xref: /linux/drivers/clk/bcm/clk-bcm2835.c (revision 2d945dde7fa3f17f46349360a9f97614de9f47da)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6 
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26 
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/math.h>
34 #include <linux/module.h>
35 #include <linux/of.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <dt-bindings/clock/bcm2835.h>
39 
40 #define CM_PASSWORD		0x5a000000
41 
42 #define CM_GNRICCTL		0x000
43 #define CM_GNRICDIV		0x004
44 # define CM_DIV_FRAC_BITS	12
45 # define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46 
47 #define CM_VPUCTL		0x008
48 #define CM_VPUDIV		0x00c
49 #define CM_SYSCTL		0x010
50 #define CM_SYSDIV		0x014
51 #define CM_PERIACTL		0x018
52 #define CM_PERIADIV		0x01c
53 #define CM_PERIICTL		0x020
54 #define CM_PERIIDIV		0x024
55 #define CM_H264CTL		0x028
56 #define CM_H264DIV		0x02c
57 #define CM_ISPCTL		0x030
58 #define CM_ISPDIV		0x034
59 #define CM_V3DCTL		0x038
60 #define CM_V3DDIV		0x03c
61 #define CM_CAM0CTL		0x040
62 #define CM_CAM0DIV		0x044
63 #define CM_CAM1CTL		0x048
64 #define CM_CAM1DIV		0x04c
65 #define CM_CCP2CTL		0x050
66 #define CM_CCP2DIV		0x054
67 #define CM_DSI0ECTL		0x058
68 #define CM_DSI0EDIV		0x05c
69 #define CM_DSI0PCTL		0x060
70 #define CM_DSI0PDIV		0x064
71 #define CM_DPICTL		0x068
72 #define CM_DPIDIV		0x06c
73 #define CM_GP0CTL		0x070
74 #define CM_GP0DIV		0x074
75 #define CM_GP1CTL		0x078
76 #define CM_GP1DIV		0x07c
77 #define CM_GP2CTL		0x080
78 #define CM_GP2DIV		0x084
79 #define CM_HSMCTL		0x088
80 #define CM_HSMDIV		0x08c
81 #define CM_OTPCTL		0x090
82 #define CM_OTPDIV		0x094
83 #define CM_PCMCTL		0x098
84 #define CM_PCMDIV		0x09c
85 #define CM_PWMCTL		0x0a0
86 #define CM_PWMDIV		0x0a4
87 #define CM_SLIMCTL		0x0a8
88 #define CM_SLIMDIV		0x0ac
89 #define CM_SMICTL		0x0b0
90 #define CM_SMIDIV		0x0b4
91 /* no definition for 0x0b8  and 0x0bc */
92 #define CM_TCNTCTL		0x0c0
93 # define CM_TCNT_SRC1_SHIFT		12
94 #define CM_TCNTCNT		0x0c4
95 #define CM_TECCTL		0x0c8
96 #define CM_TECDIV		0x0cc
97 #define CM_TD0CTL		0x0d0
98 #define CM_TD0DIV		0x0d4
99 #define CM_TD1CTL		0x0d8
100 #define CM_TD1DIV		0x0dc
101 #define CM_TSENSCTL		0x0e0
102 #define CM_TSENSDIV		0x0e4
103 #define CM_TIMERCTL		0x0e8
104 #define CM_TIMERDIV		0x0ec
105 #define CM_UARTCTL		0x0f0
106 #define CM_UARTDIV		0x0f4
107 #define CM_VECCTL		0x0f8
108 #define CM_VECDIV		0x0fc
109 #define CM_PULSECTL		0x190
110 #define CM_PULSEDIV		0x194
111 #define CM_SDCCTL		0x1a8
112 #define CM_SDCDIV		0x1ac
113 #define CM_ARMCTL		0x1b0
114 #define CM_AVEOCTL		0x1b8
115 #define CM_AVEODIV		0x1bc
116 #define CM_EMMCCTL		0x1c0
117 #define CM_EMMCDIV		0x1c4
118 #define CM_EMMC2CTL		0x1d0
119 #define CM_EMMC2DIV		0x1d4
120 
121 /* General bits for the CM_*CTL regs */
122 # define CM_ENABLE			BIT(4)
123 # define CM_KILL			BIT(5)
124 # define CM_GATE_BIT			6
125 # define CM_GATE			BIT(CM_GATE_BIT)
126 # define CM_BUSY			BIT(7)
127 # define CM_BUSYD			BIT(8)
128 # define CM_FRAC			BIT(9)
129 # define CM_SRC_SHIFT			0
130 # define CM_SRC_BITS			4
131 # define CM_SRC_MASK			0xf
132 # define CM_SRC_GND			0
133 # define CM_SRC_OSC			1
134 # define CM_SRC_TESTDEBUG0		2
135 # define CM_SRC_TESTDEBUG1		3
136 # define CM_SRC_PLLA_CORE		4
137 # define CM_SRC_PLLA_PER		4
138 # define CM_SRC_PLLC_CORE0		5
139 # define CM_SRC_PLLC_PER		5
140 # define CM_SRC_PLLC_CORE1		8
141 # define CM_SRC_PLLD_CORE		6
142 # define CM_SRC_PLLD_PER		6
143 # define CM_SRC_PLLH_AUX		7
144 # define CM_SRC_PLLC_CORE1		8
145 # define CM_SRC_PLLC_CORE2		9
146 
147 #define CM_OSCCOUNT		0x100
148 
149 #define CM_PLLA			0x104
150 # define CM_PLL_ANARST			BIT(8)
151 # define CM_PLLA_HOLDPER		BIT(7)
152 # define CM_PLLA_LOADPER		BIT(6)
153 # define CM_PLLA_HOLDCORE		BIT(5)
154 # define CM_PLLA_LOADCORE		BIT(4)
155 # define CM_PLLA_HOLDCCP2		BIT(3)
156 # define CM_PLLA_LOADCCP2		BIT(2)
157 # define CM_PLLA_HOLDDSI0		BIT(1)
158 # define CM_PLLA_LOADDSI0		BIT(0)
159 
160 #define CM_PLLC			0x108
161 # define CM_PLLC_HOLDPER		BIT(7)
162 # define CM_PLLC_LOADPER		BIT(6)
163 # define CM_PLLC_HOLDCORE2		BIT(5)
164 # define CM_PLLC_LOADCORE2		BIT(4)
165 # define CM_PLLC_HOLDCORE1		BIT(3)
166 # define CM_PLLC_LOADCORE1		BIT(2)
167 # define CM_PLLC_HOLDCORE0		BIT(1)
168 # define CM_PLLC_LOADCORE0		BIT(0)
169 
170 #define CM_PLLD			0x10c
171 # define CM_PLLD_HOLDPER		BIT(7)
172 # define CM_PLLD_LOADPER		BIT(6)
173 # define CM_PLLD_HOLDCORE		BIT(5)
174 # define CM_PLLD_LOADCORE		BIT(4)
175 # define CM_PLLD_HOLDDSI1		BIT(3)
176 # define CM_PLLD_LOADDSI1		BIT(2)
177 # define CM_PLLD_HOLDDSI0		BIT(1)
178 # define CM_PLLD_LOADDSI0		BIT(0)
179 
180 #define CM_PLLH			0x110
181 # define CM_PLLH_LOADRCAL		BIT(2)
182 # define CM_PLLH_LOADAUX		BIT(1)
183 # define CM_PLLH_LOADPIX		BIT(0)
184 
185 #define CM_LOCK			0x114
186 # define CM_LOCK_FLOCKH			BIT(12)
187 # define CM_LOCK_FLOCKD			BIT(11)
188 # define CM_LOCK_FLOCKC			BIT(10)
189 # define CM_LOCK_FLOCKB			BIT(9)
190 # define CM_LOCK_FLOCKA			BIT(8)
191 
192 #define CM_EVENT		0x118
193 #define CM_DSI1ECTL		0x158
194 #define CM_DSI1EDIV		0x15c
195 #define CM_DSI1PCTL		0x160
196 #define CM_DSI1PDIV		0x164
197 #define CM_DFTCTL		0x168
198 #define CM_DFTDIV		0x16c
199 
200 #define CM_PLLB			0x170
201 # define CM_PLLB_HOLDARM		BIT(1)
202 # define CM_PLLB_LOADARM		BIT(0)
203 
204 #define A2W_PLLA_CTRL		0x1100
205 #define A2W_PLLC_CTRL		0x1120
206 #define A2W_PLLD_CTRL		0x1140
207 #define A2W_PLLH_CTRL		0x1160
208 #define A2W_PLLB_CTRL		0x11e0
209 # define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
210 # define A2W_PLL_CTRL_PWRDN		BIT(16)
211 # define A2W_PLL_CTRL_PDIV_MASK		0x000007000
212 # define A2W_PLL_CTRL_PDIV_SHIFT	12
213 # define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
214 # define A2W_PLL_CTRL_NDIV_SHIFT	0
215 
216 #define A2W_PLLA_ANA0		0x1010
217 #define A2W_PLLC_ANA0		0x1030
218 #define A2W_PLLD_ANA0		0x1050
219 #define A2W_PLLH_ANA0		0x1070
220 #define A2W_PLLB_ANA0		0x10f0
221 
222 #define A2W_PLL_KA_SHIFT	7
223 #define A2W_PLL_KA_MASK		GENMASK(9, 7)
224 #define A2W_PLL_KI_SHIFT	19
225 #define A2W_PLL_KI_MASK		GENMASK(21, 19)
226 #define A2W_PLL_KP_SHIFT	15
227 #define A2W_PLL_KP_MASK		GENMASK(18, 15)
228 
229 #define A2W_PLLH_KA_SHIFT	19
230 #define A2W_PLLH_KA_MASK	GENMASK(21, 19)
231 #define A2W_PLLH_KI_LOW_SHIFT	22
232 #define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
233 #define A2W_PLLH_KI_HIGH_SHIFT	0
234 #define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
235 #define A2W_PLLH_KP_SHIFT	1
236 #define A2W_PLLH_KP_MASK	GENMASK(4, 1)
237 
238 #define A2W_XOSC_CTRL		0x1190
239 # define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
240 # define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
241 # define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
242 # define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
243 # define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
244 # define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
245 # define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
246 # define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
247 
248 #define A2W_PLLA_FRAC		0x1200
249 #define A2W_PLLC_FRAC		0x1220
250 #define A2W_PLLD_FRAC		0x1240
251 #define A2W_PLLH_FRAC		0x1260
252 #define A2W_PLLB_FRAC		0x12e0
253 # define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
254 # define A2W_PLL_FRAC_BITS		20
255 
256 #define A2W_PLL_CHANNEL_DISABLE		BIT(8)
257 #define A2W_PLL_DIV_BITS		8
258 #define A2W_PLL_DIV_SHIFT		0
259 
260 #define A2W_PLLA_DSI0		0x1300
261 #define A2W_PLLA_CORE		0x1400
262 #define A2W_PLLA_PER		0x1500
263 #define A2W_PLLA_CCP2		0x1600
264 
265 #define A2W_PLLC_CORE2		0x1320
266 #define A2W_PLLC_CORE1		0x1420
267 #define A2W_PLLC_PER		0x1520
268 #define A2W_PLLC_CORE0		0x1620
269 
270 #define A2W_PLLD_DSI0		0x1340
271 #define A2W_PLLD_CORE		0x1440
272 #define A2W_PLLD_PER		0x1540
273 #define A2W_PLLD_DSI1		0x1640
274 
275 #define A2W_PLLH_AUX		0x1360
276 #define A2W_PLLH_RCAL		0x1460
277 #define A2W_PLLH_PIX		0x1560
278 #define A2W_PLLH_STS		0x1660
279 
280 #define A2W_PLLH_CTRLR		0x1960
281 #define A2W_PLLH_FRACR		0x1a60
282 #define A2W_PLLH_AUXR		0x1b60
283 #define A2W_PLLH_RCALR		0x1c60
284 #define A2W_PLLH_PIXR		0x1d60
285 #define A2W_PLLH_STSR		0x1e60
286 
287 #define A2W_PLLB_ARM		0x13e0
288 #define A2W_PLLB_SP0		0x14e0
289 #define A2W_PLLB_SP1		0x15e0
290 #define A2W_PLLB_SP2		0x16e0
291 
292 #define LOCK_TIMEOUT_NS		100000000
293 #define BCM2835_MAX_FB_RATE	1750000000u
294 
295 #define SOC_BCM2835		BIT(0)
296 #define SOC_BCM2711		BIT(1)
297 #define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
298 
299 /*
300  * Names of clocks used within the driver that need to be replaced
301  * with an external parent's name.  This array is in the order that
302  * the clocks node in the DT references external clocks.
