xref: /qemu/target/arm/tcg/vfp_helper.c (revision df6fe2abf2e990f767ce755d426bc439c7bba336)
1 /*
2  * ARM VFP floating-point operations
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "cpu-features.h"
24 #include "fpu/softfloat.h"
25 #include "qemu/log.h"
26 
27 #define HELPER_H "tcg/helper.h"
28 #include "exec/helper-proto.h.inc"
29 
30 /*
31  * Set the float_status behaviour to match the Arm defaults:
32  *  * tininess-before-rounding
33  *  * 2-input NaN propagation prefers SNaN over QNaN, and then
34  *    operand A over operand B (see FPProcessNaNs() pseudocode)
35  *  * 3-input NaN propagation prefers SNaN over QNaN, and then
36  *    operand C over A over B (see FPProcessNaNs3() pseudocode,
37  *    but note that for QEMU muladd is a * b + c, whereas for
38  *    the pseudocode function the arguments are in the order c, a, b.
39  *  * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
40  *    and the input NaN if it is signalling
41  *  * Default NaN has sign bit clear, msb frac bit set
42  */
43 void arm_set_default_fp_behaviours(float_status *s)
44 {
45     set_float_detect_tininess(float_tininess_before_rounding, s);
46     set_float_ftz_detection(float_ftz_before_rounding, s);
47     set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
48     set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
49     set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
50     set_float_default_nan_pattern(0b01000000, s);
51 }
52 
53 /*
54  * Set the float_status behaviour to match the FEAT_AFP
55  * FPCR.AH=1 requirements:
56  *  * tininess-after-rounding
57  *  * 2-input NaN propagation prefers the first NaN
58  *  * 3-input NaN propagation prefers a over b over c
59  *  * 0 * Inf + NaN always returns the input NaN and doesn't
60  *    set Invalid for a QNaN
61  *  * default NaN has sign bit set, msb frac bit set
62  */
63 void arm_set_ah_fp_behaviours(float_status *s)
64 {
65     set_float_detect_tininess(float_tininess_after_rounding, s);
66     set_float_ftz_detection(float_ftz_after_rounding, s);
67     set_float_2nan_prop_rule(float_2nan_prop_ab, s);
68     set_float_3nan_prop_rule(float_3nan_prop_abc, s);
69     set_float_infzeronan_rule(float_infzeronan_dnan_never |
70                               float_infzeronan_suppress_invalid, s);
71     set_float_default_nan_pattern(0b11000000, s);
72 }
73 
74 /* Convert host exception flags to vfp form.  */
75 static inline uint32_t vfp_exceptbits_from_host(int host_bits, bool ah)
76 {
77     uint32_t target_bits = 0;
78 
79     if (host_bits & float_flag_invalid) {
80         target_bits |= FPSR_IOC;
81     }
82     if (host_bits & float_flag_divbyzero) {
83         target_bits |= FPSR_DZC;
84     }
85     if (host_bits & float_flag_overflow) {
86         target_bits |= FPSR_OFC;
87     }
88     if (host_bits & (float_flag_underflow | float_flag_output_denormal_flushed)) {
89         target_bits |= FPSR_UFC;
90     }
91     if (host_bits & float_flag_inexact) {
92         target_bits |= FPSR_IXC;
93     }
94     if (host_bits & float_flag_input_denormal_flushed) {
95         target_bits |= FPSR_IDC;
96     }
97     /*
98      * With FPCR.AH, IDC is set when an input denormal is used,
99      * and flushing an output denormal to zero sets both IXC and UFC.
