xref: /linux/net/ipv4/tcp_minisocks.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock * tw,const struct sk_buff * skb,int mib_idx)37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK_OOW;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
twsk_rcv_nxt_update(struct tcp_timewait_sock * tcptw,u32 seq,u32 rcv_nxt)55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th,u32 * tw_isn,enum skb_drop_reason * drop_reason)99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn,
101 			   enum skb_drop_reason *drop_reason)
102 {
103 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
104 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
105 	struct tcp_options_received tmp_opt;
106 	bool paws_reject = false;
107 	int ts_recent_stamp;
108 
109 	tmp_opt.saw_tstamp = 0;
110 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
111 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
112 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
113 
114 		if (tmp_opt.saw_tstamp) {
115 			if (tmp_opt.rcv_tsecr)
116 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
117 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
118 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
119 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
120 		}
121 	}
122 
123 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
124 		/* Just repeat all the checks of tcp_rcv_state_process() */
125 
126 		/* Out of window, send ACK */
127 		if (paws_reject ||
128 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
129 				   rcv_nxt,
130 				   rcv_nxt + tcptw->tw_rcv_wnd))
131 			return tcp_timewait_check_oow_rate_limit(
132 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
133 
134 		if (th->rst)
135 			goto kill;
136 
137 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
138 			return TCP_TW_RST;
139 
140 		/* Dup ACK? */
141 		if (!th->ack ||
142 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
143 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
144 			inet_twsk_put(tw);
145 			return TCP_TW_SUCCESS;
146 		}
147 
148 		/* New data or FIN. If new data arrive after half-duplex close,
149 		 * reset.
150 		 */
151 		if (!th->fin ||
152 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
153 			return TCP_TW_RST;
154 
155 		/* FIN arrived, enter true time-wait state. */
156 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
157 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
158 				    rcv_nxt);
159 
160 		if (tmp_opt.saw_tstamp) {
161 			u64 ts = tcp_clock_ms();
162 
163 			WRITE_ONCE(tw->tw_entry_stamp, ts);
164 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
165 				   div_u64(ts, MSEC_PER_SEC));
166 			WRITE_ONCE(tcptw->tw_ts_recent,
167 				   tmp_opt.rcv_tsval);
168 		}
169 
170 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
171 		return TCP_TW_ACK;
172 	}
173 
174 	/*
175 	 *	Now real TIME-WAIT state.
176 	 *
177 	 *	RFC 1122:
178 	 *	"When a connection is [...] on TIME-WAIT state [...]
179 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180 	 *	reopen the connection directly, if it:
181 	 *
182 	 *	(1)  assigns its initial sequence number for the new
183 	 *	connection to be larger than the largest sequence
184 	 *	number it used on the previous connection incarnation,
185 	 *	and
186 	 *
187 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188 	 *	to be an old duplicate".
189 	 */
190 
191 	if (!paws_reject &&
192 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
193 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194 		/* In window segment, it may be only reset or bare ack. */
195 
196 		if (th->rst) {
197 			/* This is TIME_WAIT assassination, in two flavors.
198 			 * Oh well... nobody has a sufficient solution to this
199 			 * protocol bug yet.
200 			 */
201 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
202 kill:
203 				inet_twsk_deschedule_put(tw);
204 				return TCP_TW_SUCCESS;
205 			}
206 		} else {
207 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
208 		}
209 
210 		if (tmp_opt.saw_tstamp) {
211 			WRITE_ONCE(tcptw->tw_ts_recent,
212 				   tmp_opt.rcv_tsval);
213 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
214 				   ktime_get_seconds());
215 		}
216 
217 		inet_twsk_put(tw);
218 		return TCP_TW_SUCCESS;
219 	}
220 
221 	/* Out of window segment.
222 
223 	   All the segments are ACKed immediately.
224 
225 	   The only exception is new SYN. We accept it, if it is
226 	   not old duplicate and we are not in danger to be killed
227 	   by delayed old duplicates. RFC check is that it has
228 	   newer sequence number works at rates <40Mbit/sec.
229 	   However, if paws works, it is reliable AND even more,
230 	   we even may relax silly seq space cutoff.
231 
232 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
233 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
234 	   we must return socket to time-wait state. It is not good,
235 	   but not fatal yet.
