1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6 *
7 * Limitations:
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pwm.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
24 #include <linux/time.h>
25
26 #define PWM_CTRL_REG 0x0
27
28 #define PWM_CH_PRD_BASE 0x4
29 #define PWM_CH_PRD_OFFSET 0x4
30 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
31
32 #define PWMCH_OFFSET 15
33 #define PWM_PRESCAL_MASK GENMASK(3, 0)
34 #define PWM_PRESCAL_OFF 0
35 #define PWM_EN BIT(4)
36 #define PWM_ACT_STATE BIT(5)
37 #define PWM_CLK_GATING BIT(6)
38 #define PWM_MODE BIT(7)
39 #define PWM_PULSE BIT(8)
40 #define PWM_BYPASS BIT(9)
41
42 #define PWM_RDY_BASE 28
43 #define PWM_RDY_OFFSET 1
44 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
45
46 #define PWM_PRD(prd) (((prd) - 1) << 16)
47 #define PWM_PRD_MASK GENMASK(15, 0)
48
49 #define PWM_DTY_MASK GENMASK(15, 0)
50
51 #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
52 #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
53 #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
54
55 #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
56
57 static const u32 prescaler_table[] = {
58 120,
59 180,
60 240,
61 360,
62 480,
63 0,
64 0,
65 0,
66 12000,
67 24000,
68 36000,
69 48000,
70 72000,
71 0,
72 0,
73 0, /* Actually 1 but tested separately */
74 };
75
76 struct sun4i_pwm_data {
77 bool has_prescaler_bypass;
78 bool has_direct_mod_clk_output;
79 unsigned int npwm;
80 };
81
82 struct sun4i_pwm_chip {
83 struct clk *bus_clk;
84 struct clk *clk;
85 struct reset_control *rst;
86 void __iomem *base;
87 const struct sun4i_pwm_data *data;
88 };
89
to_sun4i_pwm_chip(struct pwm_chip * chip)90 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
91 {
92 return pwmchip_get_drvdata(chip);
93 }
94
sun4i_pwm_readl(struct sun4i_pwm_chip * sun4ichip,unsigned long offset)95 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *sun4ichip,
96 unsigned long offset)
97 {
98 return readl(sun4ichip->base + offset);
99 }
100
sun4i_pwm_writel(struct sun4i_pwm_chip * sun4ichip,u32 val,unsigned long offset)101 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *sun4ichip,
102 u32 val, unsigned long offset)
103 {
104 writel(val, sun4ichip->base + offset);
105 }
106
sun4i_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)107 static int sun4i_pwm_get_state(struct pwm_chip *chip,
108 struct pwm_device *pwm,
109 struct pwm_state *state)
110 {
111 struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
112 u64 clk_rate, tmp;
113 u32 val;
114 unsigned int prescaler;
115
116 clk_rate = clk_get_rate(sun4ichip->clk);
117 if (!clk_rate)
118 return -EINVAL;
119
120 val = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
121
122 /*
123 * PWM chapter in H6 manual has a diagram which explains that if bypass
124 * bit is set, no other setting has any meaning. Even more, experiment
125 * proved that also enable bit is ignored in this case.
126 */
127 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
128 sun4ichip->data->has_direct_mod_clk_output) {
129 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
130 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
131 state->polarity = PWM_POLARITY_NORMAL;
132 state->enabled = true;
133 return 0;
134 }
135
136 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
137 sun4ichip->data->has_prescaler_bypass)
138 prescaler = 1;
139 else
140 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
141
142 if (prescaler == 0)
143 return -EINVAL;
144
145 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
146 state->polarity = PWM_POLARITY_NORMAL;
147 else
148 state->polarity = PWM_POLARITY_INVERSED;
149
150 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
151 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
152 state->enabled = true;
153 else
154 state->enabled = false;
155
156 val = sun4i_pwm_readl(sun4ichip, PWM_CH_PRD(pwm->hwpwm));
157
158 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
159 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
160
161 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
162 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164 return 0;
165 }
166
sun4i_pwm_calculate(struct sun4i_pwm_chip * sun4ichip,const struct pwm_state * state,u32 * dty,u32 * prd,unsigned int * prsclr,bool * bypass)167 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4ichip,
168 const struct pwm_state *state,
169 u32 *dty, u32 *prd, unsigned int *prsclr,
170 bool *bypass)
171 {
172 u64 clk_rate, div = 0;
173 unsigned int prescaler = 0;
174
175 clk_rate = clk_get_rate(sun4ichip->clk);
176
177 *bypass = sun4ichip->data->has_direct_mod_clk_output &&
178 state->enabled &&
179 (state->period * clk_rate >= NSEC_PER_SEC) &&
180 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
181 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
182
183 /* Skip calculation of other parameters if we bypass them */
184 if (*bypass)
185 return 0;
186
187 if (sun4ichip->data->has_prescaler_bypass) {
188 /* First, test without any prescaler when available */
189 prescaler = PWM_PRESCAL_MASK;
190 /*
191 * When not using any prescaler, the clock period in nanoseconds
192 * is not an integer so round it half up instead of
193 * truncating to get less surprising values.
