xref: /qemu/include/hw/core/cpu.h (revision 989dd906ed5556563a57b32ae7abf9db5e1f38ba)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @list_cpus: list available CPU models and flags.
106  * @parse_features: Callback to parse command line arguments.
107  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
108  * @memory_rw_debug: Callback for GDB memory access.
109  * @dump_state: Callback for dumping state.
110  * @query_cpu_fast:
111  *       Fill in target specific information for the "query-cpus-fast"
112  *       QAPI call.
113  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
114  * @set_pc: Callback for setting the Program Counter register. This
115  *       should have the semantics used by the target architecture when
116  *       setting the PC from a source such as an ELF file entry point;
117  *       for example on Arm it will also set the Thumb mode bit based
118  *       on the least significant bit of the new PC value.
119  *       If the target behaviour here is anything other than "set
120  *       the PC register to the value passed in" then the target must
121  *       also implement the synchronize_from_tb hook.
122  * @get_pc: Callback for getting the Program Counter register.
123  *       As above, with the semantics of the target architecture.
124  * @gdb_read_register: Callback for letting GDB read a register.
125  *                     No more than @gdb_num_core_regs registers can be read.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  *                     No more than @gdb_num_core_regs registers can be written.
128  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
130  *       its Harvard architecture split code and data.
131  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132  *                     from @gdb_core_xml_file.
133  * @gdb_core_xml_file: File name for core registers GDB XML description.
134  * @gdb_get_core_xml_file: Optional callback that returns the file name for
135  * the core registers GDB XML description. The returned value is expected to
136  * be a simple constant string: the caller will not g_free() it. If this
137  * is NULL then @gdb_core_xml_file will be used instead.
138  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
139  *           before the insn which triggers a watchpoint rather than after it.
140  * @gdb_arch_name: Optional callback that returns the architecture name known
141  * to GDB. The returned value is expected to be a simple constant string:
142  * the caller will not g_free() it.
143  * @disas_set_info: Setup architecture specific components of disassembly info
144  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
145  * address before attempting to match it against watchpoints.
146  * @deprecation_note: If this CPUClass is deprecated, this field provides
147  *                    related information.
148  *
149  * Represents a CPU family or model.
150  */
151 struct CPUClass {
152     /*< private >*/
153     DeviceClass parent_class;
154     /*< public >*/
155 
156     ObjectClass *(*class_by_name)(const char *cpu_model);
157     void (*list_cpus)(void);
158     void (*parse_features)(const char *typename, char *str, Error **errp);
159 
160     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
161                            uint8_t *buf, size_t len, bool is_write);
162     void (*dump_state)(CPUState *cpu, FILE *, int flags);
163     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
164     int64_t (*get_arch_id)(CPUState *cpu);
165     void (*set_pc)(CPUState *cpu, vaddr value);
166     vaddr (*get_pc)(CPUState *cpu);
167     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
168     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
169     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
170 
171     const char *gdb_core_xml_file;
172     const gchar * (*gdb_arch_name)(CPUState *cpu);
173     const char * (*gdb_get_core_xml_file)(CPUState *cpu);
174 
175     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
176 
177     const char *deprecation_note;
178     struct AccelCPUClass *accel_cpu;
179 
180     /* when system emulation is not available, this pointer is NULL */
181     const struct SysemuCPUOps *sysemu_ops;
182 
183     /* when TCG is not available, this pointer is NULL */
184     const TCGCPUOps *tcg_ops;
185 
186     /*
187      * if not NULL, this is called in order for the CPUClass to initialize
188      * class data that depends on the accelerator, see accel/accel-common.c.
189      */
190     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
191 
192     /*
193      * Keep non-pointer data at the end to minimize holes.
194      */
195     int reset_dump_flags;
196     int gdb_num_core_regs;
197     bool gdb_stop_before_watchpoint;
198 };
199 
200 /*
201  * Fix the number of mmu modes to 16, which is also the maximum
202  * supported by the softmmu tlb api.
203  */
204 #define NB_MMU_MODES 16
205 
206 /* Use a fully associative victim tlb of 8 entries. */
207 #define CPU_VTLB_SIZE 8
208 
209 /*
210  * The full TLB entry, which is not accessed by generated TCG code,
211  * so the layout is not as critical as that of CPUTLBEntry. This is
212  * also why we don't want to combine the two structs.
