1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
5 */
6
7 /**
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9 *
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
17 * channels.
18 *
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
24 * generator).
25 */
26
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/math.h>
34 #include <linux/module.h>
35 #include <linux/of.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <dt-bindings/clock/bcm2835.h>
39
40 #define CM_PASSWORD 0x5a000000
41
42 #define CM_GNRICCTL 0x000
43 #define CM_GNRICDIV 0x004
44 # define CM_DIV_FRAC_BITS 12
45 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46
47 #define CM_VPUCTL 0x008
48 #define CM_VPUDIV 0x00c
49 #define CM_SYSCTL 0x010
50 #define CM_SYSDIV 0x014
51 #define CM_PERIACTL 0x018
52 #define CM_PERIADIV 0x01c
53 #define CM_PERIICTL 0x020
54 #define CM_PERIIDIV 0x024
55 #define CM_H264CTL 0x028
56 #define CM_H264DIV 0x02c
57 #define CM_ISPCTL 0x030
58 #define CM_ISPDIV 0x034
59 #define CM_V3DCTL 0x038
60 #define CM_V3DDIV 0x03c
61 #define CM_CAM0CTL 0x040
62 #define CM_CAM0DIV 0x044
63 #define CM_CAM1CTL 0x048
64 #define CM_CAM1DIV 0x04c
65 #define CM_CCP2CTL 0x050
66 #define CM_CCP2DIV 0x054
67 #define CM_DSI0ECTL 0x058
68 #define CM_DSI0EDIV 0x05c
69 #define CM_DSI0PCTL 0x060
70 #define CM_DSI0PDIV 0x064
71 #define CM_DPICTL 0x068
72 #define CM_DPIDIV 0x06c
73 #define CM_GP0CTL 0x070
74 #define CM_GP0DIV 0x074
75 #define CM_GP1CTL 0x078
76 #define CM_GP1DIV 0x07c
77 #define CM_GP2CTL 0x080
78 #define CM_GP2DIV 0x084
79 #define CM_HSMCTL 0x088
80 #define CM_HSMDIV 0x08c
81 #define CM_OTPCTL 0x090
82 #define CM_OTPDIV 0x094
83 #define CM_PCMCTL 0x098
84 #define CM_PCMDIV 0x09c
85 #define CM_PWMCTL 0x0a0
86 #define CM_PWMDIV 0x0a4
87 #define CM_SLIMCTL 0x0a8
88 #define CM_SLIMDIV 0x0ac
89 #define CM_SMICTL 0x0b0
90 #define CM_SMIDIV 0x0b4
91 /* no definition for 0x0b8 and 0x0bc */
92 #define CM_TCNTCTL 0x0c0
93 # define CM_TCNT_SRC1_SHIFT 12
94 #define CM_TCNTCNT 0x0c4
95 #define CM_TECCTL 0x0c8
96 #define CM_TECDIV 0x0cc
97 #define CM_TD0CTL 0x0d0
98 #define CM_TD0DIV 0x0d4
99 #define CM_TD1CTL 0x0d8
100 #define CM_TD1DIV 0x0dc
101 #define CM_TSENSCTL 0x0e0
102 #define CM_TSENSDIV 0x0e4
103 #define CM_TIMERCTL 0x0e8
104 #define CM_TIMERDIV 0x0ec
105 #define CM_UARTCTL 0x0f0
106 #define CM_UARTDIV 0x0f4
107 #define CM_VECCTL 0x0f8
108 #define CM_VECDIV 0x0fc
109 #define CM_PULSECTL 0x190
110 #define CM_PULSEDIV 0x194
111 #define CM_SDCCTL 0x1a8
112 #define CM_SDCDIV 0x1ac
113 #define CM_ARMCTL 0x1b0
114 #define CM_AVEOCTL 0x1b8
115 #define CM_AVEODIV 0x1bc
116 #define CM_EMMCCTL 0x1c0
117 #define CM_EMMCDIV 0x1c4
118 #define CM_EMMC2CTL 0x1d0
119 #define CM_EMMC2DIV 0x1d4
120
121 /* General bits for the CM_*CTL regs */
122 # define CM_ENABLE BIT(4)
123 # define CM_KILL BIT(5)
124 # define CM_GATE_BIT 6
125 # define CM_GATE BIT(CM_GATE_BIT)
126 # define CM_BUSY BIT(7)
127 # define CM_BUSYD BIT(8)
128 # define CM_FRAC BIT(9)
129 # define CM_SRC_SHIFT 0
130 # define CM_SRC_BITS 4
131 # define CM_SRC_MASK 0xf
132 # define CM_SRC_GND 0
133 # define CM_SRC_OSC 1
134 # define CM_SRC_TESTDEBUG0 2
135 # define CM_SRC_TESTDEBUG1 3
136 # define CM_SRC_PLLA_CORE 4
137 # define CM_SRC_PLLA_PER 4
138 # define CM_SRC_PLLC_CORE0 5
139 # define CM_SRC_PLLC_PER 5
140 # define CM_SRC_PLLC_CORE1 8
141 # define CM_SRC_PLLD_CORE 6
142 # define CM_SRC_PLLD_PER 6
143 # define CM_SRC_PLLH_AUX 7
144 # define CM_SRC_PLLC_CORE1 8
145 # define CM_SRC_PLLC_CORE2 9
146
147 #define CM_OSCCOUNT 0x100
148
149 #define CM_PLLA 0x104
150 # define CM_PLL_ANARST BIT(8)
151 # define CM_PLLA_HOLDPER BIT(7)
152 # define CM_PLLA_LOADPER BIT(6)
153 # define CM_PLLA_HOLDCORE BIT(5)
154 # define CM_PLLA_LOADCORE BIT(4)
155 # define CM_PLLA_HOLDCCP2 BIT(3)
156 # define CM_PLLA_LOADCCP2 BIT(2)
157 # define CM_PLLA_HOLDDSI0 BIT(1)
158 # define CM_PLLA_LOADDSI0 BIT(0)
159
160 #define CM_PLLC 0x108
161 # define CM_PLLC_HOLDPER BIT(7)
162 # define CM_PLLC_LOADPER BIT(6)
163 # define CM_PLLC_HOLDCORE2 BIT(5)
164 # define CM_PLLC_LOADCORE2 BIT(4)
165 # define CM_PLLC_HOLDCORE1 BIT(3)
166 # define CM_PLLC_LOADCORE1 BIT(2)
167 # define CM_PLLC_HOLDCORE0 BIT(1)
168 # define CM_PLLC_LOADCORE0 BIT(0)
169
170 #define CM_PLLD 0x10c
171 # define CM_PLLD_HOLDPER BIT(7)
172 # define CM_PLLD_LOADPER BIT(6)
173 # define CM_PLLD_HOLDCORE BIT(5)
174 # define CM_PLLD_LOADCORE BIT(4)
175 # define CM_PLLD_HOLDDSI1 BIT(3)
176 # define CM_PLLD_LOADDSI1 BIT(2)
177 # define CM_PLLD_HOLDDSI0 BIT(1)
178 # define CM_PLLD_LOADDSI0 BIT(0)
179
180 #define CM_PLLH 0x110
181 # define CM_PLLH_LOADRCAL BIT(2)
182 # define CM_PLLH_LOADAUX BIT(1)
183 # define CM_PLLH_LOADPIX BIT(0)
184
185 #define CM_LOCK 0x114
186 # define CM_LOCK_FLOCKH BIT(12)
187 # define CM_LOCK_FLOCKD BIT(11)
188 # define CM_LOCK_FLOCKC BIT(10)
189 # define CM_LOCK_FLOCKB BIT(9)
190 # define CM_LOCK_FLOCKA BIT(8)
191
192 #define CM_EVENT 0x118
193 #define CM_DSI1ECTL 0x158
194 #define CM_DSI1EDIV 0x15c
195 #define CM_DSI1PCTL 0x160
196 #define CM_DSI1PDIV 0x164
197 #define CM_DFTCTL 0x168
198 #define CM_DFTDIV 0x16c
199
200 #define CM_PLLB 0x170
201 # define CM_PLLB_HOLDARM BIT(1)
202 # define CM_PLLB_LOADARM BIT(0)
203
204 #define A2W_PLLA_CTRL 0x1100
205 #define A2W_PLLC_CTRL 0x1120
206 #define A2W_PLLD_CTRL 0x1140
207 #define A2W_PLLH_CTRL 0x1160
208 #define A2W_PLLB_CTRL 0x11e0
209 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
210 # define A2W_PLL_CTRL_PWRDN BIT(16)
211 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
212 # define A2W_PLL_CTRL_PDIV_SHIFT 12
213 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
214 # define A2W_PLL_CTRL_NDIV_SHIFT 0
215
216 #define A2W_PLLA_ANA0 0x1010
217 #define A2W_PLLC_ANA0 0x1030
218 #define A2W_PLLD_ANA0 0x1050
219 #define A2W_PLLH_ANA0 0x1070
220 #define A2W_PLLB_ANA0 0x10f0
221
222 #define A2W_PLL_KA_SHIFT 7
223 #define A2W_PLL_KA_MASK GENMASK(9, 7)
224 #define A2W_PLL_KI_SHIFT 19
225 #define A2W_PLL_KI_MASK GENMASK(21, 19)
226 #define A2W_PLL_KP_SHIFT 15
227 #define A2W_PLL_KP_MASK GENMASK(18, 15)
228
229 #define A2W_PLLH_KA_SHIFT 19
230 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
231 #define A2W_PLLH_KI_LOW_SHIFT 22
232 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
233 #define A2W_PLLH_KI_HIGH_SHIFT 0
234 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
235 #define A2W_PLLH_KP_SHIFT 1
236 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
237
238 #define A2W_XOSC_CTRL 0x1190
239 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
240 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
241 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
242 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
243 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
244 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
245 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
246 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247
248 #define A2W_PLLA_FRAC 0x1200
249 #define A2W_PLLC_FRAC 0x1220
250 #define A2W_PLLD_FRAC 0x1240
251 #define A2W_PLLH_FRAC 0x1260
252 #define A2W_PLLB_FRAC 0x12e0
253 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
254 # define A2W_PLL_FRAC_BITS 20
255
256 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
257 #define A2W_PLL_DIV_BITS 8
258 #define A2W_PLL_DIV_SHIFT 0
259
260 #define A2W_PLLA_DSI0 0x1300
261 #define A2W_PLLA_CORE 0x1400
262 #define A2W_PLLA_PER 0x1500
263 #define A2W_PLLA_CCP2 0x1600
264
265 #define A2W_PLLC_CORE2 0x1320
266 #define A2W_PLLC_CORE1 0x1420
267 #define A2W_PLLC_PER 0x1520
268 #define A2W_PLLC_CORE0 0x1620
269
270 #define A2W_PLLD_DSI0 0x1340
271 #define A2W_PLLD_CORE 0x1440
272 #define A2W_PLLD_PER 0x1540
273 #define A2W_PLLD_DSI1 0x1640
274
275 #define A2W_PLLH_AUX 0x1360
276 #define A2W_PLLH_RCAL 0x1460
277 #define A2W_PLLH_PIX 0x1560
278 #define A2W_PLLH_STS 0x1660
279
280 #define A2W_PLLH_CTRLR 0x1960
281 #define A2W_PLLH_FRACR 0x1a60
282 #define A2W_PLLH_AUXR 0x1b60
283 #define A2W_PLLH_RCALR 0x1c60
284 #define A2W_PLLH_PIXR 0x1d60
285 #define A2W_PLLH_STSR 0x1e60
286
287 #define A2W_PLLB_ARM 0x13e0
288 #define A2W_PLLB_SP0 0x14e0
289 #define A2W_PLLB_SP1 0x15e0
290 #define A2W_PLLB_SP2 0x16e0
291
292 #define LOCK_TIMEOUT_NS 100000000
293 #define BCM2835_MAX_FB_RATE 1750000000u
294
295 #define SOC_BCM2835 BIT(0)
296 #define SOC_BCM2711 BIT(1)
297 #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
298
299 /*
300 * Names of clocks used within the driver that need to be replaced
301 * with an external parent's name. This array is in the order that
302 * the clocks node in the DT references external clocks.