303  */
304 static const char *const cprman_parent_names[] = {
305 	"xosc",
306 	"dsi0_byte",
307 	"dsi0_ddr2",
308 	"dsi0_ddr",
309 	"dsi1_byte",
310 	"dsi1_ddr2",
311 	"dsi1_ddr",
312 };
313 
314 struct bcm2835_cprman {
315 	struct device *dev;
316 	void __iomem *regs;
317 	spinlock_t regs_lock; /* spinlock for all clocks */
318 	unsigned int soc;
319 
320 	/*
321 	 * Real names of cprman clock parents looked up through
322 	 * of_clk_get_parent_name(), which will be used in the
323 	 * parent_names[] arrays for clock registration.
324 	 */
325 	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326 
327 	/* Must be last */
328 	struct clk_hw_onecell_data onecell;
329 };
330 
331 struct cprman_plat_data {
332 	unsigned int soc;
333 };
334 
cprman_write(struct bcm2835_cprman * cprman,u32 reg,u32 val)335 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336 {
337 	writel(CM_PASSWORD | val, cprman->regs + reg);
338 }
339 
cprman_read(struct bcm2835_cprman * cprman,u32 reg)340 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341 {
342 	return readl(cprman->regs + reg);
343 }
344 
345 /* Does a cycle of measuring a clock through the TCNT clock, which may
346  * source from many other clocks in the system.
347  */
bcm2835_measure_tcnt_mux(struct bcm2835_cprman * cprman,u32 tcnt_mux)348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349 					      u32 tcnt_mux)
350 {
351 	u32 osccount = 19200; /* 1ms */
352 	u32 count;
353 	ktime_t timeout;
354 
355 	spin_lock(&cprman->regs_lock);
356 
357 	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358 
359 	cprman_write(cprman, CM_TCNTCTL,
360 		     (tcnt_mux & CM_SRC_MASK) |
361 		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362 
363 	cprman_write(cprman, CM_OSCCOUNT, osccount);
364 
365 	/* do a kind delay at the start */
366 	mdelay(1);
367 
368 	/* Finish off whatever is left of OSCCOUNT */
369 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370 	while (cprman_read(cprman, CM_OSCCOUNT)) {
371 		if (ktime_after(ktime_get(), timeout)) {
372 			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373 			count = 0;
374 			goto out;
375 		}
376 		cpu_relax();
377 	}
378 
379 	/* Wait for BUSY to clear. */
380 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381 	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382 		if (ktime_after(ktime_get(), timeout)) {
383 			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384 			count = 0;
385 			goto out;
386 		}
387 		cpu_relax();
388 	}
389 
390 	count = cprman_read(cprman, CM_TCNTCNT);
391 
392 	cprman_write(cprman, CM_TCNTCTL, 0);
393 
394 out:
395 	spin_unlock(&cprman->regs_lock);
396 
397 	return count * 1000;
398 }
399 
bcm2835_debugfs_regset(struct bcm2835_cprman * cprman,u32 base,const struct debugfs_reg32 * regs,size_t nregs,struct dentry * dentry)400 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401 				   const struct debugfs_reg32 *regs,
402 				   size_t nregs, struct dentry *dentry)
403 {
404 	struct debugfs_regset32 *regset;
405 
406 	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407 	if (!regset)
408 		return;
409 
410 	regset->regs = regs;
411 	regset->nregs = nregs;
412 	regset->base = cprman->regs + base;
413 
414 	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415 }
416 
417 struct bcm2835_pll_data {
418 	const char *name;
419 	u32 cm_ctrl_reg;
420 	u32 a2w_ctrl_reg;
421 	u32 frac_reg;
422 	u32 ana_reg_base;
423 	u32 reference_enable_mask;
424 	/* Bit in CM_LOCK to indicate when the PLL has locked. */
425 	u32 lock_mask;
426 	u32 flags;
427 
428 	const struct bcm2835_pll_ana_bits *ana;
429 
430 	unsigned long min_rate;
431 	unsigned long max_rate;
432 	/*
433 	 * Highest rate for the VCO before we have to use the
434 	 * pre-divide-by-2.
435 	 */
436 	unsigned long max_fb_rate;
437 };
438 
439 struct bcm2835_pll_ana_bits {
440 	u32 mask0;
441 	u32 set0;
442 	u32 mask1;
443 	u32 set1;
444 	u32 mask3;
445 	u32 set3;
446 	u32 fb_prediv_mask;
447 };
448 
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 	.mask0 = 0,
451 	.set0 = 0,
452 	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453 	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 	.mask3 = A2W_PLL_KA_MASK,
455 	.set3 = (2 << A2W_PLL_KA_SHIFT),
456 	.fb_prediv_mask = BIT(14),
457 };
458 
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461 	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463 	.set1 = (6 << A2W_PLLH_KP_SHIFT),
464 	.mask3 = 0,
465 	.set3 = 0,
466 	.fb_prediv_mask = BIT(11),
467 };
468 
469 struct bcm2835_pll_divider_data {
470 	const char *name;
471 	const char *source_pll;
472 
473 	u32 cm_reg;
474 	u32 a2w_reg;
475 
476 	u32 load_mask;
477 	u32 hold_mask;
478 	u32 fixed_divider;
479 	u32 flags;
480 };
481 
482 struct bcm2835_clock_data {
483 	const char *name;
484 
485 	const char *const *parents;
486 	int num_mux_parents;
487 
488 	/* Bitmap encoding which parents accept rate change propagation. */
489 	unsigned int set_rate_parent;
490 
491 	u32 ctl_reg;
492 	u32 div_reg;
493 
494 	/* Number of integer bits in the divider */
495 	u32 int_bits;
496 	/* Number of fractional bits in the divider */
497 	u32 frac_bits;
498 
499 	u32 flags;
500 
501 	bool is_vpu_clock;
502 	bool is_mash_clock;
503 	bool low_jitter;
504 
505 	u32 tcnt_mux;
506 
507 	bool round_up;
508 };
509 
510 struct bcm2835_gate_data {
511 	const char *name;
512 	const char *parent;
513 
514 	u32 ctl_reg;
515 };
516 
517 struct bcm2835_pll {
518 	struct clk_hw hw;
519 	struct bcm2835_cprman *cprman;
520 	const struct bcm2835_pll_data *data;
521 };
522 
bcm2835_pll_is_on(struct clk_hw * hw)523 static int bcm2835_pll_is_on(struct clk_hw *hw)
524 {
525 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526 	struct bcm2835_cprman *cprman = pll->cprman;
527 	const struct bcm2835_pll_data *data = pll->data;
528 
529 	return cprman_read(cprman, data->a2w_ctrl_reg) &
530 		A2W_PLL_CTRL_PRST_DISABLE;
531 }
532 
bcm2835_pll_get_prediv_mask(struct bcm2835_cprman * cprman,const struct bcm2835_pll_data * data)533 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534 				       const struct bcm2835_pll_data *data)
535 {
536 	/*
537 	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538 	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539 	 * for to for VCO RANGE bits.