213  */
214 struct CPUTLBEntryFull {
215     /*
216      * @xlat_section contains:
217      *  - in the lower TARGET_PAGE_BITS, a physical section number
218      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
219      *    must be added to the virtual address to obtain:
220      *     + the ram_addr_t of the target RAM (if the physical section
221      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
222      *     + the offset within the target MemoryRegion (otherwise)
223      */
224     hwaddr xlat_section;
225 
226     /*
227      * @phys_addr contains the physical address in the address space
228      * given by cpu_asidx_from_attrs(cpu, @attrs).
229      */
230     hwaddr phys_addr;
231 
232     /* @attrs contains the memory transaction attributes for the page. */
233     MemTxAttrs attrs;
234 
235     /* @prot contains the complete protections for the page. */
236     uint8_t prot;
237 
238     /* @lg_page_size contains the log2 of the page size. */
239     uint8_t lg_page_size;
240 
241     /* Additional tlb flags requested by tlb_fill. */
242     uint8_t tlb_fill_flags;
243 
244     /*
245      * Additional tlb flags for use by the slow path. If non-zero,
246      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
247      */
248     uint8_t slow_flags[MMU_ACCESS_COUNT];
249 
250     /*
251      * Allow target-specific additions to this structure.
252      * This may be used to cache items from the guest cpu
253      * page tables for later use by the implementation.
254      */
255     union {
256         /*
257          * Cache the attrs and shareability fields from the page table entry.
258          *
259          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
260          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
261          * For shareability and guarded, as in the SH and GP fields respectively
262          * of the VMSAv8-64 PTEs.
263          */
264         struct {
265             uint8_t pte_attrs;
266             uint8_t shareability;
267             bool guarded;
268         } arm;
269     } extra;
270 };
271 
272 /*
273  * Data elements that are per MMU mode, minus the bits accessed by
274  * the TCG fast path.
275  */
276 typedef struct CPUTLBDesc {
277     /*
278      * Describe a region covering all of the large pages allocated
279      * into the tlb.  When any page within this region is flushed,
280      * we must flush the entire tlb.  The region is matched if
281      * (addr & large_page_mask) == large_page_addr.
282      */
283     vaddr large_page_addr;
284     vaddr large_page_mask;
285     /* host time (in ns) at the beginning of the time window */
286     int64_t window_begin_ns;
287     /* maximum number of entries observed in the window */
288     size_t window_max_entries;
289     size_t n_used_entries;
290     /* The next index to use in the tlb victim table.  */
291     size_t vindex;
292     /* The tlb victim table, in two parts.  */
293     CPUTLBEntry vtable[CPU_VTLB_SIZE];
294     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
295     CPUTLBEntryFull *fulltlb;
296 } CPUTLBDesc;
297 
298 /*
299  * Data elements that are shared between all MMU modes.
300  */
301 typedef struct CPUTLBCommon {
302     /* Serialize updates to f.table and d.vtable, and others as noted. */
303     QemuSpin lock;
304     /*
305      * Within dirty, for each bit N, modifications have been made to
306      * mmu_idx N since the last time that mmu_idx was flushed.
307      * Protected by tlb_c.lock.
308      */
309     uint16_t dirty;
310     /*
311      * Statistics.  These are not lock protected, but are read and
312      * written atomically.  This allows the monitor to print a snapshot
313      * of the stats without interfering with the cpu.
314      */
315     size_t full_flush_count;
316     size_t part_flush_count;
317     size_t elide_flush_count;
318 } CPUTLBCommon;
319 
320 /*
321  * The entire softmmu tlb, for all MMU modes.
322  * The meaning of each of the MMU modes is defined in the target code.
323  * Since this is placed within CPUNegativeOffsetState, the smallest
324  * negative offsets are at the end of the struct.
325  */
326 typedef struct CPUTLB {
327 #ifdef CONFIG_TCG
328     CPUTLBCommon c;
329     CPUTLBDesc d[NB_MMU_MODES];
330     CPUTLBDescFast f[NB_MMU_MODES];
331 #endif
332 } CPUTLB;
333 
334 /*
335  * Low 16 bits: number of cycles left, used only in icount mode.