236 	 */
237 
238 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
239 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
240 	     (tmp_opt.saw_tstamp &&
241 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
242 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
243 		if (isn == 0)
244 			isn++;
245 		*tw_isn = isn;
246 		return TCP_TW_SYN;
247 	}
248 
249 	if (paws_reject) {
250 		*drop_reason = SKB_DROP_REASON_TCP_RFC7323_TW_PAWS;
251 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWS_TW_REJECTED);
252 	}
253 
254 	if (!th->rst) {
255 		/* In this case we must reset the TIMEWAIT timer.
256 		 *
257 		 * If it is ACKless SYN it may be both old duplicate
258 		 * and new good SYN with random sequence number <rcv_nxt.
259 		 * Do not reschedule in the last case.
260 		 */
261 		if (paws_reject || th->ack)
262 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
263 
264 		return tcp_timewait_check_oow_rate_limit(
265 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
266 	}
267 	inet_twsk_put(tw);
268 	return TCP_TW_SUCCESS;
269 }
270 EXPORT_IPV6_MOD(tcp_timewait_state_process);
271 
tcp_time_wait_init(struct sock * sk,struct tcp_timewait_sock * tcptw)272 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
273 {
274 #ifdef CONFIG_TCP_MD5SIG
275 	const struct tcp_sock *tp = tcp_sk(sk);
276 	struct tcp_md5sig_key *key;
277 
278 	/*
279 	 * The timewait bucket does not have the key DB from the
280 	 * sock structure. We just make a quick copy of the
281 	 * md5 key being used (if indeed we are using one)
282 	 * so the timewait ack generating code has the key.
283 	 */
284 	tcptw->tw_md5_key = NULL;
285 	if (!static_branch_unlikely(&tcp_md5_needed.key))
286 		return;
287 
288 	key = tp->af_specific->md5_lookup(sk, sk);
289 	if (key) {
290 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
291 		if (!tcptw->tw_md5_key)
292 			return;
293 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
294 			goto out_free;
295 		tcp_md5_add_sigpool();
296 	}
297 	return;
298 out_free:
299 	WARN_ON_ONCE(1);
300 	kfree(tcptw->tw_md5_key);
301 	tcptw->tw_md5_key = NULL;
302 #endif
303 }
304 
305 /*
306  * Move a socket to time-wait or dead fin-wait-2 state.
307  */
tcp_time_wait(struct sock * sk,int state,int timeo)308 void tcp_time_wait(struct sock *sk, int state, int timeo)
309 {
310 	const struct inet_connection_sock *icsk = inet_csk(sk);
311 	struct tcp_sock *tp = tcp_sk(sk);
312 	struct net *net = sock_net(sk);
313 	struct inet_timewait_sock *tw;
314 
315 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
316 
317 	if (tw) {
318 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
319 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
320 
321 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
322 		tw->tw_mark		= sk->sk_mark;
323 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
324 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
325 		/* refreshed when we enter true TIME-WAIT state */
326 		tw->tw_entry_stamp	= tcp_time_stamp_ms(tp);
327 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
328 		tcptw->tw_snd_nxt	= tp->snd_nxt;
329 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
330 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
331 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
332 		tcptw->tw_ts_offset	= tp->tsoffset;
333 		tw->tw_usec_ts		= tp->tcp_usec_ts;
334 		tcptw->tw_last_oow_ack_time = 0;
335 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
336 		tw->tw_txhash		= sk->sk_txhash;
337 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
338 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
339 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
340 #endif
341 #if IS_ENABLED(CONFIG_IPV6)
342 		if (tw->tw_family == PF_INET6) {
343 			struct ipv6_pinfo *np = inet6_sk(sk);
344 
345 			tw->tw_v6_daddr = sk->sk_v6_daddr;
346 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
347 			tw->tw_tclass = np->tclass;
348 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
349 			tw->tw_ipv6only = sk->sk_ipv6only;
350 		}
351 #endif
352 
353 		tcp_time_wait_init(sk, tcptw);
354 		tcp_ao_time_wait(tcptw, tp);
355 
356 		/* Get the TIME_WAIT timeout firing. */
357 		if (timeo < rto)
358 			timeo = rto;
359 
360 		if (state == TCP_TIME_WAIT)
361 			timeo = TCP_TIMEWAIT_LEN;
362 
363 		/* Linkage updates.
364 		 * Note that access to tw after this point is illegal.