303 */
304 static const char *const cprman_parent_names[] = {
305 "xosc",
306 "dsi0_byte",
307 "dsi0_ddr2",
308 "dsi0_ddr",
309 "dsi1_byte",
310 "dsi1_ddr2",
311 "dsi1_ddr",
312 };
313
314 struct bcm2835_cprman {
315 struct device *dev;
316 void __iomem *regs;
317 spinlock_t regs_lock; /* spinlock for all clocks */
318 unsigned int soc;
319
320 /*
321 * Real names of cprman clock parents looked up through
322 * of_clk_get_parent_name(), which will be used in the
323 * parent_names[] arrays for clock registration.
324 */
325 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326
327 /* Must be last */
328 struct clk_hw_onecell_data onecell;
329 };
330
331 struct cprman_plat_data {
332 unsigned int soc;
333 };
334
cprman_write(struct bcm2835_cprman * cprman,u32 reg,u32 val)335 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336 {
337 writel(CM_PASSWORD | val, cprman->regs + reg);
338 }
339
cprman_read(struct bcm2835_cprman * cprman,u32 reg)340 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341 {
342 return readl(cprman->regs + reg);
343 }
344
345 /* Does a cycle of measuring a clock through the TCNT clock, which may
346 * source from many other clocks in the system.
347 */
bcm2835_measure_tcnt_mux(struct bcm2835_cprman * cprman,u32 tcnt_mux)348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349 u32 tcnt_mux)
350 {
351 u32 osccount = 19200; /* 1ms */
352 u32 count;
353 ktime_t timeout;
354
355 spin_lock(&cprman->regs_lock);
356
357 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358
359 cprman_write(cprman, CM_TCNTCTL,
360 (tcnt_mux & CM_SRC_MASK) |
361 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362
363 cprman_write(cprman, CM_OSCCOUNT, osccount);
364
365 /* do a kind delay at the start */
366 mdelay(1);
367
368 /* Finish off whatever is left of OSCCOUNT */
369 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370 while (cprman_read(cprman, CM_OSCCOUNT)) {
371 if (ktime_after(ktime_get(), timeout)) {
372 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373 count = 0;
374 goto out;
375 }
376 cpu_relax();
377 }
378
379 /* Wait for BUSY to clear. */
380 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382 if (ktime_after(ktime_get(), timeout)) {
383 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384 count = 0;
385 goto out;
386 }
387 cpu_relax();
388 }
389
390 count = cprman_read(cprman, CM_TCNTCNT);
391
392 cprman_write(cprman, CM_TCNTCTL, 0);
393
394 out:
395 spin_unlock(&cprman->regs_lock);
396
397 return count * 1000;
398 }
399
bcm2835_debugfs_regset(struct bcm2835_cprman * cprman,u32 base,const struct debugfs_reg32 * regs,size_t nregs,struct dentry * dentry)400 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401 const struct debugfs_reg32 *regs,
402 size_t nregs, struct dentry *dentry)
403 {
404 struct debugfs_regset32 *regset;
405
406 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407 if (!regset)
408 return;
409
410 regset->regs = regs;
411 regset->nregs = nregs;
412 regset->base = cprman->regs + base;
413
414 debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415 }
416
417 struct bcm2835_pll_data {
418 const char *name;
419 u32 cm_ctrl_reg;
420 u32 a2w_ctrl_reg;
421 u32 frac_reg;
422 u32 ana_reg_base;
423 u32 reference_enable_mask;
424 /* Bit in CM_LOCK to indicate when the PLL has locked. */
425 u32 lock_mask;
426 u32 flags;
427
428 const struct bcm2835_pll_ana_bits *ana;
429
430 unsigned long min_rate;
431 unsigned long max_rate;
432 /*
433 * Highest rate for the VCO before we have to use the
434 * pre-divide-by-2.
435 */
436 unsigned long max_fb_rate;
437 };
438
439 struct bcm2835_pll_ana_bits {
440 u32 mask0;
441 u32 set0;
442 u32 mask1;
443 u32 set1;
444 u32 mask3;
445 u32 set3;
446 u32 fb_prediv_mask;
447 };
448
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 .mask0 = 0,
451 .set0 = 0,
452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 .mask3 = A2W_PLL_KA_MASK,
455 .set3 = (2 << A2W_PLL_KA_SHIFT),
456 .fb_prediv_mask = BIT(14),
457 };
458
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463 .set1 = (6 << A2W_PLLH_KP_SHIFT),
464 .mask3 = 0,
465 .set3 = 0,
466 .fb_prediv_mask = BIT(11),
467 };
468
469 struct bcm2835_pll_divider_data {
470 const char *name;
471 const char *source_pll;
472
473 u32 cm_reg;
474 u32 a2w_reg;
475
476 u32 load_mask;
477 u32 hold_mask;
478 u32 fixed_divider;
479 u32 flags;
480 };
481
482 struct bcm2835_clock_data {
483 const char *name;
484
485 const char *const *parents;
486 int num_mux_parents;
487
488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent;
490
491 u32 ctl_reg;
492 u32 div_reg;
493
494 /* Number of integer bits in the divider */
495 u32 int_bits;
496 /* Number of fractional bits in the divider */
497 u32 frac_bits;
498
499 u32 flags;
500
501 bool is_vpu_clock;
502 bool is_mash_clock;
503 bool low_jitter;
504
505 u32 tcnt_mux;
506
507 bool round_up;
508 };
509
510 struct bcm2835_gate_data {
511 const char *name;
512 const char *parent;
513
514 u32 ctl_reg;
515 };
516
517 struct bcm2835_pll {
518 struct clk_hw hw;
519 struct bcm2835_cprman *cprman;
520 const struct bcm2835_pll_data *data;
521 };
522
bcm2835_pll_is_on(struct clk_hw * hw)523 static int bcm2835_pll_is_on(struct clk_hw *hw)
524 {
525 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526 struct bcm2835_cprman *cprman = pll->cprman;
527 const struct bcm2835_pll_data *data = pll->data;
528
529 return cprman_read(cprman, data->a2w_ctrl_reg) &
530 A2W_PLL_CTRL_PRST_DISABLE;
531 }
532
bcm2835_pll_get_prediv_mask(struct bcm2835_cprman * cprman,const struct bcm2835_pll_data * data)533 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534 const struct bcm2835_pll_data *data)
535 {
536 /*
537 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539 * for to for VCO RANGE bits.