336  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
337  * for this CPU and return to its top level loop (even in non-icount mode).
338  * This allows a single read-compare-cbranch-write sequence to test
339  * for both decrementer underflow and exceptions.
340  */
341 typedef union IcountDecr {
342     uint32_t u32;
343     struct {
344 #if HOST_BIG_ENDIAN
345         uint16_t high;
346         uint16_t low;
347 #else
348         uint16_t low;
349         uint16_t high;
350 #endif
351     } u16;
352 } IcountDecr;
353 
354 /**
355  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
356  *                         from CPUArchState, via small negative offsets.
357  * @can_do_io: True if memory-mapped IO is allowed.
358  * @plugin_mem_cbs: active plugin memory callbacks
359  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
360  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
361  */
362 typedef struct CPUNegativeOffsetState {
363     CPUTLB tlb;
364 #ifdef CONFIG_PLUGIN
365     /*
366      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
367      */
368     GArray *plugin_mem_cbs;
369     uint64_t plugin_mem_value_low;
370     uint64_t plugin_mem_value_high;
371     int32_t plugin_cb_flags;
372 #endif
373     IcountDecr icount_decr;
374     bool can_do_io;
375 } CPUNegativeOffsetState;
376 
377 struct KVMState;
378 struct kvm_run;
379 
380 /* work queue */
381 
382 /* The union type allows passing of 64 bit target pointers on 32 bit
383  * hosts in a single parameter
384  */
385 typedef union {
386     int           host_int;
387     unsigned long host_ulong;
388     void         *host_ptr;
389     vaddr         target_ptr;
390 } run_on_cpu_data;
391 
392 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
393 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
394 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
395 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
396 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
397 
398 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
399 
400 struct qemu_work_item;
401 
402 #define CPU_UNSET_NUMA_NODE_ID -1
403 
404 /**
405  * struct CPUState - common state of one CPU core or thread.
406  *
407  * @cpu_index: CPU index (informative).
408  * @cluster_index: Identifies which cluster this CPU is in.
409  *   For boards which don't define clusters or for "loose" CPUs not assigned
410  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
411  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
412  *   QOM parent.
413  *   Under TCG this value is propagated to @tcg_cflags.
414  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
415  * @tcg_cflags: Pre-computed cflags for this cpu.
416  * @nr_threads: Number of threads within this CPU core.
417  * @thread: Host thread details, only live once @created is #true
418  * @sem: WIN32 only semaphore used only for qtest
419  * @thread_id: native thread id of vCPU, only live once @created is #true
420  * @running: #true if CPU is currently running (lockless).
421  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
422  * valid under cpu_list_lock.
423  * @created: Indicates whether the CPU thread has been successfully created.
424  * @halt_cond: condition variable sleeping threads can wait on.
425  * @interrupt_request: Indicates a pending interrupt request.
426  * @halted: Nonzero if the CPU is in suspended state.
427  * @stop: Indicates a pending stop request.
428  * @stopped: Indicates the CPU has been artificially stopped.
429  * @unplug: Indicates a pending CPU unplug request.
430  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
431  * @singlestep_enabled: Flags for single-stepping.
432  * @icount_extra: Instructions until next timer event.
433  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
434  *            AddressSpaces this CPU has)
435  * @num_ases: number of CPUAddressSpaces in @cpu_ases
436  * @as: Pointer to the first AddressSpace, for the convenience of targets which
437  *      only have a single AddressSpace
438  * @gdb_regs: Additional GDB registers.
439  * @gdb_num_regs: Number of total registers accessible to GDB.
440  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
441  * @node: QTAILQ of CPUs sharing TB cache.
442  * @opaque: User data.
443  * @mem_io_pc: Host Program Counter at which the memory was accessed.
444  * @accel: Pointer to accelerator specific state.
445  * @vcpu_dirty: Hardware accelerator is not synchronized with QEMU state
446  * @kvm_fd: vCPU file descriptor for KVM.
447  * @work_mutex: Lock to prevent multiple access to @work_list.
448  * @work_list: List of pending asynchronous work.
