dummy_flush_iso_completions,
736 };
737 
fw_card_release(struct kref * kref)738 void fw_card_release(struct kref *kref)
739 {
740 	struct fw_card *card = container_of(kref, struct fw_card, kref);
741 
742 	complete(&card->done);
743 }
744 EXPORT_SYMBOL_GPL(fw_card_release);
745 
fw_core_remove_card(struct fw_card * card)746 void fw_core_remove_card(struct fw_card *card)
747 {
748 	struct fw_card_driver dummy_driver = dummy_driver_template;
749 
750 	might_sleep();
751 
752 	card->driver->update_phy_reg(card, 4,
753 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
754 	fw_schedule_bus_reset(card, false, true);
755 
756 	scoped_guard(mutex, &card_mutex)
757 		list_del_init(&card->link);
758 
759 	/* Switch off most of the card driver interface. */
760 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
761 	dummy_driver.stop_iso		= card->driver->stop_iso;
762 	card->driver = &dummy_driver;
763 	drain_workqueue(card->isoc_wq);
764 	drain_workqueue(card->async_wq);
765 
766 	scoped_guard(spinlock_irqsave, &card->lock)
767 		fw_destroy_nodes(card);
768 
769 	/* Wait for all users, especially device workqueue jobs, to finish. */
770 	fw_card_put(card);
771 	wait_for_completion(&card->done);
772 
773 	destroy_workqueue(card->isoc_wq);
774 	destroy_workqueue(card->async_wq);
775 
776 	WARN_ON(!list_empty(&card->transaction_list));
777 }
778 EXPORT_SYMBOL(fw_core_remove_card);
779 
780 /**
781  * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
782  *			    for controller card.
783  * @card: The instance of card for 1394 OHCI controller.
784  * @cycle_time: The mutual reference to value of cycle time for the read operation.
785  *
786  * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
787  * controller card. This function accesses the region without any lock primitives or IRQ mask.
788  * When returning successfully, the content of @value argument has value aligned to host endianness,
789  * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
790  *
791  * Context: Any context.
792  * Return:
793  * * 0 - Read successfully.
794  * * -ENODEV - The controller is unavailable due to being removed or unbound.
795  */
fw_card_read_cycle_time(struct fw_card * card,u32 * cycle_time)796 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
797 {
798 	if (card->driver->read_csr == dummy_read_csr)
799 		return -ENODEV;
800 
801 	// It's possible to switch to dummy driver between the above and the below. This is the best
802 	// effort to return -ENODEV.
803 	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
807