540 */
541 if (cprman->soc & SOC_BCM2711)
542 return 0;
543
544 return data->ana->fb_prediv_mask;
545 }
546
bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,unsigned long parent_rate,u32 * ndiv,u32 * fdiv)547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548 unsigned long parent_rate,
549 u32 *ndiv, u32 *fdiv)
550 {
551 u64 div;
552
553 div = (u64)rate << A2W_PLL_FRAC_BITS;
554 do_div(div, parent_rate);
555
556 *ndiv = div >> A2W_PLL_FRAC_BITS;
557 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558 }
559
bcm2835_pll_rate_from_divisors(unsigned long parent_rate,u32 ndiv,u32 fdiv,u32 pdiv)560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561 u32 ndiv, u32 fdiv, u32 pdiv)
562 {
563 u64 rate;
564
565 if (pdiv == 0)
566 return 0;
567
568 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569 do_div(rate, pdiv);
570 return rate >> A2W_PLL_FRAC_BITS;
571 }
572
bcm2835_pll_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)573 static int bcm2835_pll_determine_rate(struct clk_hw *hw,
574 struct clk_rate_request *req)
575 {
576 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577 const struct bcm2835_pll_data *data = pll->data;
578 u32 ndiv, fdiv;
579
580 req->rate = clamp(req->rate, data->min_rate, data->max_rate);
581
582 bcm2835_pll_choose_ndiv_and_fdiv(req->rate, req->best_parent_rate,
583 &ndiv, &fdiv);
584
585 req->rate = bcm2835_pll_rate_from_divisors(req->best_parent_rate,
586 ndiv, fdiv,
587 1);
588
589 return 0;
590 }
591
bcm2835_pll_get_rate(struct clk_hw * hw,unsigned long parent_rate)592 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
593 unsigned long parent_rate)
594 {
595 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
596 struct bcm2835_cprman *cprman = pll->cprman;
597 const struct bcm2835_pll_data *data = pll->data;
598 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
599 u32 ndiv, pdiv, fdiv;
600 bool using_prediv;
601
602 if (parent_rate == 0)
603 return 0;
604
605 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
606 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
607 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
608 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
609 bcm2835_pll_get_prediv_mask(cprman, data);
610
611 if (using_prediv) {
612 ndiv *= 2;
613 fdiv *= 2;
614 }
615
616 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
617 }
618
bcm2835_pll_off(struct clk_hw * hw)619 static void bcm2835_pll_off(struct clk_hw *hw)
620 {
621 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
622 struct bcm2835_cprman *cprman = pll->cprman;
623 const struct bcm2835_pll_data *data = pll->data;
624
625 spin_lock(&cprman->regs_lock);
626 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
627 cprman_write(cprman, data->a2w_ctrl_reg,
628 cprman_read(cprman, data->a2w_ctrl_reg) |
629 A2W_PLL_CTRL_PWRDN);
630 spin_unlock(&cprman->regs_lock);
631 }
632
bcm2835_pll_on(struct clk_hw * hw)633 static int bcm2835_pll_on(struct clk_hw *hw)
634 {
635 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
636 struct bcm2835_cprman *cprman = pll->cprman;
637 const struct bcm2835_pll_data *data = pll->data;
638 ktime_t timeout;
639
640 cprman_write(cprman, data->a2w_ctrl_reg,
641 cprman_read(cprman, data->a2w_ctrl_reg) &
642 ~A2W_PLL_CTRL_PWRDN);
643
644 /* Take the PLL out of reset. */
645 spin_lock(&cprman->regs_lock);
646 cprman_write(cprman, data->cm_ctrl_reg,
647 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
648 spin_unlock(&cprman->regs_lock);
649
650 /* Wait for the PLL to lock. */
651 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
652 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
653 if (ktime_after(ktime_get(), timeout)) {
654 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
655 clk_hw_get_name(hw));
656 return -ETIMEDOUT;
657 }
658
659 cpu_relax();
660 }
661
662 cprman_write(cprman, data->a2w_ctrl_reg,
663 cprman_read(cprman, data->a2w_ctrl_reg) |
664 A2W_PLL_CTRL_PRST_DISABLE);
665
666 return 0;
667 }
668
669 static void
bcm2835_pll_write_ana(struct bcm2835_cprman * cprman,u32 ana_reg_base,u32 * ana)670 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
671 {
672 int i;
673
674 /*
675 * ANA register setup is done as a series of writes to
676 * ANA3-ANA0, in that order. This lets us write all 4
677 * registers as a single cycle of the serdes interface (taking
678 * 100 xosc clocks), whereas if we were to update ana0, 1, and
679 * 3 individually through their partial-write registers, each
680 * would be their own serdes cycle.
681 */
682 for (i = 3; i >= 0; i--)
683 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
684 }
685
bcm2835_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)686 static int bcm2835_pll_set_rate(struct clk_hw *hw,
687 unsigned long rate, unsigned long parent_rate)
688 {
689 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
690 struct bcm2835_cprman *cprman = pll->cprman;
691 const struct bcm2835_pll_data *data = pll->data;
692 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
693 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
694 u32 ndiv, fdiv, a2w_ctl;
695 u32 ana[4];
696 int i;
697
698 if (rate > data->max_fb_rate) {
699 use_fb_prediv = true;
700 rate /= 2;
701 } else {
702 use_fb_prediv = false;
703 }
704
705 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
706
707 for (i = 3; i >= 0; i--)
708 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
709
710 was_using_prediv = ana[1] & prediv_mask;
711
712 ana[0] &= ~data->ana->mask0;
713 ana[0] |= data->ana->set0;
714 ana[1] &= ~data->ana->mask1;
715 ana[1] |= data->ana->set1;
716 ana[3] &= ~data->ana->mask3;
717 ana[3] |= data->ana->set3;
718
719 if (was_using_prediv && !use_fb_prediv) {
720 ana[1] &= ~prediv_mask;
721 do_ana_setup_first = true;
722 } else if (!was_using_prediv && use_fb_prediv) {
723 ana[1] |= prediv_mask;
724 do_ana_setup_first = false;
725 } else {
726 do_ana_setup_first = true;
727 }
728
729 /* Unmask the reference clock from the oscillator. */
730 spin_lock(&cprman->regs_lock);
731 cprman_write(cprman, A2W_XOSC_CTRL,
732 cprman_read(cprman, A2W_XOSC_CTRL) |
733 data->reference_enable_mask);
734 spin_unlock(&cprman->regs_lock);
735
736 if (do_ana_setup_first)
737 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
738
739 /* Set the PLL multiplier from the oscillator. */
740 cprman_write(cprman, data->frac_reg, fdiv);
741
742 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
743 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
744 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
745 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
746 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
747 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
748
749 if (!do_ana_setup_first)
750 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
751
752 return 0;
753 }
754
bcm2835_pll_debug_init(struct clk_hw * hw,struct dentry * dentry)755 static void bcm2835_pll_debug_init(struct clk_hw *hw,
756 struct dentry *dentry)
757 {
758 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
759 struct bcm2835_cprman *cprman = pll->cprman;
760 const struct bcm2835_pll_data *data = pll->data;
761 struct debugfs_reg32 *regs;
762
763 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
764 if (!regs)
765 return;
766
767 regs[0].name = "cm_ctrl";
768 regs[0].offset = data->cm_ctrl_reg;
769 regs[1].name = "a2w_ctrl";
770 regs[1].offset = data->a2w_ctrl_reg;
771 regs[2].name = "frac";
772 regs[2].offset = data->frac_reg;
773 regs[3].name = "ana0";
774 regs[3].offset = data->ana_reg_base + 0 * 4;
775 regs[4].name = "ana1";
776 regs[4].offset = data->ana_reg_base + 1 * 4;
777 regs[5].name = "ana2";
778 regs[5].offset = data->ana_reg_base + 2 * 4;
779 regs[6].name = "ana3";
780 regs[6].offset = data->ana_reg_base + 3 * 4;
781
782 bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
783 }
784
785 static const struct clk_ops bcm2835_pll_clk_ops = {
786 .is_prepared = bcm2835_pll_is_on,
787 .prepare = bcm2835_pll_on,
788 .unprepare = bcm2835_pll_off,
789 .recalc_rate = bcm2835_pll_get_rate,
790 .set_rate = bcm2835_pll_set_rate,
791 .determine_rate = bcm2835_pll_determine_rate,
792 .debug_init = bcm2835_pll_debug_init,
793 };
794
795 struct bcm2835_pll_divider {
796 struct clk_divider div;
797 struct bcm2835_cprman *cprman;
798 const struct bcm2835_pll_divider_data *data;
799 };
800
801 static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw * hw)802 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
803 {
804 return container_of(hw, struct bcm2835_pll_divider, div.hw);
805 }
806
bcm2835_pll_divider_is_on(struct clk_hw * hw)807 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
808 {
809 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
810 struct bcm2835_cprman *cprman = divider->cprman;
811 const struct bcm2835_pll_divider_data *data = divider->data;
812
813 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
814 }
815
bcm2835_pll_divider_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)816 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
817 struct clk_rate_request *req)
818 {
819 return clk_divider_ops.determine_rate(hw, req);
820 }
821
bcm2835_pll_divider_get_rate(struct clk_hw * hw,unsigned long parent_rate)822 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823 unsigned long parent_rate)
824 {
825 return clk_divider_ops.recalc_rate(hw, parent_rate);
826 }
827
bcm2835_pll_divider_off(struct clk_hw * hw)828 static void bcm2835_pll_divider_off(struct clk_hw *hw)
829 {
830 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831 struct bcm2835_cprman *cprman = divider->cprman;
832 const struct bcm2835_pll_divider_data *data = divider->data;
833
834 spin_lock(&cprman->regs_lock);
835 cprman_write(cprman, data->cm_reg,
836 (cprman_read(cprman, data->cm_reg) &
837 ~data->load_mask) | data->hold_mask);
838 cprman_write(cprman, data->a2w_reg,
839 cprman_read(cprman, data->a2w_reg) |
840 A2W_PLL_CHANNEL_DISABLE);
841 spin_unlock(&cprman->regs_lock);
842 }
843
bcm2835_pll_divider_on(struct clk_hw * hw)844 static int bcm2835_pll_divider_on(struct clk_hw *hw)
845 {
846 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847 struct bcm2835_cprman *cprman = divider->cprman;
848 const struct bcm2835_pll_divider_data *data = divider->data;
849
850 spin_lock(&cprman->regs_lock);
851 cprman_write(cprman, data->a2w_reg,
852 cprman_read(cprman, data->a2w_reg) &
853 ~A2W_PLL_CHANNEL_DISABLE);
854
855 cprman_write(cprman, data->cm_reg,
856 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
857 spin_unlock(&cprman->regs_lock);
858
859 return 0;
860 }
861
bcm2835_pll_divider_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)862 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863 unsigned long rate,
864 unsigned long parent_rate)
865 {
866 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867 struct bcm2835_cprman *cprman = divider->cprman;
868 const struct bcm2835_pll_divider_data *data = divider->data;
869 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
870
871 div = DIV_ROUND_UP_ULL(parent_rate, rate);
872
873 div = min(div, max_div);
874 if (div == max_div)
875 div = 0;
876
877 cprman_write(cprman, data->a2w_reg, div);
878 cm = cprman_read(cprman, data->cm_reg);
879 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881
882 return 0;
883 }
884
bcm2835_pll_divider_debug_init(struct clk_hw * hw,struct dentry * dentry)885 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886 struct dentry *dentry)
887 {
888 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889 struct bcm2835_cprman *cprman = divider->cprman;
890 const struct bcm2835_pll_divider_data *data = divider->data;
891 struct debugfs_reg32 *regs;
892
893 regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
894 if (!regs)
895 return;
896
897 regs[0].name = "cm";
898 regs[0].offset = data->cm_reg;
899 regs[1].name = "a2w";
900 regs[1].offset = data->a2w_reg;
901
902 bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903 }
904
905 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906 .is_prepared = bcm2835_pll_divider_is_on,
907 .prepare = bcm2835_pll_divider_on,
908 .unprepare = bcm2835_pll_divider_off,
909 .recalc_rate = bcm2835_pll_divider_get_rate,
910 .set_rate = bcm2835_pll_divider_set_rate,
911 .determine_rate = bcm2835_pll_divider_determine_rate,
912 .debug_init = bcm2835_pll_divider_debug_init,
913 };
914
915 /*
916 * The CM dividers do fixed-point division, so we can't use the
917 * generic integer divider code like the PLL dividers do (and we can't
918 * fake it by having some fixed shifts preceding it in the clock tree,
919 * because we'd run out of bits in a 32-bit unsigned long).