194 */
195 div = clk_rate * state->period + NSEC_PER_SEC / 2;
196 do_div(div, NSEC_PER_SEC);
197 if (div - 1 > PWM_PRD_MASK)
198 prescaler = 0;
199 }
200
201 if (prescaler == 0) {
202 /* Go up from the first divider */
203 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
204 unsigned int pval = prescaler_table[prescaler];
205
206 if (!pval)
207 continue;
208
209 div = clk_rate;
210 do_div(div, pval);
211 div = div * state->period;
212 do_div(div, NSEC_PER_SEC);
213 if (div - 1 <= PWM_PRD_MASK)
214 break;
215 }
216
217 if (div - 1 > PWM_PRD_MASK)
218 return -EINVAL;
219 }
220
221 *prd = div;
222 div *= state->duty_cycle;
223 do_div(div, state->period);
224 *dty = div;
225 *prsclr = prescaler;
226
227 return 0;
228 }
229
sun4i_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)230 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
231 const struct pwm_state *state)
232 {
233 struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
234 struct pwm_state cstate;
235 u32 ctrl, duty = 0, period = 0, val;
236 int ret;
237 unsigned int delay_us, prescaler = 0;
238 bool bypass;
239
240 pwm_get_state(pwm, &cstate);
241
242 if (!cstate.enabled) {
243 ret = clk_prepare_enable(sun4ichip->clk);
244 if (ret) {
245 dev_err(pwmchip_parent(chip), "failed to enable PWM clock\n");
246 return ret;
247 }
248 }
249
250 ret = sun4i_pwm_calculate(sun4ichip, state, &duty, &period, &prescaler,
251 &bypass);
252 if (ret) {
253 dev_err(pwmchip_parent(chip), "period exceeds the maximum value\n");
254 if (!cstate.enabled)
255 clk_disable_unprepare(sun4ichip->clk);
256 return ret;
257 }
258
259 ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
260
261 if (sun4ichip->data->has_direct_mod_clk_output) {
262 if (bypass) {
263 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
264 /* We can skip other parameter */
265 sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
266 return 0;
267 }
268
269 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
270 }
271
272 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
273 /* Prescaler changed, the clock has to be gated */
274 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
275 sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
276
277 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
278 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
279 }
280
281 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
282 sun4i_pwm_writel(sun4ichip, val, PWM_CH_PRD(pwm->hwpwm));
283
284 if (state->polarity != PWM_POLARITY_NORMAL)
285 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
286 else
287 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
288
289 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
290
291 if (state->enabled)
292 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
293
294 sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
295
296 if (state->enabled)
297 return 0;
298
299 /* We need a full period to elapse before disabling the channel. */
300 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
301 if ((delay_us / 500) > MAX_UDELAY_MS)
302 msleep(delay_us / 1000 + 1);
303 else
304 usleep_range(delay_us, delay_us * 2);
305
306 ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
307 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
308 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
309 sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
310
311 clk_disable_unprepare(sun4ichip->clk);
312
313 return 0;
314 }
315
316 static const struct pwm_ops sun4i_pwm_ops = {
317 .apply = sun4i_pwm_apply,
318 .get_state = sun4i_pwm_get_state,
319 };
320
321 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
322 .has_prescaler_bypass = false,
323 .npwm = 2,
324 };
325
326 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
327 .has_prescaler_bypass = true,
328 .npwm = 2,
329 };
330
331 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
332 .has_prescaler_bypass = true,
333 .npwm = 1,
334 };
335
336 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
337 .has_prescaler_bypass = true,
338 .has_direct_mod_clk_output = true,
339 .npwm = 1,
340 };
341
342 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
343 .has_prescaler_bypass = true,
344 .has_direct_mod_clk_output = true,
345 .npwm = 2,
346 };
347
348 static const struct of_device_id sun4i_pwm_dt_ids[] = {
349 {
350 .compatible = "allwinner,sun4i-a10-pwm",