449  * @plugin_state: per-CPU plugin state
450  * @ignore_memory_transaction_failures: Cached copy of the MachineState
451  *    flag of the same name: allows the board to suppress calling of the
452  *    CPU do_transaction_failed hook function.
453  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
454  *    ring is enabled.
455  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
456  *    dirty ring structure.
457  *
458  * @neg_align: The CPUState is the common part of a concrete ArchCPU
459  * which is allocated when an individual CPU instance is created. As
460  * such care is taken is ensure there is no gap between between
461  * CPUState and CPUArchState within ArchCPU.
462  *
463  * @neg: The architectural register state ("cpu_env") immediately follows
464  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
465  * some common TCG CPU variables which are accessed with a negative offset
466  * from cpu_env.
467  */
468 struct CPUState {
469     /*< private >*/
470     DeviceState parent_obj;
471     /* cache to avoid expensive CPU_GET_CLASS */
472     CPUClass *cc;
473     /*< public >*/
474 
475     int nr_threads;
476 
477     struct QemuThread *thread;
478 #ifdef _WIN32
479     QemuSemaphore sem;
480 #endif
481     int thread_id;
482     bool running, has_waiter;
483     struct QemuCond *halt_cond;
484     bool thread_kicked;
485     bool created;
486     bool stop;
487     bool stopped;
488 
489     /* Should CPU start in powered-off state? */
490     bool start_powered_off;
491 
492     bool unplug;
493     bool crash_occurred;
494     bool exit_request;
495     int exclusive_context_count;
496     uint32_t cflags_next_tb;
497     /* updates protected by BQL */
498     uint32_t interrupt_request;
499     int singlestep_enabled;
500     int64_t icount_budget;
501     int64_t icount_extra;
502     uint64_t random_seed;
503     sigjmp_buf jmp_env;
504 
505     QemuMutex work_mutex;
506     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
507 
508     struct CPUAddressSpace *cpu_ases;
509     int cpu_ases_count;
510     int num_ases;
511     AddressSpace *as;
512     MemoryRegion *memory;
513 
514     struct CPUJumpCache *tb_jmp_cache;
515 
516     GArray *gdb_regs;
517     int gdb_num_regs;
518     int gdb_num_g_regs;
519     QTAILQ_ENTRY(CPUState) node;
520 
521     /* ice debug support */
522     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
523 
524     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
525     CPUWatchpoint *watchpoint_hit;
526 
527     void *opaque;
528 
529     /* In order to avoid passing too many arguments to the MMIO helpers,
530      * we store some rarely used information in the CPU context.
531      */
532     uintptr_t mem_io_pc;
533 
534     /* Only used in KVM */
535     int kvm_fd;
536     struct KVMState *kvm_state;
537     struct kvm_run *kvm_run;
538     struct kvm_dirty_gfn *kvm_dirty_gfns;
539     uint32_t kvm_fetch_index;
540     uint64_t dirty_pages;
541     int kvm_vcpu_stats_fd;
542 
543     /* Use by accel-block: CPU is executing an ioctl() */
544     QemuLockCnt in_ioctl_lock;
545 
546 #ifdef CONFIG_PLUGIN
547     CPUPluginState *plugin_state;
548 #endif
549 
550     /* TODO Move common fields from CPUArchState here. */
551     int cpu_index;
552     int cluster_index;
553     uint32_t tcg_cflags;
554     uint32_t halted;
555     int32_t exception_index;
556 
557     bool vcpu_dirty;
558     AccelCPUState *accel;
559 
560     /* Used to keep track of an outstanding cpu throttle thread for migration
561      * autoconverge
562      */
563     bool throttle_thread_scheduled;
564 
565     /*
566      * Sleep throttle_us_per_full microseconds once dirty ring is full
567      * if dirty page rate limit is enabled.
568      */
569     int64_t throttle_us_per_full;
570 
571     bool ignore_memory_transaction_failures;
572 
573     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
574     bool prctl_unalign_sigbus;
575 
576     /* track IOMMUs whose translations we've cached in the TCG TLB */
577     GArray *iommu_notifiers;
578 
579     /*
580      * MUST BE LAST in order to minimize the displacement to CPUArchState.