920 */
921 struct bcm2835_clock {
922 struct clk_hw hw;
923 struct bcm2835_cprman *cprman;
924 const struct bcm2835_clock_data *data;
925 };
926
bcm2835_clock_from_hw(struct clk_hw * hw)927 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928 {
929 return container_of(hw, struct bcm2835_clock, hw);
930 }
931
bcm2835_clock_is_on(struct clk_hw * hw)932 static int bcm2835_clock_is_on(struct clk_hw *hw)
933 {
934 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935 struct bcm2835_cprman *cprman = clock->cprman;
936 const struct bcm2835_clock_data *data = clock->data;
937
938 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939 }
940
bcm2835_clock_choose_div(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)941 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942 unsigned long rate,
943 unsigned long parent_rate)
944 {
945 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
946 const struct bcm2835_clock_data *data = clock->data;
947 u32 unused_frac_mask =
948 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
949 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
950 u32 div, mindiv, maxdiv;
951
952 do_div(temp, rate);
953 div = temp;
954 div &= ~unused_frac_mask;
955
956 /* different clamping limits apply for a mash clock */
957 if (data->is_mash_clock) {
958 /* clamp to min divider of 2 */
959 mindiv = 2 << CM_DIV_FRAC_BITS;
960 /* clamp to the highest possible integer divider */
961 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
962 } else {
963 /* clamp to min divider of 1 */
964 mindiv = 1 << CM_DIV_FRAC_BITS;
965 /* clamp to the highest possible fractional divider */
966 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
967 CM_DIV_FRAC_BITS - data->frac_bits);
968 }
969
970 /* apply the clamping limits */
971 div = max_t(u32, div, mindiv);
972 div = min_t(u32, div, maxdiv);
973
974 return div;
975 }
976
bcm2835_clock_rate_from_divisor(struct bcm2835_clock * clock,unsigned long parent_rate,u32 div)977 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
978 unsigned long parent_rate,
979 u32 div)
980 {
981 const struct bcm2835_clock_data *data = clock->data;
982 u64 temp;
983
984 if (data->int_bits == 0 && data->frac_bits == 0)
985 return parent_rate;
986
987 /*
988 * The divisor is a 12.12 fixed point field, but only some of
989 * the bits are populated in any given clock.
990 */
991 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
992 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
993
994 if (div == 0)
995 return 0;
996
997 temp = (u64)parent_rate << data->frac_bits;
998
999 do_div(temp, div);
1000
1001 return temp;
1002 }
1003
bcm2835_round_rate(unsigned long rate)1004 static unsigned long bcm2835_round_rate(unsigned long rate)
1005 {
1006 unsigned long scaler;
1007 unsigned long limit;
1008
1009 limit = rate / 100000;
1010
1011 scaler = 1;
1012 while (scaler < limit)
1013 scaler *= 10;
1014
1015 /*
1016 * If increasing a clock by less than 0.1% changes it
1017 * from ..999.. to ..000.., round up.
1018 */
1019 if ((rate + scaler - 1) / scaler % 1000 == 0)
1020 rate = roundup(rate, scaler);
1021
1022 return rate;
1023 }
1024
bcm2835_clock_get_rate(struct clk_hw * hw,unsigned long parent_rate)1025 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1026 unsigned long parent_rate)
1027 {
1028 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1029 struct bcm2835_cprman *cprman = clock->cprman;
1030 const struct bcm2835_clock_data *data = clock->data;
1031 unsigned long rate;
1032 u32 div;
1033
1034 if (data->int_bits == 0 && data->frac_bits == 0)
1035 return parent_rate;
1036
1037 div = cprman_read(cprman, data->div_reg);
1038
1039 rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1040
1041 if (data->round_up)
1042 rate = bcm2835_round_rate(rate);
1043
1044 return rate;
1045 }
1046
bcm2835_clock_wait_busy(struct bcm2835_clock * clock)1047 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1048 {
1049 struct bcm2835_cprman *cprman = clock->cprman;
1050 const struct bcm2835_clock_data *data = clock->data;
1051 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1052
1053 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1054 if (ktime_after(ktime_get(), timeout)) {
1055 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1056 clk_hw_get_name(&clock->hw));
1057 return;
1058 }
1059 cpu_relax();
1060 }
1061 }
1062
bcm2835_clock_off(struct clk_hw * hw)1063 static void bcm2835_clock_off(struct clk_hw *hw)
1064 {
1065 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1066 struct bcm2835_cprman *cprman = clock->cprman;
1067 const struct bcm2835_clock_data *data = clock->data;
1068
1069 spin_lock(&cprman->regs_lock);
1070 cprman_write(cprman, data->ctl_reg,
1071 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1072 spin_unlock(&cprman->regs_lock);
1073
1074 /* BUSY will remain high until the divider completes its cycle. */
1075 bcm2835_clock_wait_busy(clock);
1076 }
1077
bcm2835_clock_on(struct clk_hw * hw)1078 static int bcm2835_clock_on(struct clk_hw *hw)
1079 {
1080 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1081 struct bcm2835_cprman *cprman = clock->cprman;
1082 const struct bcm2835_clock_data *data = clock->data;
1083
1084 spin_lock(&cprman->regs_lock);
1085 cprman_write(cprman, data->ctl_reg,
1086 cprman_read(cprman, data->ctl_reg) |
1087 CM_ENABLE |
1088 CM_GATE);
1089 spin_unlock(&cprman->regs_lock);
1090
1091 /* Debug code to measure the clock once it's turned on to see
1092 * if it's ticking at the rate we expect.
1093 */
1094 if (data->tcnt_mux && false) {
1095 dev_info(cprman->dev,
1096 "clk %s: rate %ld, measure %ld\n",
1097 data->name,
1098 clk_hw_get_rate(hw),
1099 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1100 }
1101
1102 return 0;
1103 }
1104
bcm2835_clock_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1105 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1106 unsigned long rate, unsigned long parent_rate)
1107 {
1108 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1109 struct bcm2835_cprman *cprman = clock->cprman;
1110 const struct bcm2835_clock_data *data = clock->data;
1111 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1112 u32 ctl;
1113
1114 spin_lock(&cprman->regs_lock);
1115
1116 /*
1117 * Setting up frac support
1118 *
1119 * In principle it is recommended to stop/start the clock first,
1120 * but as we set CLK_SET_RATE_GATE during registration of the
1121 * clock this requirement should be take care of by the
1122 * clk-framework.
1123 */
1124 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1125 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1126 cprman_write(cprman, data->ctl_reg, ctl);
1127
1128 cprman_write(cprman, data->div_reg, div);
1129
1130 spin_unlock(&cprman->regs_lock);
1131
1132 return 0;
1133 }
1134
1135 static bool
bcm2835_clk_is_pllc(struct clk_hw * hw)1136 bcm2835_clk_is_pllc(struct clk_hw *hw)
1137 {
1138 if (!hw)
1139 return false;
1140
1141 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1142 }
1143
bcm2835_clock_choose_div_and_prate(struct clk_hw * hw,int parent_idx,unsigned long rate,u32 * div,unsigned long * prate,unsigned long * avgrate)1144 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1145 int parent_idx,
1146 unsigned long rate,
1147 u32 *div,
1148 unsigned long *prate,
1149 unsigned long *avgrate)
1150 {
1151 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1152 struct bcm2835_cprman *cprman = clock->cprman;
1153 const struct bcm2835_clock_data *data = clock->data;
1154 unsigned long best_rate = 0;
1155 u32 curdiv, mindiv, maxdiv;
1156 struct clk_hw *parent;
1157
1158 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1159
1160 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1161 *prate = clk_hw_get_rate(parent);
1162 *div = bcm2835_clock_choose_div(hw, rate, *prate);
1163
1164 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1165
1166 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1167 unsigned long high, low;
1168 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1169
1170 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1171 int_div);
1172 int_div += CM_DIV_FRAC_MASK + 1;
1173 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1174 int_div);
1175
1176 /*
1177 * Return a value which is the maximum deviation
1178 * below the ideal rate, for use as a metric.