365 		 */
366 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
367 	} else {
368 		/* Sorry, if we're out of memory, just CLOSE this
369 		 * socket up.  We've got bigger problems than
370 		 * non-graceful socket closings.
371 		 */
372 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
373 	}
374 
375 	tcp_update_metrics(sk);
376 	tcp_done(sk);
377 }
378 EXPORT_SYMBOL(tcp_time_wait);
379 
380 #ifdef CONFIG_TCP_MD5SIG
tcp_md5_twsk_free_rcu(struct rcu_head * head)381 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
382 {
383 	struct tcp_md5sig_key *key;
384 
385 	key = container_of(head, struct tcp_md5sig_key, rcu);
386 	kfree(key);
387 	static_branch_slow_dec_deferred(&tcp_md5_needed);
388 	tcp_md5_release_sigpool();
389 }
390 #endif
391 
tcp_twsk_destructor(struct sock * sk)392 void tcp_twsk_destructor(struct sock *sk)
393 {
394 #ifdef CONFIG_TCP_MD5SIG
395 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
396 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
397 
398 		if (twsk->tw_md5_key)
399 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
400 	}
401 #endif
402 	tcp_ao_destroy_sock(sk, true);
403 }
404 EXPORT_IPV6_MOD_GPL(tcp_twsk_destructor);
405 
tcp_twsk_purge(struct list_head * net_exit_list)406 void tcp_twsk_purge(struct list_head *net_exit_list)
407 {
408 	bool purged_once = false;
409 	struct net *net;
410 
411 	list_for_each_entry(net, net_exit_list, exit_list) {
412 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
413 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
414 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
415 		} else if (!purged_once) {
416 			inet_twsk_purge(&tcp_hashinfo);
417 			purged_once = true;
418 		}
419 	}
420 }
421 
422 /* Warning : This function is called without sk_listener being locked.
423  * Be sure to read socket fields once, as their value could change under us.
424  */
tcp_openreq_init_rwin(struct request_sock * req,const struct sock * sk_listener,const struct dst_entry * dst)425 void tcp_openreq_init_rwin(struct request_sock *req,
426 			   const struct sock *sk_listener,
427 			   const struct dst_entry *dst)
428 {
429 	struct inet_request_sock *ireq = inet_rsk(req);
430 	const struct tcp_sock *tp = tcp_sk(sk_listener);
431 	int full_space = tcp_full_space(sk_listener);
432 	u32 window_clamp;
433 	__u8 rcv_wscale;
434 	u32 rcv_wnd;
435 	int mss;
436 
437 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
438 	window_clamp = READ_ONCE(tp->window_clamp);
439 	/* Set this up on the first call only */
440 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
441 
442 	/* limit the window selection if the user enforce a smaller rx buffer */
443 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
444 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
445 		req->rsk_window_clamp = full_space;
446 
447 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
448 	if (rcv_wnd == 0)
449 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
450 	else if (full_space < rcv_wnd * mss)
451 		full_space = rcv_wnd * mss;
452 
453 	/* tcp_full_space because it is guaranteed to be the first packet */
454 	tcp_select_initial_window(sk_listener, full_space,
455 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
456 		&req->rsk_rcv_wnd,
457 		&req->rsk_window_clamp,
458 		ireq->wscale_ok,
459 		&rcv_wscale,
460 		rcv_wnd);
461 	ireq->rcv_wscale = rcv_wscale;
462 }
463 
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)464 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
465 				  const struct request_sock *req)
466 {
467 	tcp_ecn_mode_set(tp, inet_rsk(req)->ecn_ok ?