581      */
582     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
583     CPUNegativeOffsetState neg;
584 };
585 
586 /* Validate placement of CPUNegativeOffsetState. */
587 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
588                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
589 
cpu_env(CPUState * cpu)590 static inline CPUArchState *cpu_env(CPUState *cpu)
591 {
592     /* We validate that CPUArchState follows CPUState in cpu-target.c */
593     return (CPUArchState *)(cpu + 1);
594 }
595 
596 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
597 extern CPUTailQ cpus_queue;
598 
599 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
600 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
601 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
602 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
603     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
604 
605 extern __thread CPUState *current_cpu;
606 
607 /**
608  * cpu_paging_enabled:
609  * @cpu: The CPU whose state is to be inspected.
610  *
611  * Returns: %true if paging is enabled, %false otherwise.
612  */
613 bool cpu_paging_enabled(const CPUState *cpu);
614 
615 /**
616  * cpu_get_memory_mapping:
617  * @cpu: The CPU whose memory mappings are to be obtained.
618  * @list: Where to write the memory mappings to.
619  * @errp: Pointer for reporting an #Error.
620  *
621  * Returns: %true on success, %false otherwise.
622  */
623 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
624                             Error **errp);
625 
626 /**
627  * cpu_write_elf64_note:
628  * @f: pointer to a function that writes memory to a file
629  * @cpu: The CPU whose memory is to be dumped
630  * @cpuid: ID number of the CPU
631  * @opaque: pointer to the CPUState struct
632  */
633 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
634                          int cpuid, void *opaque);
635 
636 /**
637  * cpu_write_elf64_qemunote:
638  * @f: pointer to a function that writes memory to a file
639  * @cpu: The CPU whose memory is to be dumped
640  * @cpuid: ID number of the CPU
641  * @opaque: pointer to the CPUState struct
642  */
643 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
644                              void *opaque);
645 
646 /**
647  * cpu_write_elf32_note:
648  * @f: pointer to a function that writes memory to a file
649  * @cpu: The CPU whose memory is to be dumped
650  * @cpuid: ID number of the CPU
651  * @opaque: pointer to the CPUState struct
652  */
653 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
654                          int cpuid, void *opaque);
655 
656 /**
657  * cpu_write_elf32_qemunote:
658  * @f: pointer to a function that writes memory to a file
659  * @cpu: The CPU whose memory is to be dumped
660  * @cpuid: ID number of the CPU
661  * @opaque: pointer to the CPUState struct
662  */
663 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
664                              void *opaque);
665 
666 /**
667  * cpu_get_crash_info:
668  * @cpu: The CPU to get crash information for
669  *
670  * Gets the previously saved crash information.
671  * Caller is responsible for freeing the data.
672  */
673 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
674 
675 /**
676  * CPUDumpFlags:
677  * @CPU_DUMP_CODE:
678  * @CPU_DUMP_FPU: dump FPU register state, not just integer
679  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
680  * @CPU_DUMP_VPU: dump VPU registers
681  */
682 enum CPUDumpFlags {
683     CPU_DUMP_CODE = 0x00010000,
684     CPU_DUMP_FPU  = 0x00020000,
685     CPU_DUMP_CCOP = 0x00040000,
686     CPU_DUMP_VPU  = 0x00080000,
687 };
688 
689 /**
690  * cpu_dump_state:
691  * @cpu: The CPU whose state is to be dumped.
692  * @f: If non-null, dump to this stream, else to current print sink.
693  *
694  * Dumps CPU state.
695  */
696 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
697 
698 /**
699  * cpu_get_phys_page_attrs_debug:
700  * @cpu: The CPU to obtain the physical page address for.
701  * @addr: The virtual address.
702  * @attrs: Updated on return with the memory transaction attributes to use
703  *         for this access.
704  *
705  * Obtains the physical page corresponding to a virtual one, together
706  * with the corresponding memory transaction attributes to use for the access.
707  * Use it only for debugging because no protection checks are done.
708  *
709  * Returns: Corresponding physical page address or -1 if no page found.
710  */
711 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
712                                      MemTxAttrs *attrs);
713 
714 /**
715  * cpu_get_phys_page_debug:
716  * @cpu: The CPU to obtain the physical page address for.
717  * @addr: The virtual address.