1179 */
1180 return *avgrate - max(*avgrate - low, high - *avgrate);
1181 }
1182 return *avgrate;
1183 }
1184
1185 if (data->frac_bits)
1186 dev_warn(cprman->dev,
1187 "frac bits are not used when propagating rate change");
1188
1189 /* clamp to min divider of 2 if we're dealing with a mash clock */
1190 mindiv = data->is_mash_clock ? 2 : 1;
1191 maxdiv = BIT(data->int_bits) - 1;
1192
1193 /* TODO: Be smart, and only test a subset of the available divisors. */
1194 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1195 unsigned long tmp_rate;
1196
1197 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1198 tmp_rate /= curdiv;
1199 if (curdiv == mindiv ||
1200 (tmp_rate > best_rate && tmp_rate <= rate))
1201 best_rate = tmp_rate;
1202
1203 if (best_rate == rate)
1204 break;
1205 }
1206
1207 *div = curdiv << CM_DIV_FRAC_BITS;
1208 *prate = curdiv * best_rate;
1209 *avgrate = best_rate;
1210
1211 return best_rate;
1212 }
1213
bcm2835_clock_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1214 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1215 struct clk_rate_request *req)
1216 {
1217 struct clk_hw *parent, *best_parent = NULL;
1218 bool current_parent_is_pllc;
1219 unsigned long rate, best_rate = 0;
1220 unsigned long prate, best_prate = 0;
1221 unsigned long avgrate, best_avgrate = 0;
1222 size_t i;
1223 u32 div;
1224
1225 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1226
1227 /*
1228 * Select parent clock that results in the closest but lower rate
1229 */
1230 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1231 parent = clk_hw_get_parent_by_index(hw, i);
1232 if (!parent)
1233 continue;
1234
1235 /*
1236 * Don't choose a PLLC-derived clock as our parent
1237 * unless it had been manually set that way. PLLC's
1238 * frequency gets adjusted by the firmware due to
1239 * over-temp or under-voltage conditions, without
1240 * prior notification to our clock consumer.
1241 */
1242 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1243 continue;
1244
1245 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1246 &div, &prate,
1247 &avgrate);
1248 if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1249 best_parent = parent;
1250 best_prate = prate;
1251 best_rate = rate;
1252 best_avgrate = avgrate;
1253 }
1254 }
1255
1256 if (!best_parent)
1257 return -EINVAL;
1258
1259 req->best_parent_hw = best_parent;
1260 req->best_parent_rate = best_prate;
1261
1262 req->rate = best_avgrate;
1263
1264 return 0;
1265 }
1266
bcm2835_clock_set_parent(struct clk_hw * hw,u8 index)1267 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1268 {
1269 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1270 struct bcm2835_cprman *cprman = clock->cprman;
1271 const struct bcm2835_clock_data *data = clock->data;
1272 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1273
1274 cprman_write(cprman, data->ctl_reg, src);
1275 return 0;
1276 }
1277
bcm2835_clock_get_parent(struct clk_hw * hw)1278 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1279 {
1280 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1281 struct bcm2835_cprman *cprman = clock->cprman;
1282 const struct bcm2835_clock_data *data = clock->data;
1283 u32 src = cprman_read(cprman, data->ctl_reg);
1284
1285 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1286 }
1287
1288 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1289 {
1290 .name = "ctl",
1291 .offset = 0,
1292 },
1293 {
1294 .name = "div",
1295 .offset = 4,
1296 },
1297 };
1298
bcm2835_clock_debug_init(struct clk_hw * hw,struct dentry * dentry)1299 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1300 struct dentry *dentry)
1301 {
1302 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1303 struct bcm2835_cprman *cprman = clock->cprman;
1304 const struct bcm2835_clock_data *data = clock->data;
1305
1306 bcm2835_debugfs_regset(cprman, data->ctl_reg,
1307 bcm2835_debugfs_clock_reg32,
1308 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1309 dentry);
1310 }
1311
1312 static const struct clk_ops bcm2835_clock_clk_ops = {
1313 .is_prepared = bcm2835_clock_is_on,
1314 .prepare = bcm2835_clock_on,
1315 .unprepare = bcm2835_clock_off,
1316 .recalc_rate = bcm2835_clock_get_rate,
1317 .set_rate = bcm2835_clock_set_rate,
1318 .determine_rate = bcm2835_clock_determine_rate,
1319 .set_parent = bcm2835_clock_set_parent,
1320 .get_parent = bcm2835_clock_get_parent,
1321 .debug_init = bcm2835_clock_debug_init,
1322 };
1323
bcm2835_vpu_clock_is_on(struct clk_hw * hw)1324 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1325 {
1326 return true;
1327 }
1328
1329 /*
1330 * The VPU clock can never be disabled (it doesn't have an ENABLE
1331 * bit), so it gets its own set of clock ops.
1332 */
1333 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1334 .is_prepared = bcm2835_vpu_clock_is_on,
1335 .recalc_rate = bcm2835_clock_get_rate,
1336 .set_rate = bcm2835_clock_set_rate,
1337 .determine_rate = bcm2835_clock_determine_rate,
1338 .set_parent = bcm2835_clock_set_parent,
1339 .get_parent = bcm2835_clock_get_parent,
1340 .debug_init = bcm2835_clock_debug_init,
1341 };
1342
bcm2835_register_pll(struct bcm2835_cprman * cprman,const void * data)1343 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1344 const void *data)
1345 {
1346 const struct bcm2835_pll_data *pll_data = data;
1347 struct bcm2835_pll *pll;
1348 struct clk_init_data init;
1349 int ret;
1350
1351 memset(&init, 0, sizeof(init));
1352
1353 /* All of the PLLs derive from the external oscillator. */
1354 init.parent_names = &cprman->real_parent_names[0];
1355 init.num_parents = 1;
1356 init.name = pll_data->name;
1357 init.ops = &bcm2835_pll_clk_ops;
1358 init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1359
1360 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1361 if (!pll)
1362 return NULL;
1363
1364 pll->cprman = cprman;
1365 pll->data = pll_data;
1366 pll->hw.init = &init;
1367
1368 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1369 if (ret) {
1370 kfree(pll);
1371 return NULL;
1372 }
1373 return &pll->hw;
1374 }
1375
1376 static struct clk_hw *
bcm2835_register_pll_divider(struct bcm2835_cprman * cprman,const void * data)1377 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1378 const void *data)
1379 {
1380 const struct bcm2835_pll_divider_data *divider_data = data;
1381 struct bcm2835_pll_divider *divider;
1382 struct clk_init_data init;
1383 const char *divider_name;
1384 int ret;
1385
1386 if (divider_data->fixed_divider != 1) {
1387 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1388 "%s_prediv", divider_data->name);
1389 if (!divider_name)
1390 return NULL;
1391 } else {
1392 divider_name = divider_data->name;
1393 }
1394
1395 memset(&init, 0, sizeof(init));
1396
1397 init.parent_names = ÷r_data->source_pll;
1398 init.num_parents = 1;
1399 init.name = divider_name;
1400 init.ops = &bcm2835_pll_divider_clk_ops;
1401 init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1402
1403 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1404 if (!divider)
1405 return NULL;
1406
1407 divider->div.reg = cprman->regs + divider_data->a2w_reg;
1408 divider->div.shift = A2W_PLL_DIV_SHIFT;
1409 divider->div.width = A2W_PLL_DIV_BITS;
1410 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1411 divider->div.lock = &cprman->regs_lock;
1412 divider->div.hw.init = &init;
1413 divider->div.table = NULL;
1414
1415 divider->cprman = cprman;
1416 divider->data = divider_data;
1417
1418 ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw);
1419 if (ret)
1420 return ERR_PTR(ret);
1421
1422 /*
1423 * PLLH's channels have a fixed divide by 10 afterwards, which
1424 * is what our consumers are actually using.
1425 */
1426 if (divider_data->fixed_divider != 1) {
1427 return clk_hw_register_fixed_factor(cprman->dev,
1428 divider_data->name,
1429 divider_name,
1430 CLK_SET_RATE_PARENT,
1431 1,
1432 divider_data->fixed_divider);
1433 }
1434
1435 return ÷r->div.hw;
1436 }
1437
bcm2835_register_clock(struct bcm2835_cprman * cprman,const void * data)1438 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1439 const void *data)
1440 {
1441 const struct bcm2835_clock_data *clock_data = data;
1442 struct bcm2835_clock *clock;
1443 struct clk_init_data init;
1444 const char *parents[1 << CM_SRC_BITS];
1445 size_t i;
1446 int ret;
1447
1448 /*
1449 * Replace our strings referencing parent clocks with the
1450 * actual clock-output-name of the parent.
1451 */
1452 for (i = 0; i < clock_data->num_mux_parents; i++) {
1453 parents[i] = clock_data->parents[i];
1454
1455 ret = match_string(cprman_parent_names,
1456 ARRAY_SIZE(cprman_parent_names),
1457 parents[i]);
1458 if (ret >= 0)
1459 parents[i] = cprman->real_parent_names[ret];
1460 }
1461
1462 memset(&init, 0, sizeof(init));
1463 init.parent_names = parents;
1464 init.num_parents = clock_data->num_mux_parents;
1465 init.name = clock_data->name;
1466 init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1467
1468 /*
1469 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1470 * rate changes on at least of the parents.
1471 */
1472 if (clock_data->set_rate_parent)
1473 init.flags |= CLK_SET_RATE_PARENT;
1474
1475 if (clock_data->is_vpu_clock) {
1476 init.ops = &bcm2835_vpu_clock_clk_ops;
1477 } else {
1478 init.ops = &bcm2835_clock_clk_ops;
1479 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1480
1481 /* If the clock wasn't actually enabled at boot, it's not
1482 * critical.