540 	 */
541 	if (cprman->soc & SOC_BCM2711)
542 		return 0;
543 
544 	return data->ana->fb_prediv_mask;
545 }
546 
bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,unsigned long parent_rate,u32 * ndiv,u32 * fdiv)547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548 					     unsigned long parent_rate,
549 					     u32 *ndiv, u32 *fdiv)
550 {
551 	u64 div;
552 
553 	div = (u64)rate << A2W_PLL_FRAC_BITS;
554 	do_div(div, parent_rate);
555 
556 	*ndiv = div >> A2W_PLL_FRAC_BITS;
557 	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558 }
559 
bcm2835_pll_rate_from_divisors(unsigned long parent_rate,u32 ndiv,u32 fdiv,u32 pdiv)560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561 					   u32 ndiv, u32 fdiv, u32 pdiv)
562 {
563 	u64 rate;
564 
565 	if (pdiv == 0)
566 		return 0;
567 
568 	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569 	do_div(rate, pdiv);
570 	return rate >> A2W_PLL_FRAC_BITS;
571 }
572 
bcm2835_pll_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)573 static int bcm2835_pll_determine_rate(struct clk_hw *hw,
574 				      struct clk_rate_request *req)
575 {
576 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577 	const struct bcm2835_pll_data *data = pll->data;
578 	u32 ndiv, fdiv;
579 
580 	req->rate = clamp(req->rate, data->min_rate, data->max_rate);
581 
582 	bcm2835_pll_choose_ndiv_and_fdiv(req->rate, req->best_parent_rate,
583 					 &ndiv, &fdiv);
584 
585 	req->rate = bcm2835_pll_rate_from_divisors(req->best_parent_rate,
586 						   ndiv, fdiv,
587 						   1);
588 
589 	return 0;
590 }
591 
bcm2835_pll_get_rate(struct clk_hw * hw,unsigned long parent_rate)592 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
593 					  unsigned long parent_rate)
594 {
595 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
596 	struct bcm2835_cprman *cprman = pll->cprman;
597 	const struct bcm2835_pll_data *data = pll->data;
598 	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
599 	u32 ndiv, pdiv, fdiv;
600 	bool using_prediv;
601 
602 	if (parent_rate == 0)
603 		return 0;
604 
605 	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
606 	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
607 	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
608 	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
609 		       bcm2835_pll_get_prediv_mask(cprman, data);
610 
611 	if (using_prediv) {
612 		ndiv *= 2;
613 		fdiv *= 2;
614 	}
615 
616 	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
617 }
618 
bcm2835_pll_off(struct clk_hw * hw)619 static void bcm2835_pll_off(struct clk_hw *hw)
620 {
621 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
622 	struct bcm2835_cprman *cprman = pll->cprman;
623 	const struct bcm2835_pll_data *data = pll->data;
624 
625 	spin_lock(&cprman->regs_lock);
626 	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
627 	cprman_write(cprman, data->a2w_ctrl_reg,
628 		     cprman_read(cprman, data->a2w_ctrl_reg) |
629 		     A2W_PLL_CTRL_PWRDN);
630 	spin_unlock(&cprman->regs_lock);
631 }
632 
bcm2835_pll_on(struct clk_hw * hw)633 static int bcm2835_pll_on(struct clk_hw *hw)
634 {
635 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
636 	struct bcm2835_cprman *cprman = pll->cprman;
637 	const struct bcm2835_pll_data *data = pll->data;
638 	ktime_t timeout;
639 
640 	cprman_write(cprman, data->a2w_ctrl_reg,
641 		     cprman_read(cprman, data->a2w_ctrl_reg) &
642 		     ~A2W_PLL_CTRL_PWRDN);
643 
644 	/* Take the PLL out of reset. */
645 	spin_lock(&cprman->regs_lock);
646 	cprman_write(cprman, data->cm_ctrl_reg,
647 		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
648 	spin_unlock(&cprman->regs_lock);
649 
650 	/* Wait for the PLL to lock. */
651 	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
652 	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
653 		if (ktime_after(ktime_get(), timeout)) {
654 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
655 				clk_hw_get_name(hw));
656 			return -ETIMEDOUT;
657 		}
658 
659 		cpu_relax();
660 	}
661 
662 	cprman_write(cprman, data->a2w_ctrl_reg,
663 		     cprman_read(cprman, data->a2w_ctrl_reg) |
664 		     A2W_PLL_CTRL_PRST_DISABLE);
665 
666 	return 0;
667 }
668 
669 static void
bcm2835_pll_write_ana(struct bcm2835_cprman * cprman,u32 ana_reg_base,u32 * ana)670 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
671 {
672 	int i;
673 
674 	/*
675 	 * ANA register setup is done as a series of writes to
676 	 * ANA3-ANA0, in that order.  This lets us write all 4
677 	 * registers as a single cycle of the serdes interface (taking
678 	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
679 	 * 3 individually through their partial-write registers, each
680 	 * would be their own serdes cycle.
681 	 */
682 	for (i = 3; i >= 0; i--)
683 		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
684 }
685 
bcm2835_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)686 static int bcm2835_pll_set_rate(struct clk_hw *hw,
687 				unsigned long rate, unsigned long parent_rate)
688 {
689 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
690 	struct bcm2835_cprman *cprman = pll->cprman;
691 	const struct bcm2835_pll_data *data = pll->data;
692 	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
693 	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
694 	u32 ndiv, fdiv, a2w_ctl;
695 	u32 ana[4];
696 	int i;
697 
698 	if (rate > data->max_fb_rate) {
699 		use_fb_prediv = true;
700 		rate /= 2;
701 	} else {
702 		use_fb_prediv = false;
703 	}
704 
705 	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
706 
707 	for (i = 3; i >= 0; i--)
708 		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
709 
710 	was_using_prediv = ana[1] & prediv_mask;
711 
712 	ana[0] &= ~data->ana->mask0;
713 	ana[0] |= data->ana->set0;
714 	ana[1] &= ~data->ana->mask1;
715 	ana[1] |= data->ana->set1;
716 	ana[3] &= ~data->ana->mask3;
717 	ana[3] |= data->ana->set3;
718 
719 	if (was_using_prediv && !use_fb_prediv) {
720 		ana[1] &= ~prediv_mask;
721 		do_ana_setup_first = true;
722 	} else if (!was_using_prediv && use_fb_prediv) {
723 		ana[1] |= prediv_mask;
724 		do_ana_setup_first = false;
725 	} else {
726 		do_ana_setup_first = true;
727 	}
728 
729 	/* Unmask the reference clock from the oscillator. */
730 	spin_lock(&cprman->regs_lock);
731 	cprman_write(cprman, A2W_XOSC_CTRL,
732 		     cprman_read(cprman, A2W_XOSC_CTRL) |
733 		     data->reference_enable_mask);
734 	spin_unlock(&cprman->regs_lock);
735 
736 	if (do_ana_setup_first)
737 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
738 
739 	/* Set the PLL multiplier from the oscillator. */
740 	cprman_write(cprman, data->frac_reg, fdiv);
741 
742 	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
743 	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
744 	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
745 	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
746 	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
747 	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
748 
749 	if (!do_ana_setup_first)
750 		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
751 
752 	return 0;
753 }
754 
bcm2835_pll_debug_init(struct clk_hw * hw,struct dentry * dentry)755 static void bcm2835_pll_debug_init(struct clk_hw *hw,
756 				  struct dentry *dentry)
757 {
758 	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
759 	struct bcm2835_cprman *cprman = pll->cprman;
760 	const struct bcm2835_pll_data *data = pll->data;
761 	struct debugfs_reg32 *regs;
762 
763 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
764 	if (!regs)
765 		return;
766 
767 	regs[0].name = "cm_ctrl";
768 	regs[0].offset = data->cm_ctrl_reg;
769 	regs[1].name = "a2w_ctrl";
770 	regs[1].offset = data->a2w_ctrl_reg;
771 	regs[2].name = "frac";
772 	regs[2].offset = data->frac_reg;
773 	regs[3].name = "ana0";
774 	regs[3].offset = data->ana_reg_base + 0 * 4;
775 	regs[4].name = "ana1";
776 	regs[4].offset = data->ana_reg_base + 1 * 4;
777 	regs[5].name = "ana2";
778 	regs[5].offset = data->ana_reg_base + 2 * 4;
779 	regs[6].name = "ana3";
780 	regs[6].offset = data->ana_reg_base + 3 * 4;
781 
782 	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
783 }
784 
785 static const struct clk_ops bcm2835_pll_clk_ops = {
786 	.is_prepared = bcm2835_pll_is_on,
787 	.prepare = bcm2835_pll_on,
788 	.unprepare = bcm2835_pll_off,
789 	.recalc_rate = bcm2835_pll_get_rate,
790 	.set_rate = bcm2835_pll_set_rate,
791 	.determine_rate = bcm2835_pll_determine_rate,
792 	.debug_init = bcm2835_pll_debug_init,
793 };
794 
795 struct bcm2835_pll_divider {
796 	struct clk_divider div;
797 	struct bcm2835_cprman *cprman;
798 	const struct bcm2835_pll_divider_data *data;
799 };
800 
801 static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw * hw)802 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
803 {
804 	return container_of(hw, struct bcm2835_pll_divider, div.hw);
805 }
806 
bcm2835_pll_divider_is_on(struct clk_hw * hw)807 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
808 {
809 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
810 	struct bcm2835_cprman *cprman = divider->cprman;
811 	const struct bcm2835_pll_divider_data *data = divider->data;
812 
813 	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
814 }
815 
bcm2835_pll_divider_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)816 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
817 					      struct clk_rate_request *req)
818 {
819 	return clk_divider_ops.determine_rate(hw, req);
820 }
821 
bcm2835_pll_divider_get_rate(struct clk_hw * hw,unsigned long parent_rate)822 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823 						  unsigned long parent_rate)
824 {
825 	return clk_divider_ops.recalc_rate(hw, parent_rate);
826 }
827 
bcm2835_pll_divider_off(struct clk_hw * hw)828 static void bcm2835_pll_divider_off(struct clk_hw *hw)
829 {
830 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831 	struct bcm2835_cprman *cprman = divider->cprman;
832 	const struct bcm2835_pll_divider_data *data = divider->data;
833 
834 	spin_lock(&cprman->regs_lock);
835 	cprman_write(cprman, data->cm_reg,
836 		     (cprman_read(cprman, data->cm_reg) &
837 		      ~data->load_mask) | data->hold_mask);
838 	cprman_write(cprman, data->a2w_reg,
839 		     cprman_read(cprman, data->a2w_reg) |
840 		     A2W_PLL_CHANNEL_DISABLE);
841 	spin_unlock(&cprman->regs_lock);
842 }
843 
bcm2835_pll_divider_on(struct clk_hw * hw)844 static int bcm2835_pll_divider_on(struct clk_hw *hw)
845 {
846 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847 	struct bcm2835_cprman *cprman = divider->cprman;
848 	const struct bcm2835_pll_divider_data *data = divider->data;
849 
850 	spin_lock(&cprman->regs_lock);
851 	cprman_write(cprman, data->a2w_reg,
852 		     cprman_read(cprman, data->a2w_reg) &
853 		     ~A2W_PLL_CHANNEL_DISABLE);
854 
855 	cprman_write(cprman, data->cm_reg,
856 		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
857 	spin_unlock(&cprman->regs_lock);
858 
859 	return 0;
860 }
861 
bcm2835_pll_divider_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)862 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863 					unsigned long rate,
864 					unsigned long parent_rate)
865 {
866 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867 	struct bcm2835_cprman *cprman = divider->cprman;
868 	const struct bcm2835_pll_divider_data *data = divider->data;
869 	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
870 
871 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
872 
873 	div = min(div, max_div);
874 	if (div == max_div)
875 		div = 0;
876 
877 	cprman_write(cprman, data->a2w_reg, div);
878 	cm = cprman_read(cprman, data->cm_reg);
879 	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880 	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881 
882 	return 0;
883 }
884 
bcm2835_pll_divider_debug_init(struct clk_hw * hw,struct dentry * dentry)885 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886 					   struct dentry *dentry)
887 {
888 	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889 	struct bcm2835_cprman *cprman = divider->cprman;
890 	const struct bcm2835_pll_divider_data *data = divider->data;
891 	struct debugfs_reg32 *regs;
892 
893 	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
894 	if (!regs)
895 		return;
896 
897 	regs[0].name = "cm";
898 	regs[0].offset = data->cm_reg;
899 	regs[1].name = "a2w";
900 	regs[1].offset = data->a2w_reg;
901 
902 	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903 }
904 
905 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906 	.is_prepared = bcm2835_pll_divider_is_on,
907 	.prepare = bcm2835_pll_divider_on,
908 	.unprepare = bcm2835_pll_divider_off,
909 	.recalc_rate = bcm2835_pll_divider_get_rate,
910 	.set_rate = bcm2835_pll_divider_set_rate,
911 	.determine_rate = bcm2835_pll_divider_determine_rate,
912 	.debug_init = bcm2835_pll_divider_debug_init,
913 };
914 
915 /*
916  * The CM dividers do fixed-point division, so we can't use the
917  * generic integer divider code like the PLL dividers do (and we can't
918  * fake it by having some fixed shifts preceding it in the clock tree,
919  * because we'd run out of bits in a 32-bit unsigned long).