468 			     TCP_ECN_MODE_RFC3168 :
469 			     TCP_ECN_DISABLED);
470 }
471 
tcp_ca_openreq_child(struct sock * sk,const struct dst_entry * dst)472 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
473 {
474 	struct inet_connection_sock *icsk = inet_csk(sk);
475 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
476 	bool ca_got_dst = false;
477 
478 	if (ca_key != TCP_CA_UNSPEC) {
479 		const struct tcp_congestion_ops *ca;
480 
481 		rcu_read_lock();
482 		ca = tcp_ca_find_key(ca_key);
483 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
484 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
485 			icsk->icsk_ca_ops = ca;
486 			ca_got_dst = true;
487 		}
488 		rcu_read_unlock();
489 	}
490 
491 	/* If no valid choice made yet, assign current system default ca. */
492 	if (!ca_got_dst &&
493 	    (!icsk->icsk_ca_setsockopt ||
494 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
495 		tcp_assign_congestion_control(sk);
496 
497 	tcp_set_ca_state(sk, TCP_CA_Open);
498 }
499 EXPORT_IPV6_MOD_GPL(tcp_ca_openreq_child);
500 
smc_check_reset_syn_req(const struct tcp_sock * oldtp,struct request_sock * req,struct tcp_sock * newtp)501 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
502 				    struct request_sock *req,
503 				    struct tcp_sock *newtp)
504 {
505 #if IS_ENABLED(CONFIG_SMC)
506 	struct inet_request_sock *ireq;
507 
508 	if (static_branch_unlikely(&tcp_have_smc)) {
509 		ireq = inet_rsk(req);
510 		if (oldtp->syn_smc && !ireq->smc_ok)
511 			newtp->syn_smc = 0;
512 	}
513 #endif
514 }
515 
516 /* This is not only more efficient than what we used to do, it eliminates
517  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
518  *
519  * Actually, we could lots of memory writes here. tp of listening
520  * socket contains all necessary default parameters.
521  */
tcp_create_openreq_child(const struct sock * sk,struct request_sock * req,struct sk_buff * skb)522 struct sock *tcp_create_openreq_child(const struct sock *sk,
523 				      struct request_sock *req,
524 				      struct sk_buff *skb)
525 {
526 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
527 	const struct inet_request_sock *ireq = inet_rsk(req);
528 	struct tcp_request_sock *treq = tcp_rsk(req);
529 	struct inet_connection_sock *newicsk;
530 	const struct tcp_sock *oldtp;
531 	struct tcp_sock *newtp;
532 	u32 seq;
533 
534 	if (!newsk)
535 		return NULL;
536 
537 	newicsk = inet_csk(newsk);
538 	newtp = tcp_sk(newsk);
539 	oldtp = tcp_sk(sk);
540 
541 	smc_check_reset_syn_req(oldtp, req, newtp);
542 
543 	/* Now setup tcp_sock */
544 	newtp->pred_flags = 0;
545 
546 	seq = treq->rcv_isn + 1;
547 	newtp->rcv_wup = seq;
548 	WRITE_ONCE(newtp->copied_seq, seq);
549 	WRITE_ONCE(newtp->rcv_nxt, seq);
550 	newtp->segs_in = 1;
551 
552 	seq = treq->snt_isn + 1;
553 	newtp->snd_sml = newtp->snd_una = seq;
554 	WRITE_ONCE(newtp->snd_nxt, seq);
555 	newtp->snd_up = seq;
556 
557 	INIT_LIST_HEAD(&newtp->tsq_node);
558 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
559 
560 	tcp_init_wl(newtp, treq->rcv_isn);
561 
562 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
563 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
564 
565 	newtp->lsndtime = tcp_jiffies32;
566 	newsk->sk_txhash = READ_ONCE(treq->txhash);
567 	newtp->total_retrans = req->num_retrans;
568 
569 	tcp_init_xmit_timers(newsk);
570 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
571 
572 	if (sock_flag(newsk, SOCK_KEEPOPEN))
573 		tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
574 
575 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
576 	newtp->rx_opt.sack_ok = ireq->sack_ok;
577 	newtp->window_clamp = req->rsk_window_clamp;
578 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
579 	newtp->rcv_wnd = req->rsk_rcv_wnd;
580 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
581 	if (newtp->rx_opt.wscale_ok) {
582 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
583 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
584 	} else {
585 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
586 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
587 	}
588 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
589 	newtp->max_window = newtp->snd_wnd;
590 
591 	if (newtp->rx_opt.tstamp_ok) {
592 		newtp->tcp_usec_ts = treq->req_usec_ts;
593 		newtp->rx_opt.ts_recent = req->ts_recent;
594 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
595 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
596 	} else {
597 		newtp->tcp_usec_ts = 0;
598 		newtp->rx_opt.ts_recent_stamp = 0;