718  *
719  * Obtains the physical page corresponding to a virtual one.
720  * Use it only for debugging because no protection checks are done.
721  *
722  * Returns: Corresponding physical page address or -1 if no page found.
723  */
724 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
725 
726 /** cpu_asidx_from_attrs:
727  * @cpu: CPU
728  * @attrs: memory transaction attributes
729  *
730  * Returns the address space index specifying the CPU AddressSpace
731  * to use for a memory access with the given transaction attributes.
732  */
733 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
734 
735 /**
736  * cpu_virtio_is_big_endian:
737  * @cpu: CPU
738 
739  * Returns %true if a CPU which supports runtime configurable endianness
740  * is currently big-endian.
741  */
742 bool cpu_virtio_is_big_endian(CPUState *cpu);
743 
744 /**
745  * cpu_has_work:
746  * @cpu: The vCPU to check.
747  *
748  * Checks whether the CPU has work to do.
749  *
750  * Returns: %true if the CPU has work, %false otherwise.
751  */
752 bool cpu_has_work(CPUState *cpu);
753 
754 /**
755  * cpu_list_add:
756  * @cpu: The CPU to be added to the list of CPUs.
757  */
758 void cpu_list_add(CPUState *cpu);
759 
760 /**
761  * cpu_list_remove:
762  * @cpu: The CPU to be removed from the list of CPUs.
763  */
764 void cpu_list_remove(CPUState *cpu);
765 
766 /**
767  * cpu_reset:
768  * @cpu: The CPU whose state is to be reset.
769  */
770 void cpu_reset(CPUState *cpu);
771 
772 /**
773  * cpu_class_by_name:
774  * @typename: The CPU base type.
775  * @cpu_model: The model string without any parameters.
776  *
777  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
778  *
779  * Returns: A concrete #CPUClass or %NULL if no matching class is found
780  *          or if the matching class is abstract.
781  */
782 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
783 
784 /**
785  * cpu_model_from_type:
786  * @typename: The CPU type name
787  *
788  * Extract the CPU model name from the CPU type name. The
789  * CPU type name is either the combination of the CPU model
790  * name and suffix, or same to the CPU model name.
791  *
792  * Returns: CPU model name or NULL if the CPU class doesn't exist
793  *          The user should g_free() the string once no longer needed.
794  */
795 char *cpu_model_from_type(const char *typename);
796 
797 /**
798  * cpu_create:
799  * @typename: The CPU type.
800  *
801  * Instantiates a CPU and realizes the CPU.
802  *
803  * Returns: A #CPUState or %NULL if an error occurred.
804  */
805 CPUState *cpu_create(const char *typename);
806 
807 /**
808  * parse_cpu_option:
809  * @cpu_option: The -cpu option including optional parameters.
810  *
811  * processes optional parameters and registers them as global properties
812  *
813  * Returns: type of CPU to create or prints error and terminates process
814  *          if an error occurred.
815  */
816 const char *parse_cpu_option(const char *cpu_option);
817 
818 /**
819  * qemu_cpu_is_self:
820  * @cpu: The vCPU to check against.
821  *
822  * Checks whether the caller is executing on the vCPU thread.
823  *
824  * Returns: %true if called from @cpu's thread, %false otherwise.
825  */
826 bool qemu_cpu_is_self(CPUState *cpu);
827 
828 /**
829  * qemu_cpu_kick:
830  * @cpu: The vCPU to kick.
831  *
832  * Kicks @cpu's thread.
833  */
834 void qemu_cpu_kick(CPUState *cpu);
835 
836 /**
837  * cpu_is_stopped:
838  * @cpu: The CPU to check.
839  *
840  * Checks whether the CPU is stopped.
841  *
842  * Returns: %true if run state is not running or if artificially stopped;
843  * %false otherwise.
844  */
845 bool cpu_is_stopped(CPUState *cpu);
846 
847 /**
848  * do_run_on_cpu:
849  * @cpu: The vCPU to run on.
850  * @func: The function to be executed.
851  * @data: Data to pass to the function.
852  * @mutex: Mutex to release while waiting for @func to run.
853  *
854  * Used internally in the implementation of run_on_cpu.