920  */
921 struct bcm2835_clock {
922 	struct clk_hw hw;
923 	struct bcm2835_cprman *cprman;
924 	const struct bcm2835_clock_data *data;
925 };
926 
bcm2835_clock_from_hw(struct clk_hw * hw)927 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928 {
929 	return container_of(hw, struct bcm2835_clock, hw);
930 }
931 
bcm2835_clock_is_on(struct clk_hw * hw)932 static int bcm2835_clock_is_on(struct clk_hw *hw)
933 {
934 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935 	struct bcm2835_cprman *cprman = clock->cprman;
936 	const struct bcm2835_clock_data *data = clock->data;
937 
938 	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939 }
940 
bcm2835_clock_choose_div(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)941 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942 				    unsigned long rate,
943 				    unsigned long parent_rate)
944 {
945 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
946 	const struct bcm2835_clock_data *data = clock->data;
947 	u32 unused_frac_mask =
948 		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
949 	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
950 	u32 div, mindiv, maxdiv;
951 
952 	do_div(temp, rate);
953 	div = temp;
954 	div &= ~unused_frac_mask;
955 
956 	/* different clamping limits apply for a mash clock */
957 	if (data->is_mash_clock) {
958 		/* clamp to min divider of 2 */
959 		mindiv = 2 << CM_DIV_FRAC_BITS;
960 		/* clamp to the highest possible integer divider */
961 		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
962 	} else {
963 		/* clamp to min divider of 1 */
964 		mindiv = 1 << CM_DIV_FRAC_BITS;
965 		/* clamp to the highest possible fractional divider */
966 		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
967 				 CM_DIV_FRAC_BITS - data->frac_bits);
968 	}
969 
970 	/* apply the clamping  limits */
971 	div = max_t(u32, div, mindiv);
972 	div = min_t(u32, div, maxdiv);
973 
974 	return div;
975 }
976 
bcm2835_clock_rate_from_divisor(struct bcm2835_clock * clock,unsigned long parent_rate,u32 div)977 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
978 						     unsigned long parent_rate,
979 						     u32 div)
980 {
981 	const struct bcm2835_clock_data *data = clock->data;
982 	u64 temp;
983 
984 	if (data->int_bits == 0 && data->frac_bits == 0)
985 		return parent_rate;
986 
987 	/*
988 	 * The divisor is a 12.12 fixed point field, but only some of
989 	 * the bits are populated in any given clock.
990 	 */
991 	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
992 	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
993 
994 	if (div == 0)
995 		return 0;
996 
997 	temp = (u64)parent_rate << data->frac_bits;
998 
999 	do_div(temp, div);
1000 
1001 	return temp;
1002 }
1003 
bcm2835_round_rate(unsigned long rate)1004 static unsigned long bcm2835_round_rate(unsigned long rate)
1005 {
1006 	unsigned long scaler;
1007 	unsigned long limit;
1008 
1009 	limit = rate / 100000;
1010 
1011 	scaler = 1;
1012 	while (scaler < limit)
1013 		scaler *= 10;
1014 
1015 	/*
1016 	 * If increasing a clock by less than 0.1% changes it
1017 	 * from ..999.. to ..000.., round up.
1018 	 */
1019 	if ((rate + scaler - 1) / scaler % 1000 == 0)
1020 		rate = roundup(rate, scaler);
1021 
1022 	return rate;
1023 }
1024 
bcm2835_clock_get_rate(struct clk_hw * hw,unsigned long parent_rate)1025 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1026 					    unsigned long parent_rate)
1027 {
1028 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1029 	struct bcm2835_cprman *cprman = clock->cprman;
1030 	const struct bcm2835_clock_data *data = clock->data;
1031 	unsigned long rate;
1032 	u32 div;
1033 
1034 	if (data->int_bits == 0 && data->frac_bits == 0)
1035 		return parent_rate;
1036 
1037 	div = cprman_read(cprman, data->div_reg);
1038 
1039 	rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1040 
1041 	if (data->round_up)
1042 		rate = bcm2835_round_rate(rate);
1043 
1044 	return rate;
1045 }
1046 
bcm2835_clock_wait_busy(struct bcm2835_clock * clock)1047 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1048 {
1049 	struct bcm2835_cprman *cprman = clock->cprman;
1050 	const struct bcm2835_clock_data *data = clock->data;
1051 	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1052 
1053 	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1054 		if (ktime_after(ktime_get(), timeout)) {
1055 			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1056 				clk_hw_get_name(&clock->hw));
1057 			return;
1058 		}
1059 		cpu_relax();
1060 	}
1061 }
1062 
bcm2835_clock_off(struct clk_hw * hw)1063 static void bcm2835_clock_off(struct clk_hw *hw)
1064 {
1065 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1066 	struct bcm2835_cprman *cprman = clock->cprman;
1067 	const struct bcm2835_clock_data *data = clock->data;
1068 
1069 	spin_lock(&cprman->regs_lock);
1070 	cprman_write(cprman, data->ctl_reg,
1071 		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1072 	spin_unlock(&cprman->regs_lock);
1073 
1074 	/* BUSY will remain high until the divider completes its cycle. */
1075 	bcm2835_clock_wait_busy(clock);
1076 }
1077 
bcm2835_clock_on(struct clk_hw * hw)1078 static int bcm2835_clock_on(struct clk_hw *hw)
1079 {
1080 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1081 	struct bcm2835_cprman *cprman = clock->cprman;
1082 	const struct bcm2835_clock_data *data = clock->data;
1083 
1084 	spin_lock(&cprman->regs_lock);
1085 	cprman_write(cprman, data->ctl_reg,
1086 		     cprman_read(cprman, data->ctl_reg) |
1087 		     CM_ENABLE |
1088 		     CM_GATE);
1089 	spin_unlock(&cprman->regs_lock);
1090 
1091 	/* Debug code to measure the clock once it's turned on to see
1092 	 * if it's ticking at the rate we expect.
1093 	 */
1094 	if (data->tcnt_mux && false) {
1095 		dev_info(cprman->dev,
1096 			 "clk %s: rate %ld, measure %ld\n",
1097 			 data->name,
1098 			 clk_hw_get_rate(hw),
1099 			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1100 	}
1101 
1102 	return 0;
1103 }
1104 
bcm2835_clock_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1105 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1106 				  unsigned long rate, unsigned long parent_rate)
1107 {
1108 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1109 	struct bcm2835_cprman *cprman = clock->cprman;
1110 	const struct bcm2835_clock_data *data = clock->data;
1111 	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1112 	u32 ctl;
1113 
1114 	spin_lock(&cprman->regs_lock);
1115 
1116 	/*
1117 	 * Setting up frac support
1118 	 *
1119 	 * In principle it is recommended to stop/start the clock first,
1120 	 * but as we set CLK_SET_RATE_GATE during registration of the
1121 	 * clock this requirement should be take care of by the
1122 	 * clk-framework.
1123 	 */
1124 	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1125 	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1126 	cprman_write(cprman, data->ctl_reg, ctl);
1127 
1128 	cprman_write(cprman, data->div_reg, div);
1129 
1130 	spin_unlock(&cprman->regs_lock);
1131 
1132 	return 0;
1133 }
1134 
1135 static bool
bcm2835_clk_is_pllc(struct clk_hw * hw)1136 bcm2835_clk_is_pllc(struct clk_hw *hw)
1137 {
1138 	if (!hw)
1139 		return false;
1140 
1141 	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1142 }
1143 
bcm2835_clock_choose_div_and_prate(struct clk_hw * hw,int parent_idx,unsigned long rate,u32 * div,unsigned long * prate,unsigned long * avgrate)1144 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1145 							int parent_idx,
1146 							unsigned long rate,
1147 							u32 *div,
1148 							unsigned long *prate,
1149 							unsigned long *avgrate)
1150 {
1151 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1152 	struct bcm2835_cprman *cprman = clock->cprman;
1153 	const struct bcm2835_clock_data *data = clock->data;
1154 	unsigned long best_rate = 0;
1155 	u32 curdiv, mindiv, maxdiv;
1156 	struct clk_hw *parent;
1157 
1158 	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1159 
1160 	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1161 		*prate = clk_hw_get_rate(parent);
1162 		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1163 
1164 		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1165 
1166 		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1167 			unsigned long high, low;
1168 			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1169 
1170 			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1171 							       int_div);
1172 			int_div += CM_DIV_FRAC_MASK + 1;
1173 			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1174 							      int_div);
1175 
1176 			/*
1177 			 * Return a value which is the maximum deviation
1178 			 * below the ideal rate, for use as a metric.