599 		newtp->tcp_header_len = sizeof(struct tcphdr);
600 	}
601 	if (req->num_timeout) {
602 		newtp->total_rto = req->num_timeout;
603 		newtp->undo_marker = treq->snt_isn;
604 		if (newtp->tcp_usec_ts) {
605 			newtp->retrans_stamp = treq->snt_synack;
606 			newtp->total_rto_time = (u32)(tcp_clock_us() -
607 						      newtp->retrans_stamp) / USEC_PER_MSEC;
608 		} else {
609 			newtp->retrans_stamp = div_u64(treq->snt_synack,
610 						       USEC_PER_SEC / TCP_TS_HZ);
611 			newtp->total_rto_time = tcp_clock_ms() -
612 						newtp->retrans_stamp;
613 		}
614 		newtp->total_rto_recoveries = 1;
615 	}
616 	newtp->tsoffset = treq->ts_off;
617 #ifdef CONFIG_TCP_MD5SIG
618 	newtp->md5sig_info = NULL;	/*XXX*/
619 #endif
620 #ifdef CONFIG_TCP_AO
621 	newtp->ao_info = NULL;
622 
623 	if (tcp_rsk_used_ao(req)) {
624 		struct tcp_ao_key *ao_key;
625 
626 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
627 		if (ao_key)
628 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
629 	}
630  #endif
631 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
632 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
633 	newtp->rx_opt.mss_clamp = req->mss;
634 	tcp_ecn_openreq_child(newtp, req);
635 	newtp->fastopen_req = NULL;
636 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
637 
638 	newtp->bpf_chg_cc_inprogress = 0;
639 	tcp_bpf_clone(sk, newsk);
640 
641 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
642 
643 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
644 
645 	return newsk;
646 }
647 EXPORT_SYMBOL(tcp_create_openreq_child);
648 
649 /*
650  * Process an incoming packet for SYN_RECV sockets represented as a
651  * request_sock. Normally sk is the listener socket but for TFO it
652  * points to the child socket.
653  *
654  * XXX (TFO) - The current impl contains a special check for ack
655  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
656  *
657  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
658  *
659  * Note: If @fastopen is true, this can be called from process context.
660  *       Otherwise, this is from BH context.
661  */
662 
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,bool fastopen,bool * req_stolen,enum skb_drop_reason * drop_reason)663 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
664 			   struct request_sock *req,
665 			   bool fastopen, bool *req_stolen,
666 			   enum skb_drop_reason *drop_reason)
667 {
668 	struct tcp_options_received tmp_opt;
669 	struct sock *child;
670 	const struct tcphdr *th = tcp_hdr(skb);
671 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
672 	bool tsecr_reject = false;
673 	bool paws_reject = false;
674 	bool own_req;
675 
676 	tmp_opt.saw_tstamp = 0;
677 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
678 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
679 
680 		if (tmp_opt.saw_tstamp) {
681 			tmp_opt.ts_recent = req->ts_recent;
682 			if (tmp_opt.rcv_tsecr) {
683 				if (inet_rsk(req)->tstamp_ok && !fastopen)
684 					tsecr_reject = !between(tmp_opt.rcv_tsecr,
685 							tcp_rsk(req)->snt_tsval_first,
686 							READ_ONCE(tcp_rsk(req)->snt_tsval_last));
687 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
688 			}
689 			/* We do not store true stamp, but it is not required,
690 			 * it can be estimated (approximately)
691 			 * from another data.
692 			 */
693 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
694 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
695 		}
696 	}
697 
698 	/* Check for pure retransmitted SYN. */
699 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
700 	    flg == TCP_FLAG_SYN &&
701 	    !paws_reject) {
702 		/*
703 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
704 		 * this case on figure 6 and figure 8, but formal
705 		 * protocol description says NOTHING.
706 		 * To be more exact, it says that we should send ACK,
707 		 * because this segment (at least, if it has no data)
708 		 * is out of window.
709 		 *
710 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
711 		 *  describe SYN-RECV state. All the description
712 		 *  is wrong, we cannot believe to it and should
713 		 *  rely only on common sense and implementation
714 		 *  experience.
715 		 *
716 		 * Enforce "SYN-ACK" according to figure 8, figure 6
717 		 * of RFC793, fixed by RFC1122.
718 		 *
719 		 * Note that even if there is new data in the SYN packet
720 		 * they will be thrown away too.
721 		 *
722 		 * Reset timer after retransmitting SYNACK, similar to
723 		 * the idea of fast retransmit in recovery.