100      */
101     if (ah && (host_bits & float_flag_input_denormal_used)) {
102         target_bits |= FPSR_IDC;
103     }
104     if (ah && (host_bits & float_flag_output_denormal_flushed)) {
105         target_bits |= FPSR_IXC;
106     }
107     return target_bits;
108 }
109 
110 uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
111 {
112     uint32_t a32_flags = 0, a64_flags = 0;
113 
114     a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A32]);
115     a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_STD]);
116     /* FZ16 does not generate an input denormal exception.  */
117     a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A32_F16])
118           & ~float_flag_input_denormal_flushed);
119     a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_STD_F16])
120           & ~float_flag_input_denormal_flushed);
121 
122     a64_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A64]);
123     a64_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A64_F16])
124           & ~(float_flag_input_denormal_flushed | float_flag_input_denormal_used));
125     /*
126      * We do not merge in flags from FPST_{AH,ZA} or FPST_{AH,ZA}_F16, because
127      * they are used for insns that must not set the cumulative exception bits.
128      */
129 
130     /*
131      * Flushing an input denormal *only* because FPCR.FIZ == 1 does
132      * not set FPSR.IDC; if FPCR.FZ is also set then this takes
133      * precedence and IDC is set (see the FPUnpackBase pseudocode).
134      * So squash it unless (FPCR.AH == 0 && FPCR.FZ == 1).
135      * We only do this for the a64 flags because FIZ has no effect
136      * on AArch32 even if it is set.
137      */
138     if ((env->vfp.fpcr & (FPCR_FZ | FPCR_AH)) != FPCR_FZ) {
139         a64_flags &= ~float_flag_input_denormal_flushed;
140     }
141     return vfp_exceptbits_from_host(a64_flags, env->vfp.fpcr & FPCR_AH) |
142         vfp_exceptbits_from_host(a32_flags, false);
143 }
144 
145 void vfp_clear_float_status_exc_flags(CPUARMState *env)
146 {
147     /*
148      * Clear out all the exception-flag information in the float_status
149      * values. The caller should have arranged for env->vfp.fpsr to
150      * be the architecturally up-to-date exception flag information first.
151      */
152     set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32]);
153     set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64]);
154     set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32_F16]);
155     set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64_F16]);
156     set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD]);
157     set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD_F16]);
158     set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH]);
159     set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH_F16]);
160 }
161 
162 static void vfp_sync_and_clear_float_status_exc_flags(CPUARMState *env)
163 {
164     /*
165      * Synchronize any pending exception-flag information in the
166      * float_status values into env->vfp.fpsr, and then clear out
167      * the float_status data.
168      */
169     env->vfp.fpsr |= vfp_get_fpsr_from_host(env);
170     vfp_clear_float_status_exc_flags(env);
171 }
172 
173 void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
174 {
175     uint64_t changed = env->vfp.fpcr;
176 
177     changed ^= val;
178     changed &= mask;
179     if (changed & (3 << 22)) {
180         int i = (val >> 22) & 3;
181         switch (i) {
182         case FPROUNDING_TIEEVEN:
183             i = float_round_nearest_even;
184             break;
185         case FPROUNDING_POSINF:
186             i = float_round_up;
187             break;
188         case FPROUNDING_NEGINF:
189             i = float_round_down;
190             break;
191         case FPROUNDING_ZERO:
192             i = float_round_to_zero;
193             break;
194         }
195         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32]);
196         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64]);
197         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32_F16]);
198         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64_F16]);
199         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_ZA]);
200         set_float_rounding_mode(i, &env->vfp.fp_status[FPST_ZA_F16]);
201     }
202     if (changed & FPCR_FZ16) {
203         bool ftz_enabled = val & FPCR_FZ16;
204         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
205         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
206         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
207         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
208         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_ZA_F16]);
209         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
210         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
211         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
212         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
213         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_ZA_F16]);
214     }
215     if (changed & FPCR_FZ) {
216         bool ftz_enabled = val & FPCR_FZ;
217         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
218         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64]);
219         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_ZA]);
220         /* FIZ is A64 only so FZ always makes A32 code flush inputs to zero */
221         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
222     }
223     if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
224         /*
225          * A64: Flush denormalized inputs to zero if FPCR.FIZ = 1, or
226          * both FPCR.AH = 0 and FPCR.FZ = 1.