1179 			 */
1180 			return *avgrate - max(*avgrate - low, high - *avgrate);
1181 		}
1182 		return *avgrate;
1183 	}
1184 
1185 	if (data->frac_bits)
1186 		dev_warn(cprman->dev,
1187 			"frac bits are not used when propagating rate change");
1188 
1189 	/* clamp to min divider of 2 if we're dealing with a mash clock */
1190 	mindiv = data->is_mash_clock ? 2 : 1;
1191 	maxdiv = BIT(data->int_bits) - 1;
1192 
1193 	/* TODO: Be smart, and only test a subset of the available divisors. */
1194 	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1195 		unsigned long tmp_rate;
1196 
1197 		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1198 		tmp_rate /= curdiv;
1199 		if (curdiv == mindiv ||
1200 		    (tmp_rate > best_rate && tmp_rate <= rate))
1201 			best_rate = tmp_rate;
1202 
1203 		if (best_rate == rate)
1204 			break;
1205 	}
1206 
1207 	*div = curdiv << CM_DIV_FRAC_BITS;
1208 	*prate = curdiv * best_rate;
1209 	*avgrate = best_rate;
1210 
1211 	return best_rate;
1212 }
1213 
bcm2835_clock_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1214 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1215 					struct clk_rate_request *req)
1216 {
1217 	struct clk_hw *parent, *best_parent = NULL;
1218 	bool current_parent_is_pllc;
1219 	unsigned long rate, best_rate = 0;
1220 	unsigned long prate, best_prate = 0;
1221 	unsigned long avgrate, best_avgrate = 0;
1222 	size_t i;
1223 	u32 div;
1224 
1225 	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1226 
1227 	/*
1228 	 * Select parent clock that results in the closest but lower rate
1229 	 */
1230 	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1231 		parent = clk_hw_get_parent_by_index(hw, i);
1232 		if (!parent)
1233 			continue;
1234 
1235 		/*
1236 		 * Don't choose a PLLC-derived clock as our parent
1237 		 * unless it had been manually set that way.  PLLC's
1238 		 * frequency gets adjusted by the firmware due to
1239 		 * over-temp or under-voltage conditions, without
1240 		 * prior notification to our clock consumer.
1241 		 */
1242 		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1243 			continue;
1244 
1245 		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1246 							  &div, &prate,
1247 							  &avgrate);
1248 		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1249 			best_parent = parent;
1250 			best_prate = prate;
1251 			best_rate = rate;
1252 			best_avgrate = avgrate;
1253 		}
1254 	}
1255 
1256 	if (!best_parent)
1257 		return -EINVAL;
1258 
1259 	req->best_parent_hw = best_parent;
1260 	req->best_parent_rate = best_prate;
1261 
1262 	req->rate = best_avgrate;
1263 
1264 	return 0;
1265 }
1266 
bcm2835_clock_set_parent(struct clk_hw * hw,u8 index)1267 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1268 {
1269 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1270 	struct bcm2835_cprman *cprman = clock->cprman;
1271 	const struct bcm2835_clock_data *data = clock->data;
1272 	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1273 
1274 	cprman_write(cprman, data->ctl_reg, src);
1275 	return 0;
1276 }
1277 
bcm2835_clock_get_parent(struct clk_hw * hw)1278 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1279 {
1280 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1281 	struct bcm2835_cprman *cprman = clock->cprman;
1282 	const struct bcm2835_clock_data *data = clock->data;
1283 	u32 src = cprman_read(cprman, data->ctl_reg);
1284 
1285 	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1286 }
1287 
1288 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1289 	{
1290 		.name = "ctl",
1291 		.offset = 0,
1292 	},
1293 	{
1294 		.name = "div",
1295 		.offset = 4,
1296 	},
1297 };
1298 
bcm2835_clock_debug_init(struct clk_hw * hw,struct dentry * dentry)1299 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1300 				    struct dentry *dentry)
1301 {
1302 	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1303 	struct bcm2835_cprman *cprman = clock->cprman;
1304 	const struct bcm2835_clock_data *data = clock->data;
1305 
1306 	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1307 		bcm2835_debugfs_clock_reg32,
1308 		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1309 		dentry);
1310 }
1311 
1312 static const struct clk_ops bcm2835_clock_clk_ops = {
1313 	.is_prepared = bcm2835_clock_is_on,
1314 	.prepare = bcm2835_clock_on,
1315 	.unprepare = bcm2835_clock_off,
1316 	.recalc_rate = bcm2835_clock_get_rate,
1317 	.set_rate = bcm2835_clock_set_rate,
1318 	.determine_rate = bcm2835_clock_determine_rate,
1319 	.set_parent = bcm2835_clock_set_parent,
1320 	.get_parent = bcm2835_clock_get_parent,
1321 	.debug_init = bcm2835_clock_debug_init,
1322 };
1323 
bcm2835_vpu_clock_is_on(struct clk_hw * hw)1324 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1325 {
1326 	return true;
1327 }
1328 
1329 /*
1330  * The VPU clock can never be disabled (it doesn't have an ENABLE
1331  * bit), so it gets its own set of clock ops.
1332  */
1333 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1334 	.is_prepared = bcm2835_vpu_clock_is_on,
1335 	.recalc_rate = bcm2835_clock_get_rate,
1336 	.set_rate = bcm2835_clock_set_rate,
1337 	.determine_rate = bcm2835_clock_determine_rate,
1338 	.set_parent = bcm2835_clock_set_parent,
1339 	.get_parent = bcm2835_clock_get_parent,
1340 	.debug_init = bcm2835_clock_debug_init,
1341 };
1342 
bcm2835_register_pll(struct bcm2835_cprman * cprman,const void * data)1343 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1344 					   const void *data)
1345 {
1346 	const struct bcm2835_pll_data *pll_data = data;
1347 	struct bcm2835_pll *pll;
1348 	struct clk_init_data init;
1349 	int ret;
1350 
1351 	memset(&init, 0, sizeof(init));
1352 
1353 	/* All of the PLLs derive from the external oscillator. */
1354 	init.parent_names = &cprman->real_parent_names[0];
1355 	init.num_parents = 1;
1356 	init.name = pll_data->name;
1357 	init.ops = &bcm2835_pll_clk_ops;
1358 	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1359 
1360 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1361 	if (!pll)
1362 		return NULL;
1363 
1364 	pll->cprman = cprman;
1365 	pll->data = pll_data;
1366 	pll->hw.init = &init;
1367 
1368 	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1369 	if (ret) {
1370 		kfree(pll);
1371 		return NULL;
1372 	}
1373 	return &pll->hw;
1374 }
1375 
1376 static struct clk_hw *
bcm2835_register_pll_divider(struct bcm2835_cprman * cprman,const void * data)1377 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1378 			     const void *data)
1379 {
1380 	const struct bcm2835_pll_divider_data *divider_data = data;
1381 	struct bcm2835_pll_divider *divider;
1382 	struct clk_init_data init;
1383 	const char *divider_name;
1384 	int ret;
1385 
1386 	if (divider_data->fixed_divider != 1) {
1387 		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1388 					      "%s_prediv", divider_data->name);
1389 		if (!divider_name)
1390 			return NULL;
1391 	} else {
1392 		divider_name = divider_data->name;
1393 	}
1394 
1395 	memset(&init, 0, sizeof(init));
1396 
1397 	init.parent_names = &divider_data->source_pll;
1398 	init.num_parents = 1;
1399 	init.name = divider_name;
1400 	init.ops = &bcm2835_pll_divider_clk_ops;
1401 	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1402 
1403 	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1404 	if (!divider)
1405 		return NULL;
1406 
1407 	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1408 	divider->div.shift = A2W_PLL_DIV_SHIFT;
1409 	divider->div.width = A2W_PLL_DIV_BITS;
1410 	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1411 	divider->div.lock = &cprman->regs_lock;
1412 	divider->div.hw.init = &init;
1413 	divider->div.table = NULL;
1414 
1415 	divider->cprman = cprman;
1416 	divider->data = divider_data;
1417 
1418 	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1419 	if (ret)
1420 		return ERR_PTR(ret);
1421 
1422 	/*
1423 	 * PLLH's channels have a fixed divide by 10 afterwards, which
1424 	 * is what our consumers are actually using.
1425 	 */
1426 	if (divider_data->fixed_divider != 1) {
1427 		return clk_hw_register_fixed_factor(cprman->dev,
1428 						    divider_data->name,
1429 						    divider_name,
1430 						    CLK_SET_RATE_PARENT,
1431 						    1,
1432 						    divider_data->fixed_divider);
1433 	}
1434 
1435 	return &divider->div.hw;
1436 }
1437 
bcm2835_register_clock(struct bcm2835_cprman * cprman,const void * data)1438 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1439 					     const void *data)
1440 {
1441 	const struct bcm2835_clock_data *clock_data = data;
1442 	struct bcm2835_clock *clock;
1443 	struct clk_init_data init;
1444 	const char *parents[1 << CM_SRC_BITS];
1445 	size_t i;
1446 	int ret;
1447 
1448 	/*
1449 	 * Replace our strings referencing parent clocks with the
1450 	 * actual clock-output-name of the parent.
1451 	 */
1452 	for (i = 0; i < clock_data->num_mux_parents; i++) {
1453 		parents[i] = clock_data->parents[i];
1454 
1455 		ret = match_string(cprman_parent_names,
1456 				   ARRAY_SIZE(cprman_parent_names),
1457 				   parents[i]);
1458 		if (ret >= 0)
1459 			parents[i] = cprman->real_parent_names[ret];
1460 	}
1461 
1462 	memset(&init, 0, sizeof(init));
1463 	init.parent_names = parents;
1464 	init.num_parents = clock_data->num_mux_parents;
1465 	init.name = clock_data->name;
1466 	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1467 
1468 	/*
1469 	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1470 	 * rate changes on at least of the parents.
1471 	 */
1472 	if (clock_data->set_rate_parent)
1473 		init.flags |= CLK_SET_RATE_PARENT;
1474 
1475 	if (clock_data->is_vpu_clock) {
1476 		init.ops = &bcm2835_vpu_clock_clk_ops;
1477 	} else {
1478 		init.ops = &bcm2835_clock_clk_ops;
1479 		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1480 
1481 		/* If the clock wasn't actually enabled at boot, it's not
1482 		 * critical.