1483 */
1484 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1485 init.flags &= ~CLK_IS_CRITICAL;
1486 }
1487
1488 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1489 if (!clock)
1490 return NULL;
1491
1492 clock->cprman = cprman;
1493 clock->data = clock_data;
1494 clock->hw.init = &init;
1495
1496 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1497 if (ret)
1498 return ERR_PTR(ret);
1499 return &clock->hw;
1500 }
1501
bcm2835_register_gate(struct bcm2835_cprman * cprman,const void * data)1502 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1503 const void *data)
1504 {
1505 const struct bcm2835_gate_data *gate_data = data;
1506
1507 return clk_hw_register_gate(cprman->dev, gate_data->name,
1508 gate_data->parent,
1509 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1510 cprman->regs + gate_data->ctl_reg,
1511 CM_GATE_BIT, 0, &cprman->regs_lock);
1512 }
1513
1514 struct bcm2835_clk_desc {
1515 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1516 const void *data);
1517 unsigned int supported;
1518 const void *data;
1519 };
1520
1521 /* assignment helper macros for different clock types */
1522 #define _REGISTER(f, s, ...) { .clk_register = f, \
1523 .supported = s, \
1524 .data = __VA_ARGS__ }
1525 #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1526 s, \
1527 &(struct bcm2835_pll_data) \
1528 {__VA_ARGS__})
1529 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1530 s, \
1531 &(struct bcm2835_pll_divider_data) \
1532 {__VA_ARGS__})
1533 #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1534 s, \
1535 &(struct bcm2835_clock_data) \
1536 {__VA_ARGS__})
1537 #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1538 s, \
1539 &(struct bcm2835_gate_data) \
1540 {__VA_ARGS__})
1541
1542 /* parent mux arrays plus helper macros */
1543
1544 /* main oscillator parent mux */
1545 static const char *const bcm2835_clock_osc_parents[] = {
1546 "gnd",
1547 "xosc",
1548 "testdebug0",
1549 "testdebug1"
1550 };
1551
1552 #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1553 s, \
1554 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1555 .parents = bcm2835_clock_osc_parents, \
1556 __VA_ARGS__)
1557
1558 /* main peripheral parent mux */
1559 static const char *const bcm2835_clock_per_parents[] = {
1560 "gnd",
1561 "xosc",
1562 "testdebug0",
1563 "testdebug1",
1564 "plla_per",
1565 "pllc_per",
1566 "plld_per",
1567 "pllh_aux",
1568 };
1569
1570 #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1571 s, \
1572 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1573 .parents = bcm2835_clock_per_parents, \
1574 __VA_ARGS__)
1575
1576 /*
1577 * Restrict clock sources for the PCM peripheral to the oscillator and
1578 * PLLD_PER because other source may have varying rates or be switched
1579 * off.
1580 *
1581 * Prevent other sources from being selected by replacing their names in
1582 * the list of potential parents with dummy entries (entry index is
1583 * significant).
1584 */
1585 static const char *const bcm2835_pcm_per_parents[] = {
1586 "-",
1587 "xosc",
1588 "-",
1589 "-",
1590 "-",
1591 "-",
1592 "plld_per",
1593 "-",
1594 };
1595
1596 #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1597 s, \
1598 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1599 .parents = bcm2835_pcm_per_parents, \
1600 __VA_ARGS__)
1601
1602 /* main vpu parent mux */
1603 static const char *const bcm2835_clock_vpu_parents[] = {
1604 "gnd",
1605 "xosc",
1606 "testdebug0",
1607 "testdebug1",
1608 "plla_core",
1609 "pllc_core0",
1610 "plld_core",
1611 "pllh_aux",
1612 "pllc_core1",
1613 "pllc_core2",
1614 };
1615
1616 #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1617 s, \
1618 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1619 .parents = bcm2835_clock_vpu_parents, \
1620 __VA_ARGS__)
1621
1622 /*
1623 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1624 * analog PHY. The _inv variants are generated internally to cprman,
1625 * but we don't use them so they aren't hooked up.
1626 */
1627 static const char *const bcm2835_clock_dsi0_parents[] = {
1628 "gnd",
1629 "xosc",
1630 "testdebug0",
1631 "testdebug1",
1632 "dsi0_ddr",
1633 "dsi0_ddr_inv",
1634 "dsi0_ddr2",
1635 "dsi0_ddr2_inv",
1636 "dsi0_byte",
1637 "dsi0_byte_inv",
1638 };
1639
1640 static const char *const bcm2835_clock_dsi1_parents[] = {
1641 "gnd",
1642 "xosc",
1643 "testdebug0",
1644 "testdebug1",
1645 "dsi1_ddr",
1646 "dsi1_ddr_inv",
1647 "dsi1_ddr2",
1648 "dsi1_ddr2_inv",
1649 "dsi1_byte",
1650 "dsi1_byte_inv",
1651 };
1652
1653 #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1654 s, \
1655 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1656 .parents = bcm2835_clock_dsi0_parents, \
1657 __VA_ARGS__)
1658
1659 #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1660 s, \
1661 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1662 .parents = bcm2835_clock_dsi1_parents, \
1663 __VA_ARGS__)
1664
1665 /*
1666 * the real definition of all the pll, pll_dividers and clocks
1667 * these make use of the above REGISTER_* macros
1668 */
1669 static const struct bcm2835_clk_desc clk_desc_array[] = {
1670 /* the PLL + PLL dividers */
1671
1672 /*
1673 * PLLA is the auxiliary PLL, used to drive the CCP2
1674 * (Compact Camera Port 2) transmitter clock.
1675 *
1676 * It is in the PX LDO power domain, which is on when the
1677 * AUDIO domain is on.
1678 */
1679 [BCM2835_PLLA] = REGISTER_PLL(
1680 SOC_ALL,
1681 .name = "plla",
1682 .cm_ctrl_reg = CM_PLLA,
1683 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1684 .frac_reg = A2W_PLLA_FRAC,
1685 .ana_reg_base = A2W_PLLA_ANA0,
1686 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1687 .lock_mask = CM_LOCK_FLOCKA,
1688
1689 .ana = &bcm2835_ana_default,
1690
1691 .min_rate = 600000000u,
1692 .max_rate = 2400000000u,
1693 .max_fb_rate = BCM2835_MAX_FB_RATE),
1694 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1695 SOC_ALL,
1696 .name = "plla_core",
1697 .source_pll = "plla",
1698 .cm_reg = CM_PLLA,
1699 .a2w_reg = A2W_PLLA_CORE,
1700 .load_mask = CM_PLLA_LOADCORE,
1701 .hold_mask = CM_PLLA_HOLDCORE,
1702 .fixed_divider = 1,
1703 .flags = CLK_SET_RATE_PARENT),
1704 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1705 SOC_ALL,
1706 .name = "plla_per",
1707 .source_pll = "plla",
1708 .cm_reg = CM_PLLA,
1709 .a2w_reg = A2W_PLLA_PER,
1710 .load_mask = CM_PLLA_LOADPER,
1711 .hold_mask = CM_PLLA_HOLDPER,
1712 .fixed_divider = 1,
1713 .flags = CLK_SET_RATE_PARENT),
1714 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1715 SOC_ALL,
1716 .name = "plla_dsi0",
1717 .source_pll = "plla",
1718 .cm_reg = CM_PLLA,
1719 .a2w_reg = A2W_PLLA_DSI0,
1720 .load_mask = CM_PLLA_LOADDSI0,
1721 .hold_mask = CM_PLLA_HOLDDSI0,
1722 .fixed_divider = 1),
1723 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1724 SOC_ALL,
1725 .name = "plla_ccp2",
1726 .source_pll = "plla",
1727 .cm_reg = CM_PLLA,
1728 .a2w_reg = A2W_PLLA_CCP2,
1729 .load_mask = CM_PLLA_LOADCCP2,
1730 .hold_mask = CM_PLLA_HOLDCCP2,
1731 .fixed_divider = 1,
1732 .flags = CLK_SET_RATE_PARENT),
1733
1734 /* PLLB is used for the ARM's clock. */
1735 [BCM2835_PLLB] = REGISTER_PLL(
1736 SOC_ALL,
1737 .name = "pllb",
1738 .cm_ctrl_reg = CM_PLLB,
1739 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1740 .frac_reg = A2W_PLLB_FRAC,
1741 .ana_reg_base = A2W_PLLB_ANA0,
1742 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1743 .lock_mask = CM_LOCK_FLOCKB,
1744
1745 .ana = &bcm2835_ana_default,
1746
1747 .min_rate = 600000000u,
1748 .max_rate = 3000000000u,
1749 .max_fb_rate = BCM2835_MAX_FB_RATE,
1750 .flags = CLK_GET_RATE_NOCACHE),
1751 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1752 SOC_ALL,
1753 .name = "pllb_arm",
1754 .source_pll = "pllb",
1755 .cm_reg = CM_PLLB,
1756 .a2w_reg = A2W_PLLB_ARM,
1757 .load_mask = CM_PLLB_LOADARM,
1758 .hold_mask = CM_PLLB_HOLDARM,
1759 .fixed_divider = 1,
1760 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1761
1762 /*
1763 * PLLC is the core PLL, used to drive the core VPU clock.
1764 *
1765 * It is in the PX LDO power domain, which is on when the
1766 * AUDIO domain is on.