227          */
228         bool fitz_enabled = (val & FPCR_FIZ) ||
229             (val & (FPCR_FZ | FPCR_AH)) == FPCR_FZ;
230         set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_A64]);
231         set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_ZA]);
232     }
233     if (changed & FPCR_DN) {
234         bool dnan_enabled = val & FPCR_DN;
235         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32]);
236         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64]);
237         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32_F16]);
238         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64_F16]);
239         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH]);
240         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH_F16]);
241     }
242     if (changed & FPCR_AH) {
243         bool ah_enabled = val & FPCR_AH;
244 
245         if (ah_enabled) {
246             /* Change behaviours for A64 FP operations */
247             arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
248             arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
249             arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_ZA]);
250             arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_ZA_F16]);
251         } else {
252             arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
253             arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
254             arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_ZA]);
255             arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_ZA_F16]);
256         }
257     }
258     /*
259      * If any bits changed that we look at in vfp_get_fpsr_from_host(),
260      * we must sync the float_status flags into vfp.fpsr now (under the
261      * old regime) before we update vfp.fpcr.
262      */
263     if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
264         vfp_sync_and_clear_float_status_exc_flags(env);
265     }
266 }
267 
268 /*
269  * VFP support.  We follow the convention used for VFP instructions:
270  * Single precision routines have a "s" suffix, double precision a
271  * "d" suffix.
272  */
273 
274 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
275 
276 #define VFP_BINOP(name) \
277 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, float_status *fpst) \
278 { \
279     return float16_ ## name(a, b, fpst); \
280 } \
281 float32 VFP_HELPER(name, s)(float32 a, float32 b, float_status *fpst) \
282 { \
283     return float32_ ## name(a, b, fpst); \
284 } \
285 float64 VFP_HELPER(name, d)(float64 a, float64 b, float_status *fpst) \
286 { \
287     return float64_ ## name(a, b, fpst); \
288 }
289 VFP_BINOP(add)
290 VFP_BINOP(sub)
291 VFP_BINOP(mul)
292 VFP_BINOP(div)
293 VFP_BINOP(min)
294 VFP_BINOP(max)
295 VFP_BINOP(minnum)
296 VFP_BINOP(maxnum)
297 #undef VFP_BINOP
298 
299 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, float_status *fpst)
300 {
301     return float16_sqrt(a, fpst);
302 }
303 
304 float32 VFP_HELPER(sqrt, s)(float32 a, float_status *fpst)
305 {
306     return float32_sqrt(a, fpst);
307 }
308 
309 float64 VFP_HELPER(sqrt, d)(float64 a, float_status *fpst)
310 {
311     return float64_sqrt(a, fpst);
312 }
313 
314 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
315 {
316     uint32_t flags;
317     switch (cmp) {
318     case float_relation_equal:
319         flags = 0x6;
320         break;
321     case float_relation_less:
322         flags = 0x8;
323         break;
324     case float_relation_greater:
325         flags = 0x2;
326         break;
327     case float_relation_unordered:
328         flags = 0x3;
329         break;
330     default:
331         g_assert_not_reached();
332     }
333     env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
334 }
335 
336 /* XXX: check quiet/signaling case */
337 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
338 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
339 { \
340     softfloat_to_vfp_compare(env, \
341         FLOATTYPE ## _compare_quiet(a, b, &env->vfp.fp_status[FPST])); \
342 } \
343 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
344 { \
345     softfloat_to_vfp_compare(env, \
346         FLOATTYPE ## _compare(a, b, &env->vfp.fp_status[FPST])); \
347 }
348 DO_VFP_cmp(h, float16, dh_ctype_f16, FPST_A32_F16)
349 DO_VFP_cmp(s, float32, float32, FPST_A32)
350 DO_VFP_cmp(d, float64, float64, FPST_A32)
351 #undef DO_VFP_cmp
352 
353 /* Integer to float and float to integer conversions */
354 
355 #define CONV_ITOF(name, ftype, fsz, sign)                           \
356 ftype HELPER(name)(uint32_t x, float_status *fpst)                  \
357 {                                                                   \
358     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
359 }
360 
361 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
362 sign##int32_t HELPER(name)(ftype x, float_status *fpst)         \
363 {                                                               \
364     if (float##fsz##_is_any_nan(x)) {                           \
365         float_raise(float_flag_invalid, fpst);                  \
366         return 0;                                               \
367     }                                                           \
368     return float##fsz##_to_##sign##int32##round(x, fpst);       \
369 }
370 
371 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