1483 		 */
1484 		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1485 			init.flags &= ~CLK_IS_CRITICAL;
1486 	}
1487 
1488 	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1489 	if (!clock)
1490 		return NULL;
1491 
1492 	clock->cprman = cprman;
1493 	clock->data = clock_data;
1494 	clock->hw.init = &init;
1495 
1496 	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1497 	if (ret)
1498 		return ERR_PTR(ret);
1499 	return &clock->hw;
1500 }
1501 
bcm2835_register_gate(struct bcm2835_cprman * cprman,const void * data)1502 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1503 					    const void *data)
1504 {
1505 	const struct bcm2835_gate_data *gate_data = data;
1506 
1507 	return clk_hw_register_gate(cprman->dev, gate_data->name,
1508 				    gate_data->parent,
1509 				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1510 				    cprman->regs + gate_data->ctl_reg,
1511 				    CM_GATE_BIT, 0, &cprman->regs_lock);
1512 }
1513 
1514 struct bcm2835_clk_desc {
1515 	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1516 				       const void *data);
1517 	unsigned int supported;
1518 	const void *data;
1519 };
1520 
1521 /* assignment helper macros for different clock types */
1522 #define _REGISTER(f, s, ...) { .clk_register = f, \
1523 			       .supported = s,				\
1524 			       .data = __VA_ARGS__ }
1525 #define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1526 					  s,				\
1527 					  &(struct bcm2835_pll_data)	\
1528 					  {__VA_ARGS__})
1529 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1530 					   s,				  \
1531 					   &(struct bcm2835_pll_divider_data) \
1532 					   {__VA_ARGS__})
1533 #define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1534 					  s,				\
1535 					  &(struct bcm2835_clock_data)	\
1536 					  {__VA_ARGS__})
1537 #define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1538 					  s,				\
1539 					  &(struct bcm2835_gate_data)	\
1540 					  {__VA_ARGS__})
1541 
1542 /* parent mux arrays plus helper macros */
1543 
1544 /* main oscillator parent mux */
1545 static const char *const bcm2835_clock_osc_parents[] = {
1546 	"gnd",
1547 	"xosc",
1548 	"testdebug0",
1549 	"testdebug1"
1550 };
1551 
1552 #define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1553 	s,								\
1554 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1555 	.parents = bcm2835_clock_osc_parents,				\
1556 	__VA_ARGS__)
1557 
1558 /* main peripheral parent mux */
1559 static const char *const bcm2835_clock_per_parents[] = {
1560 	"gnd",
1561 	"xosc",
1562 	"testdebug0",
1563 	"testdebug1",
1564 	"plla_per",
1565 	"pllc_per",
1566 	"plld_per",
1567 	"pllh_aux",
1568 };
1569 
1570 #define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1571 	s,								\
1572 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1573 	.parents = bcm2835_clock_per_parents,				\
1574 	__VA_ARGS__)
1575 
1576 /*
1577  * Restrict clock sources for the PCM peripheral to the oscillator and
1578  * PLLD_PER because other source may have varying rates or be switched
1579  * off.
1580  *
1581  * Prevent other sources from being selected by replacing their names in
1582  * the list of potential parents with dummy entries (entry index is
1583  * significant).
1584  */
1585 static const char *const bcm2835_pcm_per_parents[] = {
1586 	"-",
1587 	"xosc",
1588 	"-",
1589 	"-",
1590 	"-",
1591 	"-",
1592 	"plld_per",
1593 	"-",
1594 };
1595 
1596 #define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1597 	s,								\
1598 	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1599 	.parents = bcm2835_pcm_per_parents,				\
1600 	__VA_ARGS__)
1601 
1602 /* main vpu parent mux */
1603 static const char *const bcm2835_clock_vpu_parents[] = {
1604 	"gnd",
1605 	"xosc",
1606 	"testdebug0",
1607 	"testdebug1",
1608 	"plla_core",
1609 	"pllc_core0",
1610 	"plld_core",
1611 	"pllh_aux",
1612 	"pllc_core1",
1613 	"pllc_core2",
1614 };
1615 
1616 #define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1617 	s,								\
1618 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1619 	.parents = bcm2835_clock_vpu_parents,				\
1620 	__VA_ARGS__)
1621 
1622 /*
1623  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1624  * analog PHY.  The _inv variants are generated internally to cprman,
1625  * but we don't use them so they aren't hooked up.
1626  */
1627 static const char *const bcm2835_clock_dsi0_parents[] = {
1628 	"gnd",
1629 	"xosc",
1630 	"testdebug0",
1631 	"testdebug1",
1632 	"dsi0_ddr",
1633 	"dsi0_ddr_inv",
1634 	"dsi0_ddr2",
1635 	"dsi0_ddr2_inv",
1636 	"dsi0_byte",
1637 	"dsi0_byte_inv",
1638 };
1639 
1640 static const char *const bcm2835_clock_dsi1_parents[] = {
1641 	"gnd",
1642 	"xosc",
1643 	"testdebug0",
1644 	"testdebug1",
1645 	"dsi1_ddr",
1646 	"dsi1_ddr_inv",
1647 	"dsi1_ddr2",
1648 	"dsi1_ddr2_inv",
1649 	"dsi1_byte",
1650 	"dsi1_byte_inv",
1651 };
1652 
1653 #define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1654 	s,								\
1655 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1656 	.parents = bcm2835_clock_dsi0_parents,				\
1657 	__VA_ARGS__)
1658 
1659 #define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1660 	s,								\
1661 	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1662 	.parents = bcm2835_clock_dsi1_parents,				\
1663 	__VA_ARGS__)
1664 
1665 /*
1666  * the real definition of all the pll, pll_dividers and clocks
1667  * these make use of the above REGISTER_* macros
1668  */
1669 static const struct bcm2835_clk_desc clk_desc_array[] = {
1670 	/* the PLL + PLL dividers */
1671 
1672 	/*
1673 	 * PLLA is the auxiliary PLL, used to drive the CCP2
1674 	 * (Compact Camera Port 2) transmitter clock.
1675 	 *
1676 	 * It is in the PX LDO power domain, which is on when the
1677 	 * AUDIO domain is on.
1678 	 */
1679 	[BCM2835_PLLA]		= REGISTER_PLL(
1680 		SOC_ALL,
1681 		.name = "plla",
1682 		.cm_ctrl_reg = CM_PLLA,
1683 		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1684 		.frac_reg = A2W_PLLA_FRAC,
1685 		.ana_reg_base = A2W_PLLA_ANA0,
1686 		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1687 		.lock_mask = CM_LOCK_FLOCKA,
1688 
1689 		.ana = &bcm2835_ana_default,
1690 
1691 		.min_rate = 600000000u,
1692 		.max_rate = 2400000000u,
1693 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1694 	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1695 		SOC_ALL,
1696 		.name = "plla_core",
1697 		.source_pll = "plla",
1698 		.cm_reg = CM_PLLA,
1699 		.a2w_reg = A2W_PLLA_CORE,
1700 		.load_mask = CM_PLLA_LOADCORE,
1701 		.hold_mask = CM_PLLA_HOLDCORE,
1702 		.fixed_divider = 1,
1703 		.flags = CLK_SET_RATE_PARENT),
1704 	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1705 		SOC_ALL,
1706 		.name = "plla_per",
1707 		.source_pll = "plla",
1708 		.cm_reg = CM_PLLA,
1709 		.a2w_reg = A2W_PLLA_PER,
1710 		.load_mask = CM_PLLA_LOADPER,
1711 		.hold_mask = CM_PLLA_HOLDPER,
1712 		.fixed_divider = 1,
1713 		.flags = CLK_SET_RATE_PARENT),
1714 	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1715 		SOC_ALL,
1716 		.name = "plla_dsi0",
1717 		.source_pll = "plla",
1718 		.cm_reg = CM_PLLA,
1719 		.a2w_reg = A2W_PLLA_DSI0,
1720 		.load_mask = CM_PLLA_LOADDSI0,
1721 		.hold_mask = CM_PLLA_HOLDDSI0,
1722 		.fixed_divider = 1),
1723 	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1724 		SOC_ALL,
1725 		.name = "plla_ccp2",
1726 		.source_pll = "plla",
1727 		.cm_reg = CM_PLLA,
1728 		.a2w_reg = A2W_PLLA_CCP2,
1729 		.load_mask = CM_PLLA_LOADCCP2,
1730 		.hold_mask = CM_PLLA_HOLDCCP2,
1731 		.fixed_divider = 1,
1732 		.flags = CLK_SET_RATE_PARENT),
1733 
1734 	/* PLLB is used for the ARM's clock. */
1735 	[BCM2835_PLLB]		= REGISTER_PLL(
1736 		SOC_ALL,
1737 		.name = "pllb",
1738 		.cm_ctrl_reg = CM_PLLB,
1739 		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1740 		.frac_reg = A2W_PLLB_FRAC,
1741 		.ana_reg_base = A2W_PLLB_ANA0,
1742 		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1743 		.lock_mask = CM_LOCK_FLOCKB,
1744 
1745 		.ana = &bcm2835_ana_default,
1746 
1747 		.min_rate = 600000000u,
1748 		.max_rate = 3000000000u,
1749 		.max_fb_rate = BCM2835_MAX_FB_RATE,
1750 		.flags = CLK_GET_RATE_NOCACHE),
1751 	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1752 		SOC_ALL,
1753 		.name = "pllb_arm",
1754 		.source_pll = "pllb",
1755 		.cm_reg = CM_PLLB,
1756 		.a2w_reg = A2W_PLLB_ARM,
1757 		.load_mask = CM_PLLB_LOADARM,
1758 		.hold_mask = CM_PLLB_HOLDARM,
1759 		.fixed_divider = 1,
1760 		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1761 
1762 	/*
1763 	 * PLLC is the core PLL, used to drive the core VPU clock.
1764 	 *
1765 	 * It is in the PX LDO power domain, which is on when the
1766 	 * AUDIO domain is on.
1767 	 */
1768 	[BCM2835_PLLC]		= REGISTER_PLL(
1769 		SOC_ALL,
1770 		.name = "pllc",
1771 		.cm_ctrl_reg = CM_PLLC,
1772 		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1773 		.frac_reg = A2W_PLLC_FRAC,
1774 		.ana_reg_base = A2W_PLLC_ANA0,
1775 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1776 		.lock_mask = CM_LOCK_FLOCKC,
1777 
1778 		.ana = &bcm2835_ana_default,
1779 
1780 		.min_rate = 600000000u,
1781 		.max_rate = 3000000000u,
1782 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1783 	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1784 		SOC_ALL,
1785 		.name = "pllc_core0",
1786 		.source_pll = "pllc",
1787 		.cm_reg = CM_PLLC,
1788 		.a2w_reg = A2W_PLLC_CORE0,
1789 		.load_mask = CM_PLLC_LOADCORE0,
1790 		.hold_mask = CM_PLLC_HOLDCORE0,
1791 		.fixed_divider = 1,
1792 		.flags = CLK_SET_RATE_PARENT),
1793 	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1794 		SOC_ALL,
1795 		.name = "pllc_core1",
1796 		.source_pll = "pllc",
1797 		.cm_reg = CM_PLLC,
1798 		.a2w_reg = A2W_PLLC_CORE1,
1799 		.load_mask = CM_PLLC_LOADCORE1,
1800 		.hold_mask = CM_PLLC_HOLDCORE1,
1801 		.fixed_divider = 1,
1802 		.flags = CLK_SET_RATE_PARENT),
1803 	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1804 		SOC_ALL,
1805 		.name = "pllc_core2",
1806 		.source_pll = "pllc",
1807 		.cm_reg = CM_PLLC,
1808 		.a2w_reg = A2W_PLLC_CORE2,
1809 		.load_mask = CM_PLLC_LOADCORE2,
1810 		.hold_mask = CM_PLLC_HOLDCORE2,
1811 		.fixed_divider = 1,
1812 		.flags = CLK_SET_RATE_PARENT),
1813 	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1814 		SOC_ALL,
1815 		.name = "pllc_per",
1816 		.source_pll = "pllc",
1817 		.cm_reg = CM_PLLC,
1818 		.a2w_reg = A2W_PLLC_PER,
1819 		.load_mask = CM_PLLC_LOADPER,
1820 		.hold_mask = CM_PLLC_HOLDPER,
1821 		.fixed_divider = 1,
1822 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1823 
1824 	/*
1825 	 * PLLD is the display PLL, used to drive DSI display panels.