724 		 */
725 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
726 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
727 					  &tcp_rsk(req)->last_oow_ack_time) &&
728 
729 		    !tcp_rtx_synack(sk, req)) {
730 			unsigned long expires = jiffies;
731 
732 			expires += reqsk_timeout(req, TCP_RTO_MAX);
733 			if (!fastopen)
734 				mod_timer_pending(&req->rsk_timer, expires);
735 			else
736 				req->rsk_timer.expires = expires;
737 		}
738 		return NULL;
739 	}
740 
741 	/* Further reproduces section "SEGMENT ARRIVES"
742 	   for state SYN-RECEIVED of RFC793.
743 	   It is broken, however, it does not work only
744 	   when SYNs are crossed.
745 
746 	   You would think that SYN crossing is impossible here, since
747 	   we should have a SYN_SENT socket (from connect()) on our end,
748 	   but this is not true if the crossed SYNs were sent to both
749 	   ends by a malicious third party.  We must defend against this,
750 	   and to do that we first verify the ACK (as per RFC793, page
751 	   36) and reset if it is invalid.  Is this a true full defense?
752 	   To convince ourselves, let us consider a way in which the ACK
753 	   test can still pass in this 'malicious crossed SYNs' case.
754 	   Malicious sender sends identical SYNs (and thus identical sequence
755 	   numbers) to both A and B:
756 
757 		A: gets SYN, seq=7
758 		B: gets SYN, seq=7
759 
760 	   By our good fortune, both A and B select the same initial
761 	   send sequence number of seven :-)
762 
763 		A: sends SYN|ACK, seq=7, ack_seq=8
764 		B: sends SYN|ACK, seq=7, ack_seq=8
765 
766 	   So we are now A eating this SYN|ACK, ACK test passes.  So
767 	   does sequence test, SYN is truncated, and thus we consider
768 	   it a bare ACK.
769 
770 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
771 	   bare ACK.  Otherwise, we create an established connection.  Both
772 	   ends (listening sockets) accept the new incoming connection and try
773 	   to talk to each other. 8-)
774 
775 	   Note: This case is both harmless, and rare.  Possibility is about the
776 	   same as us discovering intelligent life on another plant tomorrow.
777 
778 	   But generally, we should (RFC lies!) to accept ACK
779 	   from SYNACK both here and in tcp_rcv_state_process().
780 	   tcp_rcv_state_process() does not, hence, we do not too.
781 
782 	   Note that the case is absolutely generic:
783 	   we cannot optimize anything here without
784 	   violating protocol. All the checks must be made
785 	   before attempt to create socket.
786 	 */
787 
788 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
789 	 *                  and the incoming segment acknowledges something not yet
790 	 *                  sent (the segment carries an unacceptable ACK) ...
791 	 *                  a reset is sent."
792 	 *
793 	 * Invalid ACK: reset will be sent by listening socket.
794 	 * Note that the ACK validity check for a Fast Open socket is done
795 	 * elsewhere and is checked directly against the child socket rather
796 	 * than req because user data may have been sent out.
797 	 */
798 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
799 	    (TCP_SKB_CB(skb)->ack_seq !=
800 	     tcp_rsk(req)->snt_isn + 1))
801 		return sk;
802 
803 	/* RFC793: "first check sequence number". */
804 
805 	if (paws_reject || tsecr_reject ||
806 	    !tcp_in_window(TCP_SKB_CB(skb)->seq,
807 			   TCP_SKB_CB(skb)->end_seq,
808 			   tcp_rsk(req)->rcv_nxt,
809 			   tcp_rsk(req)->rcv_nxt +
810 			   tcp_synack_window(req))) {
811 		/* Out of window: send ACK and drop. */
812 		if (!(flg & TCP_FLAG_RST) &&
813 		    !tcp_oow_rate_limited(sock_net(sk), skb,
814 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
815 					  &tcp_rsk(req)->last_oow_ack_time))
816 			req->rsk_ops->send_ack(sk, skb, req);
817 		if (paws_reject) {
818 			SKB_DR_SET(*drop_reason, TCP_RFC7323_PAWS);
819 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
820 		} else if (tsecr_reject) {
821 			SKB_DR_SET(*drop_reason, TCP_RFC7323_TSECR);
822 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TSECRREJECTED);
823 		} else {
824 			SKB_DR_SET(*drop_reason, TCP_OVERWINDOW);
825 		}
826 		return NULL;
827 	}
828 
829 	/* In sequence, PAWS is OK. */
830 
831 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
832 		/* Truncate SYN, it is out of window starting
833 		   at tcp_rsk(req)->rcv_isn + 1. */
834 		flg &= ~TCP_FLAG_SYN;
835 	}
836 
837 	/* RFC793: "second check the RST bit" and
838 	 *	   "fourth, check the SYN bit"
839 	 */
840 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
841 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
842 		goto embryonic_reset;
843 	}
844 
845 	/* ACK sequence verified above, just make sure ACK is
846 	 * set.  If ACK not set, just silently drop the packet.