855  */
856 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
857                    QemuMutex *mutex);
858 
859 /**
860  * run_on_cpu:
861  * @cpu: The vCPU to run on.
862  * @func: The function to be executed.
863  * @data: Data to pass to the function.
864  *
865  * Schedules the function @func for execution on the vCPU @cpu.
866  */
867 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
868 
869 /**
870  * async_run_on_cpu:
871  * @cpu: The vCPU to run on.
872  * @func: The function to be executed.
873  * @data: Data to pass to the function.
874  *
875  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
876  */
877 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
878 
879 /**
880  * async_safe_run_on_cpu:
881  * @cpu: The vCPU to run on.
882  * @func: The function to be executed.
883  * @data: Data to pass to the function.
884  *
885  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
886  * while all other vCPUs are sleeping.
887  *
888  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
889  * BQL.
890  */
891 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
892 
893 /**
894  * cpu_in_exclusive_context()
895  * @cpu: The vCPU to check
896  *
897  * Returns true if @cpu is an exclusive context, for example running
898  * something which has previously been queued via async_safe_run_on_cpu().
899  */
cpu_in_exclusive_context(const CPUState * cpu)900 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
901 {
902     return cpu->exclusive_context_count;
903 }
904 
905 /**
906  * qemu_get_cpu:
907  * @index: The CPUState@cpu_index value of the CPU to obtain.
908  *
909  * Gets a CPU matching @index.
910  *
911  * Returns: The CPU or %NULL if there is no matching CPU.
912  */
913 CPUState *qemu_get_cpu(int index);
914 
915 /**
916  * cpu_exists:
917  * @id: Guest-exposed CPU ID to lookup.
918  *
919  * Search for CPU with specified ID.
920  *
921  * Returns: %true - CPU is found, %false - CPU isn't found.
922  */
923 bool cpu_exists(int64_t id);
924 
925 /**
926  * cpu_by_arch_id:
927  * @id: Guest-exposed CPU ID of the CPU to obtain.
928  *
929  * Get a CPU with matching @id.
930  *
931  * Returns: The CPU or %NULL if there is no matching CPU.
932  */
933 CPUState *cpu_by_arch_id(int64_t id);
934 
935 /**
936  * cpu_interrupt:
937  * @cpu: The CPU to set an interrupt on.
938  * @mask: The interrupts to set.
939  *
940  * Invokes the interrupt handler.
941  */
942 
943 void cpu_interrupt(CPUState *cpu, int mask);
944 
945 /**
946  * cpu_set_pc:
947  * @cpu: The CPU to set the program counter for.
948  * @addr: Program counter value.
949  *
950  * Sets the program counter for a CPU.
951  */
cpu_set_pc(CPUState * cpu,vaddr addr)952 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
953 {
954     cpu->cc->set_pc(cpu, addr);
955 }
956 
957 /**
958  * cpu_reset_interrupt:
959  * @cpu: The CPU to clear the interrupt on.
960  * @mask: The interrupt mask to clear.
961  *
962  * Resets interrupts on the vCPU @cpu.
963  */
964 void cpu_reset_interrupt(CPUState *cpu, int mask);
965 
966 /**
967  * cpu_exit:
968  * @cpu: The CPU to exit.
969  *
970  * Requests the CPU @cpu to exit execution.
971  */
972 void cpu_exit(CPUState *cpu);
973 
974 /**
975  * cpu_pause:
976  * @cpu: The CPU to pause.
977  *
978  * Pauses CPU, i.e. puts CPU into stopped state.
979  */
980 void cpu_pause(CPUState *cpu);
981 
982 /**
983  * cpu_resume:
984  * @cpu: The CPU to resume.
985  *
986  * Resumes CPU, i.e. puts CPU into runnable state.
987  */
988 void cpu_resume(CPUState *cpu);
989 
990 /**
991  * cpu_remove_sync:
992  * @cpu: The CPU to remove.
993  *
994  * Requests the CPU to be removed and waits till it is removed.
995  */
996 void cpu_remove_sync(CPUState *cpu);
997 
998 /**
999  * free_queued_cpu_work() - free all items on CPU work queue
1000  * @cpu: The CPU which work queue to free.