1826 	 *
1827 	 * It is in the PX LDO power domain, which is on when the
1828 	 * AUDIO domain is on.
1829 	 */
1830 	[BCM2835_PLLD]		= REGISTER_PLL(
1831 		SOC_ALL,
1832 		.name = "plld",
1833 		.cm_ctrl_reg = CM_PLLD,
1834 		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1835 		.frac_reg = A2W_PLLD_FRAC,
1836 		.ana_reg_base = A2W_PLLD_ANA0,
1837 		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1838 		.lock_mask = CM_LOCK_FLOCKD,
1839 
1840 		.ana = &bcm2835_ana_default,
1841 
1842 		.min_rate = 600000000u,
1843 		.max_rate = 2400000000u,
1844 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1845 	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1846 		SOC_ALL,
1847 		.name = "plld_core",
1848 		.source_pll = "plld",
1849 		.cm_reg = CM_PLLD,
1850 		.a2w_reg = A2W_PLLD_CORE,
1851 		.load_mask = CM_PLLD_LOADCORE,
1852 		.hold_mask = CM_PLLD_HOLDCORE,
1853 		.fixed_divider = 1,
1854 		.flags = CLK_SET_RATE_PARENT),
1855 	/*
1856 	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1857 	 * Otherwise this could cause firmware lookups. That's why we mark
1858 	 * it as critical.
1859 	 */
1860 	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1861 		SOC_ALL,
1862 		.name = "plld_per",
1863 		.source_pll = "plld",
1864 		.cm_reg = CM_PLLD,
1865 		.a2w_reg = A2W_PLLD_PER,
1866 		.load_mask = CM_PLLD_LOADPER,
1867 		.hold_mask = CM_PLLD_HOLDPER,
1868 		.fixed_divider = 1,
1869 		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1870 	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1871 		SOC_ALL,
1872 		.name = "plld_dsi0",
1873 		.source_pll = "plld",
1874 		.cm_reg = CM_PLLD,
1875 		.a2w_reg = A2W_PLLD_DSI0,
1876 		.load_mask = CM_PLLD_LOADDSI0,
1877 		.hold_mask = CM_PLLD_HOLDDSI0,
1878 		.fixed_divider = 1),
1879 	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1880 		SOC_ALL,
1881 		.name = "plld_dsi1",
1882 		.source_pll = "plld",
1883 		.cm_reg = CM_PLLD,
1884 		.a2w_reg = A2W_PLLD_DSI1,
1885 		.load_mask = CM_PLLD_LOADDSI1,
1886 		.hold_mask = CM_PLLD_HOLDDSI1,
1887 		.fixed_divider = 1),
1888 
1889 	/*
1890 	 * PLLH is used to supply the pixel clock or the AUX clock for the
1891 	 * TV encoder.
1892 	 *
1893 	 * It is in the HDMI power domain.
1894 	 */
1895 	[BCM2835_PLLH]		= REGISTER_PLL(
1896 		SOC_BCM2835,
1897 		"pllh",
1898 		.cm_ctrl_reg = CM_PLLH,
1899 		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1900 		.frac_reg = A2W_PLLH_FRAC,
1901 		.ana_reg_base = A2W_PLLH_ANA0,
1902 		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1903 		.lock_mask = CM_LOCK_FLOCKH,
1904 
1905 		.ana = &bcm2835_ana_pllh,
1906 
1907 		.min_rate = 600000000u,
1908 		.max_rate = 3000000000u,
1909 		.max_fb_rate = BCM2835_MAX_FB_RATE),
1910 	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1911 		SOC_BCM2835,
1912 		.name = "pllh_rcal",
1913 		.source_pll = "pllh",
1914 		.cm_reg = CM_PLLH,
1915 		.a2w_reg = A2W_PLLH_RCAL,
1916 		.load_mask = CM_PLLH_LOADRCAL,
1917 		.hold_mask = 0,
1918 		.fixed_divider = 10,
1919 		.flags = CLK_SET_RATE_PARENT),
1920 	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1921 		SOC_BCM2835,
1922 		.name = "pllh_aux",
1923 		.source_pll = "pllh",
1924 		.cm_reg = CM_PLLH,
1925 		.a2w_reg = A2W_PLLH_AUX,
1926 		.load_mask = CM_PLLH_LOADAUX,
1927 		.hold_mask = 0,
1928 		.fixed_divider = 1,
1929 		.flags = CLK_SET_RATE_PARENT),
1930 	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1931 		SOC_BCM2835,
1932 		.name = "pllh_pix",
1933 		.source_pll = "pllh",
1934 		.cm_reg = CM_PLLH,
1935 		.a2w_reg = A2W_PLLH_PIX,
1936 		.load_mask = CM_PLLH_LOADPIX,
1937 		.hold_mask = 0,
1938 		.fixed_divider = 10,
1939 		.flags = CLK_SET_RATE_PARENT),
1940 
1941 	/* the clocks */
1942 
1943 	/* clocks with oscillator parent mux */
1944 
1945 	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1946 	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1947 		SOC_ALL,
1948 		.name = "otp",
1949 		.ctl_reg = CM_OTPCTL,
1950 		.div_reg = CM_OTPDIV,
1951 		.int_bits = 4,
1952 		.frac_bits = 0,
1953 		.tcnt_mux = 6),
1954 	/*
1955 	 * Used for a 1Mhz clock for the system clocksource, and also used
1956 	 * bythe watchdog timer and the camera pulse generator.
1957 	 */
1958 	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1959 		SOC_ALL,
1960 		.name = "timer",
1961 		.ctl_reg = CM_TIMERCTL,
1962 		.div_reg = CM_TIMERDIV,
1963 		.int_bits = 6,
1964 		.frac_bits = 12),
1965 	/*
1966 	 * Clock for the temperature sensor.
1967 	 * Generally run at 2Mhz, max 5Mhz.
1968 	 */
1969 	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1970 		SOC_ALL,
1971 		.name = "tsens",
1972 		.ctl_reg = CM_TSENSCTL,
1973 		.div_reg = CM_TSENSDIV,
1974 		.int_bits = 5,
1975 		.frac_bits = 0),
1976 	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1977 		SOC_ALL,
1978 		.name = "tec",
1979 		.ctl_reg = CM_TECCTL,
1980 		.div_reg = CM_TECDIV,
1981 		.int_bits = 6,
1982 		.frac_bits = 0),
1983 
1984 	/* clocks with vpu parent mux */
1985 	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1986 		SOC_ALL,
1987 		.name = "h264",
1988 		.ctl_reg = CM_H264CTL,
1989 		.div_reg = CM_H264DIV,
1990 		.int_bits = 4,
1991 		.frac_bits = 8,
1992 		.tcnt_mux = 1),
1993 	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1994 		SOC_ALL,
1995 		.name = "isp",
1996 		.ctl_reg = CM_ISPCTL,
1997 		.div_reg = CM_ISPDIV,
1998 		.int_bits = 4,
1999 		.frac_bits = 8,
2000 		.tcnt_mux = 2),
2001 
2002 	/*
2003 	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
2004 	 * in the SDRAM controller can't be used.
2005 	 */
2006 	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
2007 		SOC_ALL,
2008 		.name = "sdram",
2009 		.ctl_reg = CM_SDCCTL,
2010 		.div_reg = CM_SDCDIV,
2011 		.int_bits = 6,
2012 		.frac_bits = 0,
2013 		.tcnt_mux = 3),
2014 	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
2015 		SOC_ALL,
2016 		.name = "v3d",
2017 		.ctl_reg = CM_V3DCTL,
2018 		.div_reg = CM_V3DDIV,
2019 		.int_bits = 4,
2020 		.frac_bits = 8,
2021 		.tcnt_mux = 4),
2022 	/*
2023 	 * VPU clock.  This doesn't have an enable bit, since it drives
2024 	 * the bus for everything else, and is special so it doesn't need
2025 	 * to be gated for rate changes.  It is also known as "clk_audio"
2026 	 * in various hardware documentation.