1767 */
1768 [BCM2835_PLLC] = REGISTER_PLL(
1769 SOC_ALL,
1770 .name = "pllc",
1771 .cm_ctrl_reg = CM_PLLC,
1772 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1773 .frac_reg = A2W_PLLC_FRAC,
1774 .ana_reg_base = A2W_PLLC_ANA0,
1775 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1776 .lock_mask = CM_LOCK_FLOCKC,
1777
1778 .ana = &bcm2835_ana_default,
1779
1780 .min_rate = 600000000u,
1781 .max_rate = 3000000000u,
1782 .max_fb_rate = BCM2835_MAX_FB_RATE),
1783 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1784 SOC_ALL,
1785 .name = "pllc_core0",
1786 .source_pll = "pllc",
1787 .cm_reg = CM_PLLC,
1788 .a2w_reg = A2W_PLLC_CORE0,
1789 .load_mask = CM_PLLC_LOADCORE0,
1790 .hold_mask = CM_PLLC_HOLDCORE0,
1791 .fixed_divider = 1,
1792 .flags = CLK_SET_RATE_PARENT),
1793 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1794 SOC_ALL,
1795 .name = "pllc_core1",
1796 .source_pll = "pllc",
1797 .cm_reg = CM_PLLC,
1798 .a2w_reg = A2W_PLLC_CORE1,
1799 .load_mask = CM_PLLC_LOADCORE1,
1800 .hold_mask = CM_PLLC_HOLDCORE1,
1801 .fixed_divider = 1,
1802 .flags = CLK_SET_RATE_PARENT),
1803 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1804 SOC_ALL,
1805 .name = "pllc_core2",
1806 .source_pll = "pllc",
1807 .cm_reg = CM_PLLC,
1808 .a2w_reg = A2W_PLLC_CORE2,
1809 .load_mask = CM_PLLC_LOADCORE2,
1810 .hold_mask = CM_PLLC_HOLDCORE2,
1811 .fixed_divider = 1,
1812 .flags = CLK_SET_RATE_PARENT),
1813 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1814 SOC_ALL,
1815 .name = "pllc_per",
1816 .source_pll = "pllc",
1817 .cm_reg = CM_PLLC,
1818 .a2w_reg = A2W_PLLC_PER,
1819 .load_mask = CM_PLLC_LOADPER,
1820 .hold_mask = CM_PLLC_HOLDPER,
1821 .fixed_divider = 1,
1822 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1823
1824 /*
1825 * PLLD is the display PLL, used to drive DSI display panels.
1826 *
1827 * It is in the PX LDO power domain, which is on when the
1828 * AUDIO domain is on.
1829 */
1830 [BCM2835_PLLD] = REGISTER_PLL(
1831 SOC_ALL,
1832 .name = "plld",
1833 .cm_ctrl_reg = CM_PLLD,
1834 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1835 .frac_reg = A2W_PLLD_FRAC,
1836 .ana_reg_base = A2W_PLLD_ANA0,
1837 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1838 .lock_mask = CM_LOCK_FLOCKD,
1839
1840 .ana = &bcm2835_ana_default,
1841
1842 .min_rate = 600000000u,
1843 .max_rate = 2400000000u,
1844 .max_fb_rate = BCM2835_MAX_FB_RATE),
1845 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1846 SOC_ALL,
1847 .name = "plld_core",
1848 .source_pll = "plld",
1849 .cm_reg = CM_PLLD,
1850 .a2w_reg = A2W_PLLD_CORE,
1851 .load_mask = CM_PLLD_LOADCORE,
1852 .hold_mask = CM_PLLD_HOLDCORE,
1853 .fixed_divider = 1,
1854 .flags = CLK_SET_RATE_PARENT),
1855 /*
1856 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1857 * Otherwise this could cause firmware lookups. That's why we mark
1858 * it as critical.
1859 */
1860 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1861 SOC_ALL,
1862 .name = "plld_per",
1863 .source_pll = "plld",
1864 .cm_reg = CM_PLLD,
1865 .a2w_reg = A2W_PLLD_PER,
1866 .load_mask = CM_PLLD_LOADPER,
1867 .hold_mask = CM_PLLD_HOLDPER,
1868 .fixed_divider = 1,
1869 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1870 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1871 SOC_ALL,
1872 .name = "plld_dsi0",
1873 .source_pll = "plld",
1874 .cm_reg = CM_PLLD,
1875 .a2w_reg = A2W_PLLD_DSI0,
1876 .load_mask = CM_PLLD_LOADDSI0,
1877 .hold_mask = CM_PLLD_HOLDDSI0,
1878 .fixed_divider = 1),
1879 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1880 SOC_ALL,
1881 .name = "plld_dsi1",
1882 .source_pll = "plld",
1883 .cm_reg = CM_PLLD,
1884 .a2w_reg = A2W_PLLD_DSI1,
1885 .load_mask = CM_PLLD_LOADDSI1,
1886 .hold_mask = CM_PLLD_HOLDDSI1,
1887 .fixed_divider = 1),
1888
1889 /*
1890 * PLLH is used to supply the pixel clock or the AUX clock for the
1891 * TV encoder.
1892 *
1893 * It is in the HDMI power domain.
1894 */
1895 [BCM2835_PLLH] = REGISTER_PLL(
1896 SOC_BCM2835,
1897 "pllh",
1898 .cm_ctrl_reg = CM_PLLH,
1899 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1900 .frac_reg = A2W_PLLH_FRAC,
1901 .ana_reg_base = A2W_PLLH_ANA0,
1902 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1903 .lock_mask = CM_LOCK_FLOCKH,
1904
1905 .ana = &bcm2835_ana_pllh,
1906
1907 .min_rate = 600000000u,
1908 .max_rate = 3000000000u,
1909 .max_fb_rate = BCM2835_MAX_FB_RATE),
1910 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1911 SOC_BCM2835,
1912 .name = "pllh_rcal",
1913 .source_pll = "pllh",
1914 .cm_reg = CM_PLLH,
1915 .a2w_reg = A2W_PLLH_RCAL,
1916 .load_mask = CM_PLLH_LOADRCAL,
1917 .hold_mask = 0,
1918 .fixed_divider = 10,
1919 .flags = CLK_SET_RATE_PARENT),
1920 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1921 SOC_BCM2835,
1922 .name = "pllh_aux",
1923 .source_pll = "pllh",
1924 .cm_reg = CM_PLLH,
1925 .a2w_reg = A2W_PLLH_AUX,
1926 .load_mask = CM_PLLH_LOADAUX,
1927 .hold_mask = 0,
1928 .fixed_divider = 1,
1929 .flags = CLK_SET_RATE_PARENT),
1930 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1931 SOC_BCM2835,
1932 .name = "pllh_pix",
1933 .source_pll = "pllh",
1934 .cm_reg = CM_PLLH,
1935 .a2w_reg = A2W_PLLH_PIX,
1936 .load_mask = CM_PLLH_LOADPIX,
1937 .hold_mask = 0,
1938 .fixed_divider = 10,
1939 .flags = CLK_SET_RATE_PARENT),
1940
1941 /* the clocks */
1942
1943 /* clocks with oscillator parent mux */
1944
1945 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1946 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1947 SOC_ALL,
1948 .name = "otp",
1949 .ctl_reg = CM_OTPCTL,
1950 .div_reg = CM_OTPDIV,
1951 .int_bits = 4,
1952 .frac_bits = 0,
1953 .tcnt_mux = 6),
1954 /*
1955 * Used for a 1Mhz clock for the system clocksource, and also used
1956 * bythe watchdog timer and the camera pulse generator.
1957 */
1958 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1959 SOC_ALL,
1960 .name = "timer",
1961 .ctl_reg = CM_TIMERCTL,
1962 .div_reg = CM_TIMERDIV,
1963 .int_bits = 6,
1964 .frac_bits = 12),
1965 /*
1966 * Clock for the temperature sensor.
1967 * Generally run at 2Mhz, max 5Mhz.
1968 */
1969 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1970 SOC_ALL,
1971 .name = "tsens",
1972 .ctl_reg = CM_TSENSCTL,
1973 .div_reg = CM_TSENSDIV,
1974 .int_bits = 5,
1975 .frac_bits = 0),
1976 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1977 SOC_ALL,
1978 .name = "tec",
1979 .ctl_reg = CM_TECCTL,
1980 .div_reg = CM_TECDIV,
1981 .int_bits = 6,
1982 .frac_bits = 0),
1983
1984 /* clocks with vpu parent mux */
1985 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1986 SOC_ALL,
1987 .name = "h264",
1988 .ctl_reg = CM_H264CTL,
1989 .div_reg = CM_H264DIV,
1990 .int_bits = 4,
1991 .frac_bits = 8,
1992 .tcnt_mux = 1),
1993 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1994 SOC_ALL,
1995 .name = "isp",
1996 .ctl_reg = CM_ISPCTL,
1997 .div_reg = CM_ISPDIV,
1998 .int_bits = 4,
1999 .frac_bits = 8,
2000 .tcnt_mux = 2),
2001
2002 /*
2003 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
2004 * in the SDRAM controller can't be used.
2005 */
2006 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
2007 SOC_ALL,
2008 .name = "sdram",
2009 .ctl_reg = CM_SDCCTL,
2010 .div_reg = CM_SDCDIV,
2011 .int_bits = 6,
2012 .frac_bits = 0,
2013 .tcnt_mux = 3),
2014 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
2015 SOC_ALL,
2016 .name = "v3d",
2017 .ctl_reg = CM_V3DCTL,
2018 .div_reg = CM_V3DDIV,
2019 .int_bits = 4,
2020 .frac_bits = 8,
2021 .tcnt_mux = 4),
2022 /*
2023 * VPU clock. This doesn't have an enable bit, since it drives
2024 * the bus for everything else, and is special so it doesn't need
2025 * to be gated for rate changes. It is also known as "clk_audio"
2026 * in various hardware documentation.