1001  */
1002 void free_queued_cpu_work(CPUState *cpu);
1003 
1004 /**
1005  * process_queued_cpu_work() - process all items on CPU work queue
1006  * @cpu: The CPU which work queue to process.
1007  */
1008 void process_queued_cpu_work(CPUState *cpu);
1009 
1010 /**
1011  * cpu_exec_start:
1012  * @cpu: The CPU for the current thread.
1013  *
1014  * Record that a CPU has started execution and can be interrupted with
1015  * cpu_exit.
1016  */
1017 void cpu_exec_start(CPUState *cpu);
1018 
1019 /**
1020  * cpu_exec_end:
1021  * @cpu: The CPU for the current thread.
1022  *
1023  * Record that a CPU has stopped execution and exclusive sections
1024  * can be executed without interrupting it.
1025  */
1026 void cpu_exec_end(CPUState *cpu);
1027 
1028 /**
1029  * start_exclusive:
1030  *
1031  * Wait for a concurrent exclusive section to end, and then start
1032  * a section of work that is run while other CPUs are not running
1033  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1034  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1035  * during the exclusive section go to sleep until this CPU calls
1036  * end_exclusive.
1037  */
1038 void start_exclusive(void);
1039 
1040 /**
1041  * end_exclusive:
1042  *
1043  * Concludes an exclusive execution section started by start_exclusive.
1044  */
1045 void end_exclusive(void);
1046 
1047 /**
1048  * qemu_init_vcpu:
1049  * @cpu: The vCPU to initialize.
1050  *
1051  * Initializes a vCPU.
1052  */
1053 void qemu_init_vcpu(CPUState *cpu);
1054 
1055 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1056 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1057 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1058 
1059 /**
1060  * cpu_single_step:
1061  * @cpu: CPU to the flags for.
1062  * @enabled: Flags to enable.
1063  *
1064  * Enables or disables single-stepping for @cpu.
1065  */
1066 void cpu_single_step(CPUState *cpu, int enabled);
1067 
1068 /* Breakpoint/watchpoint flags */
1069 #define BP_MEM_READ           0x01
1070 #define BP_MEM_WRITE          0x02
1071 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1072 #define BP_STOP_BEFORE_ACCESS 0x04
1073 /* 0x08 currently unused */
1074 #define BP_GDB                0x10
1075 #define BP_CPU                0x20
1076 #define BP_ANY                (BP_GDB | BP_CPU)
1077 #define BP_HIT_SHIFT          6
1078 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1079 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1080 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1081 
1082 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1083                           CPUBreakpoint **breakpoint);
1084 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1085 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1086 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1087 
1088 /* Return true if PC matches an installed breakpoint.  */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1089 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1090 {
1091     CPUBreakpoint *bp;
1092 
1093     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1094         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1095             if (bp->pc == pc && (bp->flags & mask)) {
1096                 return true;
1097             }
1098         }
1099     }
1100     return false;
1101 }
1102 
1103 /**
1104  * cpu_get_address_space:
1105  * @cpu: CPU to get address space from
1106  * @asidx: index identifying which address space to get
1107  *
1108  * Return the requested address space of this CPU. @asidx
1109  * specifies which address space to read.
1110  */
1111 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1112 
1113 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1114     G_GNUC_PRINTF(2, 3);
1115 
1116 /* $(top_srcdir)/cpu.c */
1117 void cpu_class_init_props(DeviceClass *dc);
1118 void cpu_exec_class_post_init(CPUClass *cc);
1119 void cpu_exec_initfn(CPUState *cpu);
1120 void cpu_vmstate_register(CPUState *cpu);
1121 void cpu_vmstate_unregister(CPUState *cpu);
1122 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1123 void cpu_exec_unrealizefn(CPUState *cpu);
1124 void cpu_exec_reset_hold(CPUState *cpu);
1125 
1126 extern const VMStateDescription vmstate_cpu_common;
1127 
1128 #define UNASSIGNED_CPU_INDEX -1
1129 #define UNASSIGNED_CLUSTER_INDEX -1
1130 
1131 enum CacheType {
1132     DATA_CACHE,
1133     INSTRUCTION_CACHE,
1134     UNIFIED_CACHE
1135 };
1136 
1137 #endif
1138