351 .data = &sun4i_pwm_dual_nobypass,
352 }, {
353 .compatible = "allwinner,sun5i-a10s-pwm",
354 .data = &sun4i_pwm_dual_bypass,
355 }, {
356 .compatible = "allwinner,sun5i-a13-pwm",
357 .data = &sun4i_pwm_single_bypass,
358 }, {
359 .compatible = "allwinner,sun7i-a20-pwm",
360 .data = &sun4i_pwm_dual_bypass,
361 }, {
362 .compatible = "allwinner,sun8i-h3-pwm",
363 .data = &sun4i_pwm_single_bypass,
364 }, {
365 .compatible = "allwinner,sun50i-a64-pwm",
366 .data = &sun50i_a64_pwm_data,
367 }, {
368 .compatible = "allwinner,sun50i-h6-pwm",
369 .data = &sun50i_h6_pwm_data,
370 }, {
371 /* sentinel */
372 },
373 };
374 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
375
sun4i_pwm_probe(struct platform_device * pdev)376 static int sun4i_pwm_probe(struct platform_device *pdev)
377 {
378 struct pwm_chip *chip;
379 const struct sun4i_pwm_data *data;
380 struct sun4i_pwm_chip *sun4ichip;
381 int ret;
382
383 data = of_device_get_match_data(&pdev->dev);
384 if (!data)
385 return -ENODEV;
386
387 chip = devm_pwmchip_alloc(&pdev->dev, data->npwm, sizeof(*sun4ichip));
388 if (IS_ERR(chip))
389 return PTR_ERR(chip);
390 sun4ichip = to_sun4i_pwm_chip(chip);
391
392 sun4ichip->data = data;
393 sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
394 if (IS_ERR(sun4ichip->base))
395 return PTR_ERR(sun4ichip->base);
396
397 /*
398 * All hardware variants need a source clock that is divided and
399 * then feeds the counter that defines the output wave form. In the
400 * device tree this clock is either unnamed or called "mod".
401 * Some variants (e.g. H6) need another clock to access the
402 * hardware registers; this is called "bus".
403 * So we request "mod" first (and ignore the corner case that a
404 * parent provides a "mod" clock while the right one would be the
405 * unnamed one of the PWM device) and if this is not found we fall
406 * back to the first clock of the PWM.
407 */
408 sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
409 if (IS_ERR(sun4ichip->clk))
410 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
411 "get mod clock failed\n");
412
413 if (!sun4ichip->clk) {
414 sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
415 if (IS_ERR(sun4ichip->clk))
416 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
417 "get unnamed clock failed\n");
418 }
419
420 sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
421 if (IS_ERR(sun4ichip->bus_clk))
422 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
423 "get bus clock failed\n");
424
425 sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
426 if (IS_ERR(sun4ichip->rst))
427 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
428 "get reset failed\n");
429
430 /* Deassert reset */
431 ret = reset_control_deassert(sun4ichip->rst);
432 if (ret) {
433 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
434 ERR_PTR(ret));
435 return ret;
436 }
437
438 /*
439 * We're keeping the bus clock on for the sake of simplicity.
440 * Actually it only needs to be on for hardware register accesses.
441 */
442 ret = clk_prepare_enable(sun4ichip->bus_clk);
443 if (ret) {
444 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
445 ERR_PTR(ret));
446 goto err_bus;
447 }
448
449 chip->ops = &sun4i_pwm_ops;
450
451 ret = pwmchip_add(chip);
452 if (ret < 0) {
453 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
454 goto err_pwm_add;
455 }
456
457 platform_set_drvdata(pdev, chip);
458
459 return 0;
460
461 err_pwm_add:
462 clk_disable_unprepare(sun4ichip->bus_clk);
463 err_bus:
464 reset_control_assert(sun4ichip->rst);
465
466 return ret;
467 }
468
sun4i_pwm_remove(struct platform_device * pdev)469 static void sun4i_pwm_remove(struct platform_device *pdev)
470 {
471 struct pwm_chip *chip = platform_get_drvdata(pdev);
472 struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
473
474 pwmchip_remove(chip);
475
476 clk_disable_unprepare(sun4ichip->bus_clk);
477 reset_control_assert(sun4ichip->rst);
478 }
479
480 static struct platform_driver sun4i_pwm_driver = {
481 .driver = {
482 .name = "sun4i-pwm",
483 .of_match_table = sun4i_pwm_dt_ids,
484 },
485 .probe = sun4i_pwm_probe,
486 .remove = sun4i_pwm_remove,
487 };
488 module_platform_driver(sun4i_pwm_driver);
489
490 MODULE_ALIAS("platform:sun4i-pwm");
491 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
492 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
493 MODULE_LICENSE("GPL v2");
494