847 	 *
848 	 * XXX (TFO) - if we ever allow "data after SYN", the
849 	 * following check needs to be removed.
850 	 */
851 	if (!(flg & TCP_FLAG_ACK))
852 		return NULL;
853 
854 	/* For Fast Open no more processing is needed (sk is the
855 	 * child socket).
856 	 */
857 	if (fastopen)
858 		return sk;
859 
860 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
861 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
862 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
863 		inet_rsk(req)->acked = 1;
864 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
865 		return NULL;
866 	}
867 
868 	/* OK, ACK is valid, create big socket and
869 	 * feed this segment to it. It will repeat all
870 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
871 	 * ESTABLISHED STATE. If it will be dropped after
872 	 * socket is created, wait for troubles.
873 	 */
874 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
875 							 req, &own_req);
876 	if (!child)
877 		goto listen_overflow;
878 
879 	if (own_req && tmp_opt.saw_tstamp &&
880 	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
881 		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
882 
883 	if (own_req && rsk_drop_req(req)) {
884 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
885 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
886 		return child;
887 	}
888 
889 	sock_rps_save_rxhash(child, skb);
890 	tcp_synack_rtt_meas(child, req);
891 	*req_stolen = !own_req;
892 	return inet_csk_complete_hashdance(sk, child, req, own_req);
893 
894 listen_overflow:
895 	SKB_DR_SET(*drop_reason, TCP_LISTEN_OVERFLOW);
896 	if (sk != req->rsk_listener)
897 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
898 
899 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
900 		inet_rsk(req)->acked = 1;
901 		return NULL;
902 	}
903 
904 embryonic_reset:
905 	if (!(flg & TCP_FLAG_RST)) {
906 		/* Received a bad SYN pkt - for TFO We try not to reset
907 		 * the local connection unless it's really necessary to
908 		 * avoid becoming vulnerable to outside attack aiming at
909 		 * resetting legit local connections.
910 		 */
911 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
912 	} else if (fastopen) { /* received a valid RST pkt */
913 		reqsk_fastopen_remove(sk, req, true);
914 		tcp_reset(sk, skb);
915 	}
916 	if (!fastopen) {
917 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
918 
919 		if (unlinked)
920 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
921 		*req_stolen = !unlinked;
922 	}
923 	return NULL;
924 }
925 EXPORT_IPV6_MOD(tcp_check_req);
926 
927 /*
928  * Queue segment on the new socket if the new socket is active,
929  * otherwise we just shortcircuit this and continue with
930  * the new socket.
931  *
932  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
933  * when entering. But other states are possible due to a race condition
934  * where after __inet_lookup_established() fails but before the listener
935  * locked is obtained, other packets cause the same connection to
936  * be created.
937  */
938 
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)939 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
940 				       struct sk_buff *skb)
941 	__releases(&((child)->sk_lock.slock))
942 {
943 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
944 	int state = child->sk_state;
945 
946 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
947 	sk_mark_napi_id_set(child, skb);
948 
949 	tcp_segs_in(tcp_sk(child), skb);
950 	if (!sock_owned_by_user(child)) {
951 		reason = tcp_rcv_state_process(child, skb);
952 		/* Wakeup parent, send SIGIO */
953 		if (state == TCP_SYN_RECV && child->sk_state != state)
954 			parent->sk_data_ready(parent);
955 	} else {
956 		/* Alas, it is possible again, because we do lookup
957 		 * in main socket hash table and lock on listening
958 		 * socket does not protect us more.
959 		 */
960 		__sk_add_backlog(child, skb);
961 	}
962 
963 	bh_unlock_sock(child);
964 	sock_put(child);
965 	return reason;
966 }
967 EXPORT_IPV6_MOD(tcp_child_process);
968