372     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
373     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
374     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
375 
376 FLOAT_CONVS(si, h, uint32_t, 16, )
377 FLOAT_CONVS(si, s, float32, 32, )
378 FLOAT_CONVS(si, d, float64, 64, )
379 FLOAT_CONVS(ui, h, uint32_t, 16, u)
380 FLOAT_CONVS(ui, s, float32, 32, u)
381 FLOAT_CONVS(ui, d, float64, 64, u)
382 
383 #undef CONV_ITOF
384 #undef CONV_FTOI
385 #undef FLOAT_CONVS
386 
387 /* floating point conversion */
388 float64 VFP_HELPER(fcvtd, s)(float32 x, float_status *status)
389 {
390     return float32_to_float64(x, status);
391 }
392 
393 float32 VFP_HELPER(fcvts, d)(float64 x, float_status *status)
394 {
395     return float64_to_float32(x, status);
396 }
397 
398 uint32_t HELPER(bfcvt)(float32 x, float_status *status)
399 {
400     return float32_to_bfloat16(x, status);
401 }
402 
403 uint32_t HELPER(bfcvt_pair)(uint64_t pair, float_status *status)
404 {
405     bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
406     bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
407     return deposit32(lo, 16, 16, hi);
408 }
409 
410 /*
411  * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
412  * must always round-to-nearest; the AArch64 ones honour the FPSCR
413  * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
414  * round-to-nearest so either helper will work.) AArch32 float-to-fix
415  * must round-to-zero.
416  */
417 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
418 ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
419                                 float_status *fpst)                    \
420 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpst); }
421 
422 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
423     ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
424                                                      uint32_t shift,   \
425                                                      float_status *fpst) \
426     {                                                                  \
427         ftype ret;                                                     \
428         FloatRoundMode oldmode = fpst->float_rounding_mode;            \
429         fpst->float_rounding_mode = float_round_nearest_even;          \
430         ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpst);       \
431         fpst->float_rounding_mode = oldmode;                           \
432         return ret;                                                    \
433     }
434 
435 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
436 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
437                                             float_status *fpst)           \
438 {                                                                         \
439     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
440         float_raise(float_flag_invalid, fpst);                            \
441         return 0;                                                         \
442     }                                                                     \
443     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
444 }
445 
446 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
447 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
448 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
449 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
450                          float_round_to_zero, _round_to_zero)    \
451 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
452                          get_float_rounding_mode(fpst), )
453 
454 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
455 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
456 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
457                          get_float_rounding_mode(fpst), )
458 
459 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
460 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
461 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
462 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
463 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
464 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
465 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
466 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
467 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
468 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
469 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
470 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
471 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
472 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
473 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
474 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
475 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
476 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
477 VFP_CONV_FLOAT_FIX_ROUND(sq, d, 64, float64, 64, int64,
478                          float_round_to_zero, _round_to_zero)
479 VFP_CONV_FLOAT_FIX_ROUND(uq, d, 64, float64, 64, uint64,
480                          float_round_to_zero, _round_to_zero)
481 
482 #undef VFP_CONV_FIX
483 #undef VFP_CONV_FIX_FLOAT
484 #undef VFP_CONV_FLOAT_FIX_ROUND
485 #undef VFP_CONV_FIX_A64
486 
487 /* Set the current fp rounding mode and return the old one.
488  * The argument is a softfloat float_round_ value.