2027 	 */
2028 	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
2029 		SOC_ALL,
2030 		.name = "vpu",
2031 		.ctl_reg = CM_VPUCTL,
2032 		.div_reg = CM_VPUDIV,
2033 		.int_bits = 12,
2034 		.frac_bits = 8,
2035 		.flags = CLK_IS_CRITICAL,
2036 		.is_vpu_clock = true,
2037 		.tcnt_mux = 5),
2038 
2039 	/* clocks with per parent mux */
2040 	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2041 		SOC_ALL,
2042 		.name = "aveo",
2043 		.ctl_reg = CM_AVEOCTL,
2044 		.div_reg = CM_AVEODIV,
2045 		.int_bits = 4,
2046 		.frac_bits = 0,
2047 		.tcnt_mux = 38),
2048 	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2049 		SOC_ALL,
2050 		.name = "cam0",
2051 		.ctl_reg = CM_CAM0CTL,
2052 		.div_reg = CM_CAM0DIV,
2053 		.int_bits = 4,
2054 		.frac_bits = 8,
2055 		.tcnt_mux = 14),
2056 	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2057 		SOC_ALL,
2058 		.name = "cam1",
2059 		.ctl_reg = CM_CAM1CTL,
2060 		.div_reg = CM_CAM1DIV,
2061 		.int_bits = 4,
2062 		.frac_bits = 8,
2063 		.tcnt_mux = 15),
2064 	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2065 		SOC_ALL,
2066 		.name = "dft",
2067 		.ctl_reg = CM_DFTCTL,
2068 		.div_reg = CM_DFTDIV,
2069 		.int_bits = 5,
2070 		.frac_bits = 0),
2071 	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2072 		SOC_ALL,
2073 		.name = "dpi",
2074 		.ctl_reg = CM_DPICTL,
2075 		.div_reg = CM_DPIDIV,
2076 		.int_bits = 4,
2077 		.frac_bits = 8,
2078 		.tcnt_mux = 17),
2079 
2080 	/* Arasan EMMC clock */
2081 	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2082 		SOC_ALL,
2083 		.name = "emmc",
2084 		.ctl_reg = CM_EMMCCTL,
2085 		.div_reg = CM_EMMCDIV,
2086 		.int_bits = 4,
2087 		.frac_bits = 8,
2088 		.tcnt_mux = 39),
2089 
2090 	/* EMMC2 clock (only available for BCM2711) */
2091 	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2092 		SOC_BCM2711,
2093 		.name = "emmc2",
2094 		.ctl_reg = CM_EMMC2CTL,
2095 		.div_reg = CM_EMMC2DIV,
2096 		.int_bits = 4,
2097 		.frac_bits = 8,
2098 		.tcnt_mux = 42),
2099 
2100 	/* General purpose (GPIO) clocks */
2101 	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2102 		SOC_ALL,
2103 		.name = "gp0",
2104 		.ctl_reg = CM_GP0CTL,
2105 		.div_reg = CM_GP0DIV,
2106 		.int_bits = 12,
2107 		.frac_bits = 12,
2108 		.is_mash_clock = true,
2109 		.tcnt_mux = 20),
2110 	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2111 		SOC_ALL,
2112 		.name = "gp1",
2113 		.ctl_reg = CM_GP1CTL,
2114 		.div_reg = CM_GP1DIV,
2115 		.int_bits = 12,
2116 		.frac_bits = 12,
2117 		.flags = CLK_IS_CRITICAL,
2118 		.is_mash_clock = true,
2119 		.tcnt_mux = 21),
2120 	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2121 		SOC_ALL,
2122 		.name = "gp2",
2123 		.ctl_reg = CM_GP2CTL,
2124 		.div_reg = CM_GP2DIV,
2125 		.int_bits = 12,
2126 		.frac_bits = 12,
2127 		.flags = CLK_IS_CRITICAL),
2128 
2129 	/* HDMI state machine */
2130 	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2131 		SOC_ALL,
2132 		.name = "hsm",
2133 		.ctl_reg = CM_HSMCTL,
2134 		.div_reg = CM_HSMDIV,
2135 		.int_bits = 4,
2136 		.frac_bits = 8,
2137 		.tcnt_mux = 22),
2138 	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2139 		SOC_ALL,
2140 		.name = "pcm",
2141 		.ctl_reg = CM_PCMCTL,
2142 		.div_reg = CM_PCMDIV,
2143 		.int_bits = 12,
2144 		.frac_bits = 12,
2145 		.is_mash_clock = true,
2146 		.low_jitter = true,
2147 		.tcnt_mux = 23),
2148 	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2149 		SOC_ALL,
2150 		.name = "pwm",
2151 		.ctl_reg = CM_PWMCTL,
2152 		.div_reg = CM_PWMDIV,
2153 		.int_bits = 12,
2154 		.frac_bits = 12,
2155 		.is_mash_clock = true,
2156 		.tcnt_mux = 24),
2157 	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2158 		SOC_ALL,
2159 		.name = "slim",
2160 		.ctl_reg = CM_SLIMCTL,
2161 		.div_reg = CM_SLIMDIV,
2162 		.int_bits = 12,
2163 		.frac_bits = 12,
2164 		.is_mash_clock = true,
2165 		.tcnt_mux = 25),
2166 	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2167 		SOC_ALL,
2168 		.name = "smi",
2169 		.ctl_reg = CM_SMICTL,
2170 		.div_reg = CM_SMIDIV,
2171 		.int_bits = 4,
2172 		.frac_bits = 8,
2173 		.tcnt_mux = 27),
2174 	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2175 		SOC_ALL,
2176 		.name = "uart",
2177 		.ctl_reg = CM_UARTCTL,
2178 		.div_reg = CM_UARTDIV,
2179 		.int_bits = 10,
2180 		.frac_bits = 12,
2181 		.tcnt_mux = 28,
2182 		.round_up = true),
2183 
2184 	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2185 	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2186 		SOC_ALL,
2187 		.name = "vec",
2188 		.ctl_reg = CM_VECCTL,
2189 		.div_reg = CM_VECDIV,
2190 		.int_bits = 4,
2191 		.frac_bits = 0,
2192 		/*
2193 		 * Allow rate change propagation only on PLLH_AUX which is
2194 		 * assigned index 7 in the parent array.
2195 		 */
2196 		.set_rate_parent = BIT(7),
2197 		.tcnt_mux = 29),
2198 
2199 	/* dsi clocks */
2200 	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2201 		SOC_ALL,
2202 		.name = "dsi0e",
2203 		.ctl_reg = CM_DSI0ECTL,
2204 		.div_reg = CM_DSI0EDIV,
2205 		.int_bits = 4,
2206 		.frac_bits = 8,
2207 		.tcnt_mux = 18),
2208 	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2209 		SOC_ALL,
2210 		.name = "dsi1e",
2211 		.ctl_reg = CM_DSI1ECTL,
2212 		.div_reg = CM_DSI1EDIV,
2213 		.int_bits = 4,
2214 		.frac_bits = 8,
2215 		.tcnt_mux = 19),
2216 	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2217 		SOC_ALL,
2218 		.name = "dsi0p",
2219 		.ctl_reg = CM_DSI0PCTL,
2220 		.div_reg = CM_DSI0PDIV,
2221 		.int_bits = 0,
2222 		.frac_bits = 0,
2223 		.tcnt_mux = 12),
2224 	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2225 		SOC_ALL,
2226 		.name = "dsi1p",
2227 		.ctl_reg = CM_DSI1PCTL,
2228 		.div_reg = CM_DSI1PDIV,
2229 		.int_bits = 0,
2230 		.frac_bits = 0,
2231 		.tcnt_mux = 13),
2232 
2233 	/* the gates */
2234 
2235 	/*
2236 	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2237 	 * you have the debug bit set in the power manager, which we
2238 	 * don't bother exposing) are individual gates off of the
2239 	 * non-stop vpu clock.
2240 	 */
2241 	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2242 		SOC_ALL,
2243 		.name = "peri_image",
2244 		.parent = "vpu",
2245 		.ctl_reg = CM_PERIICTL),
2246 };
2247 
2248 /*
2249  * Permanently take a reference on the parent of the SDRAM clock.
2250  *
2251  * While the SDRAM is being driven by its dedicated PLL most of the
2252  * time, there is a little loop running in the firmware that
2253  * periodically switches the SDRAM to using our CM clock to do PVT
2254  * recalibration, with the assumption that the previously configured
2255  * SDRAM parent is still enabled and running.
2256  */
bcm2835_mark_sdc_parent_critical(struct clk * sdc)2257 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2258 {
2259 	struct clk *parent = clk_get_parent(sdc);
2260 
2261 	if (IS_ERR(parent))
2262 		return PTR_ERR(parent);
2263 
2264 	return clk_prepare_enable(parent);
2265 }
2266 
bcm2835_clk_probe(struct platform_device * pdev)2267 static int bcm2835_clk_probe(struct platform_device *pdev)
2268 {
2269 	struct device *dev = &pdev->dev;
2270 	struct clk_hw **hws;
2271 	struct bcm2835_cprman *cprman;
2272 	const struct bcm2835_clk_desc *desc;
2273 	const size_t asize = ARRAY_SIZE(clk_desc_array);
2274 	const struct cprman_plat_data *pdata;
2275 	size_t i;
2276 	int ret;
2277 
2278 	pdata = of_device_get_match_data(&pdev->dev);
2279 	if (!pdata)
2280 		return -ENODEV;
2281 
2282 	cprman = devm_kzalloc(dev,
2283 			      struct_size(cprman, onecell.hws, asize),
2284 			      GFP_KERNEL);
2285 	if (!cprman)
2286 		return -ENOMEM;
2287 
2288 	spin_lock_init(&cprman->regs_lock);
2289 	cprman->dev = dev;
2290 	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2291 	if (IS_ERR(cprman->regs))
2292 		return PTR_ERR(cprman->regs);
2293 
2294 	memcpy(cprman->real_parent_names, cprman_parent_names,
2295 	       sizeof(cprman_parent_names));
2296 	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2297 			   ARRAY_SIZE(cprman_parent_names));
2298 
2299 	/*
2300 	 * Make sure the external oscillator has been registered.
2301 	 *
2302 	 * The other (DSI) clocks are not present on older device
2303 	 * trees, which we still need to support for backwards
2304 	 * compatibility.
2305 	 */
2306 	if (!cprman->real_parent_names[0])
2307 		return -ENODEV;
2308 
2309 	platform_set_drvdata(pdev, cprman);
2310 
2311 	cprman->onecell.num = asize;
2312 	cprman->soc = pdata->soc;
2313 	hws = cprman->onecell.hws;
2314 
2315 	for (i = 0; i < asize; i++) {
2316 		desc = &clk_desc_array[i];
2317 		if (desc->clk_register && desc->data &&
2318 		    (desc->supported & pdata->soc)) {
2319 			hws[i] = desc->clk_register(cprman, desc->data);
2320 		}
2321 	}
2322 
2323 	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2324 	if (ret)
2325 		return ret;
2326 
2327 	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2328 				      &cprman->onecell);
2329 }
2330 
2331 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2332 	.soc = SOC_BCM2835,
2333 };
2334 
2335 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2336 	.soc = SOC_BCM2711,
2337 };
2338 
2339 static const struct of_device_id bcm2835_clk_of_match[] = {
2340 	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2341 	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2342 	{}
2343 };
2344 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2345 
2346 static struct platform_driver bcm2835_clk_driver = {
2347 	.driver = {
2348 		.name = "bcm2835-clk",
2349 		.of_match_table = bcm2835_clk_of_match,
2350 	},
2351 	.probe          = bcm2835_clk_probe,
2352 };
2353 
2354 builtin_platform_driver(bcm2835_clk_driver);
2355 
2356 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2357 MODULE_DESCRIPTION("BCM2835 clock driver");
2358