2027 */
2028 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
2029 SOC_ALL,
2030 .name = "vpu",
2031 .ctl_reg = CM_VPUCTL,
2032 .div_reg = CM_VPUDIV,
2033 .int_bits = 12,
2034 .frac_bits = 8,
2035 .flags = CLK_IS_CRITICAL,
2036 .is_vpu_clock = true,
2037 .tcnt_mux = 5),
2038
2039 /* clocks with per parent mux */
2040 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
2041 SOC_ALL,
2042 .name = "aveo",
2043 .ctl_reg = CM_AVEOCTL,
2044 .div_reg = CM_AVEODIV,
2045 .int_bits = 4,
2046 .frac_bits = 0,
2047 .tcnt_mux = 38),
2048 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
2049 SOC_ALL,
2050 .name = "cam0",
2051 .ctl_reg = CM_CAM0CTL,
2052 .div_reg = CM_CAM0DIV,
2053 .int_bits = 4,
2054 .frac_bits = 8,
2055 .tcnt_mux = 14),
2056 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
2057 SOC_ALL,
2058 .name = "cam1",
2059 .ctl_reg = CM_CAM1CTL,
2060 .div_reg = CM_CAM1DIV,
2061 .int_bits = 4,
2062 .frac_bits = 8,
2063 .tcnt_mux = 15),
2064 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
2065 SOC_ALL,
2066 .name = "dft",
2067 .ctl_reg = CM_DFTCTL,
2068 .div_reg = CM_DFTDIV,
2069 .int_bits = 5,
2070 .frac_bits = 0),
2071 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
2072 SOC_ALL,
2073 .name = "dpi",
2074 .ctl_reg = CM_DPICTL,
2075 .div_reg = CM_DPIDIV,
2076 .int_bits = 4,
2077 .frac_bits = 8,
2078 .tcnt_mux = 17),
2079
2080 /* Arasan EMMC clock */
2081 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2082 SOC_ALL,
2083 .name = "emmc",
2084 .ctl_reg = CM_EMMCCTL,
2085 .div_reg = CM_EMMCDIV,
2086 .int_bits = 4,
2087 .frac_bits = 8,
2088 .tcnt_mux = 39),
2089
2090 /* EMMC2 clock (only available for BCM2711) */
2091 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK(
2092 SOC_BCM2711,
2093 .name = "emmc2",
2094 .ctl_reg = CM_EMMC2CTL,
2095 .div_reg = CM_EMMC2DIV,
2096 .int_bits = 4,
2097 .frac_bits = 8,
2098 .tcnt_mux = 42),
2099
2100 /* General purpose (GPIO) clocks */
2101 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2102 SOC_ALL,
2103 .name = "gp0",
2104 .ctl_reg = CM_GP0CTL,
2105 .div_reg = CM_GP0DIV,
2106 .int_bits = 12,
2107 .frac_bits = 12,
2108 .is_mash_clock = true,
2109 .tcnt_mux = 20),
2110 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2111 SOC_ALL,
2112 .name = "gp1",
2113 .ctl_reg = CM_GP1CTL,
2114 .div_reg = CM_GP1DIV,
2115 .int_bits = 12,
2116 .frac_bits = 12,
2117 .flags = CLK_IS_CRITICAL,
2118 .is_mash_clock = true,
2119 .tcnt_mux = 21),
2120 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2121 SOC_ALL,
2122 .name = "gp2",
2123 .ctl_reg = CM_GP2CTL,
2124 .div_reg = CM_GP2DIV,
2125 .int_bits = 12,
2126 .frac_bits = 12,
2127 .flags = CLK_IS_CRITICAL),
2128
2129 /* HDMI state machine */
2130 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2131 SOC_ALL,
2132 .name = "hsm",
2133 .ctl_reg = CM_HSMCTL,
2134 .div_reg = CM_HSMDIV,
2135 .int_bits = 4,
2136 .frac_bits = 8,
2137 .tcnt_mux = 22),
2138 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2139 SOC_ALL,
2140 .name = "pcm",
2141 .ctl_reg = CM_PCMCTL,
2142 .div_reg = CM_PCMDIV,
2143 .int_bits = 12,
2144 .frac_bits = 12,
2145 .is_mash_clock = true,
2146 .low_jitter = true,
2147 .tcnt_mux = 23),
2148 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2149 SOC_ALL,
2150 .name = "pwm",
2151 .ctl_reg = CM_PWMCTL,
2152 .div_reg = CM_PWMDIV,
2153 .int_bits = 12,
2154 .frac_bits = 12,
2155 .is_mash_clock = true,
2156 .tcnt_mux = 24),
2157 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2158 SOC_ALL,
2159 .name = "slim",
2160 .ctl_reg = CM_SLIMCTL,
2161 .div_reg = CM_SLIMDIV,
2162 .int_bits = 12,
2163 .frac_bits = 12,
2164 .is_mash_clock = true,
2165 .tcnt_mux = 25),
2166 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2167 SOC_ALL,
2168 .name = "smi",
2169 .ctl_reg = CM_SMICTL,
2170 .div_reg = CM_SMIDIV,
2171 .int_bits = 4,
2172 .frac_bits = 8,
2173 .tcnt_mux = 27),
2174 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2175 SOC_ALL,
2176 .name = "uart",
2177 .ctl_reg = CM_UARTCTL,
2178 .div_reg = CM_UARTDIV,
2179 .int_bits = 10,
2180 .frac_bits = 12,
2181 .tcnt_mux = 28,
2182 .round_up = true),
2183
2184 /* TV encoder clock. Only operating frequency is 108Mhz. */
2185 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2186 SOC_ALL,
2187 .name = "vec",
2188 .ctl_reg = CM_VECCTL,
2189 .div_reg = CM_VECDIV,
2190 .int_bits = 4,
2191 .frac_bits = 0,
2192 /*
2193 * Allow rate change propagation only on PLLH_AUX which is
2194 * assigned index 7 in the parent array.
2195 */
2196 .set_rate_parent = BIT(7),
2197 .tcnt_mux = 29),
2198
2199 /* dsi clocks */
2200 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2201 SOC_ALL,
2202 .name = "dsi0e",
2203 .ctl_reg = CM_DSI0ECTL,
2204 .div_reg = CM_DSI0EDIV,
2205 .int_bits = 4,
2206 .frac_bits = 8,
2207 .tcnt_mux = 18),
2208 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2209 SOC_ALL,
2210 .name = "dsi1e",
2211 .ctl_reg = CM_DSI1ECTL,
2212 .div_reg = CM_DSI1EDIV,
2213 .int_bits = 4,
2214 .frac_bits = 8,
2215 .tcnt_mux = 19),
2216 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2217 SOC_ALL,
2218 .name = "dsi0p",
2219 .ctl_reg = CM_DSI0PCTL,
2220 .div_reg = CM_DSI0PDIV,
2221 .int_bits = 0,
2222 .frac_bits = 0,
2223 .tcnt_mux = 12),
2224 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2225 SOC_ALL,
2226 .name = "dsi1p",
2227 .ctl_reg = CM_DSI1PCTL,
2228 .div_reg = CM_DSI1PDIV,
2229 .int_bits = 0,
2230 .frac_bits = 0,
2231 .tcnt_mux = 13),
2232
2233 /* the gates */
2234
2235 /*
2236 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2237 * you have the debug bit set in the power manager, which we
2238 * don't bother exposing) are individual gates off of the
2239 * non-stop vpu clock.
2240 */
2241 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2242 SOC_ALL,
2243 .name = "peri_image",
2244 .parent = "vpu",
2245 .ctl_reg = CM_PERIICTL),
2246 };
2247
2248 /*
2249 * Permanently take a reference on the parent of the SDRAM clock.
2250 *
2251 * While the SDRAM is being driven by its dedicated PLL most of the
2252 * time, there is a little loop running in the firmware that
2253 * periodically switches the SDRAM to using our CM clock to do PVT
2254 * recalibration, with the assumption that the previously configured
2255 * SDRAM parent is still enabled and running.
2256 */
bcm2835_mark_sdc_parent_critical(struct clk * sdc)2257 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2258 {
2259 struct clk *parent = clk_get_parent(sdc);
2260
2261 if (IS_ERR(parent))
2262 return PTR_ERR(parent);
2263
2264 return clk_prepare_enable(parent);
2265 }
2266
bcm2835_clk_probe(struct platform_device * pdev)2267 static int bcm2835_clk_probe(struct platform_device *pdev)
2268 {
2269 struct device *dev = &pdev->dev;
2270 struct clk_hw **hws;
2271 struct bcm2835_cprman *cprman;
2272 const struct bcm2835_clk_desc *desc;
2273 const size_t asize = ARRAY_SIZE(clk_desc_array);
2274 const struct cprman_plat_data *pdata;
2275 size_t i;
2276 int ret;
2277
2278 pdata = of_device_get_match_data(&pdev->dev);
2279 if (!pdata)
2280 return -ENODEV;
2281
2282 cprman = devm_kzalloc(dev,
2283 struct_size(cprman, onecell.hws, asize),
2284 GFP_KERNEL);
2285 if (!cprman)
2286 return -ENOMEM;
2287
2288 spin_lock_init(&cprman->regs_lock);
2289 cprman->dev = dev;
2290 cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2291 if (IS_ERR(cprman->regs))
2292 return PTR_ERR(cprman->regs);
2293
2294 memcpy(cprman->real_parent_names, cprman_parent_names,
2295 sizeof(cprman_parent_names));
2296 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2297 ARRAY_SIZE(cprman_parent_names));
2298
2299 /*
2300 * Make sure the external oscillator has been registered.
2301 *
2302 * The other (DSI) clocks are not present on older device
2303 * trees, which we still need to support for backwards
2304 * compatibility.
2305 */
2306 if (!cprman->real_parent_names[0])
2307 return -ENODEV;
2308
2309 platform_set_drvdata(pdev, cprman);
2310
2311 cprman->onecell.num = asize;
2312 cprman->soc = pdata->soc;
2313 hws = cprman->onecell.hws;
2314
2315 for (i = 0; i < asize; i++) {
2316 desc = &clk_desc_array[i];
2317 if (desc->clk_register && desc->data &&
2318 (desc->supported & pdata->soc)) {
2319 hws[i] = desc->clk_register(cprman, desc->data);
2320 }
2321 }
2322
2323 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2324 if (ret)
2325 return ret;
2326
2327 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2328 &cprman->onecell);
2329 }
2330
2331 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2332 .soc = SOC_BCM2835,
2333 };
2334
2335 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2336 .soc = SOC_BCM2711,
2337 };
2338
2339 static const struct of_device_id bcm2835_clk_of_match[] = {
2340 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2341 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2342 {}
2343 };
2344 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2345
2346 static struct platform_driver bcm2835_clk_driver = {
2347 .driver = {
2348 .name = "bcm2835-clk",
2349 .of_match_table = bcm2835_clk_of_match,
2350 },
2351 .probe = bcm2835_clk_probe,
2352 };
2353
2354 builtin_platform_driver(bcm2835_clk_driver);
2355
2356 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2357 MODULE_DESCRIPTION("BCM2835 clock driver");
2358