489  */
490 uint32_t HELPER(set_rmode)(uint32_t rmode, float_status *fp_status)
491 {
492     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
493     set_float_rounding_mode(rmode, fp_status);
494 
495     return prev_rmode;
496 }
497 
498 /* Half precision conversions.  */
499 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, float_status *fpst,
500                                     uint32_t ahp_mode)
501 {
502     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
503      * it would affect flushing input denormals.
504      */
505     bool save = get_flush_inputs_to_zero(fpst);
506     set_flush_inputs_to_zero(false, fpst);
507     float32 r = float16_to_float32(a, !ahp_mode, fpst);
508     set_flush_inputs_to_zero(save, fpst);
509     return r;
510 }
511 
512 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, float_status *fpst,
513                                      uint32_t ahp_mode)
514 {
515     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
516      * it would affect flushing output denormals.
517      */
518     bool save = get_flush_to_zero(fpst);
519     set_flush_to_zero(false, fpst);
520     float16 r = float32_to_float16(a, !ahp_mode, fpst);
521     set_flush_to_zero(save, fpst);
522     return r;
523 }
524 
525 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, float_status *fpst,
526                                     uint32_t ahp_mode)
527 {
528     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
529      * it would affect flushing input denormals.
530      */
531     bool save = get_flush_inputs_to_zero(fpst);
532     set_flush_inputs_to_zero(false, fpst);
533     float64 r = float16_to_float64(a, !ahp_mode, fpst);
534     set_flush_inputs_to_zero(save, fpst);
535     return r;
536 }
537 
538 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, float_status *fpst,
539                                      uint32_t ahp_mode)
540 {
541     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
542      * it would affect flushing output denormals.
543      */
544     bool save = get_flush_to_zero(fpst);
545     set_flush_to_zero(false, fpst);
546     float16 r = float64_to_float16(a, !ahp_mode, fpst);
547     set_flush_to_zero(save, fpst);
548     return r;
549 }
550 
551 /* NEON helpers.  */
552 
553 /* Constants 256 and 512 are used in some helpers; we avoid relying on
554  * int->float conversions at run-time.  */
555 #define float64_256 make_float64(0x4070000000000000LL)
556 #define float64_512 make_float64(0x4080000000000000LL)
557 #define float16_maxnorm make_float16(0x7bff)
558 #define float32_maxnorm make_float32(0x7f7fffff)
559 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
560 
561 /* Reciprocal functions
562  *
563  * The algorithm that must be used to calculate the estimate
564  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
565  */
566 
567 /* See RecipEstimate()
568  *
569  * input is a 9 bit fixed point number
570  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
571  * result range 256 .. 511 for a number from 1.0 to 511/256.
572  */
573 
574 static int recip_estimate(int input)
575 {
576     int a, b, r;
577     assert(256 <= input && input < 512);
578     a = (input * 2) + 1;
579     b = (1 << 19) / a;
580     r = (b + 1) >> 1;
581     assert(256 <= r && r < 512);
582     return r;
583 }
584 
585 /*
586  * Increased precision version:
587  * input is a 13 bit fixed point number
588  * input range 2048 .. 4095 for a number from 0.5 <= x < 1.0.
589  * result range 4096 .. 8191 for a number from 1.0 to 2.0
590  */
591 static int recip_estimate_incprec(int input)
592 {
593     int a, b, r;
594     assert(2048 <= input && input < 4096);
595     a = (input * 2) + 1;
596     /*
597      * The pseudocode expresses this as an operation on infinite
598      * precision reals where it calculates 2^25 / a and then looks
599      * at the error between that and the rounded-down-to-integer
600      * value to see if it should instead round up. We instead
601      * follow the same approach as the pseudocode for the 8-bit
602      * precision version, and calculate (2 * (2^25 / a)) as an
603      * integer so we can do the "add one and halve" to round it.
604      * So the 1 << 26 here is correct.
605      */
606     b = (1 << 26) / a;
607     r = (b + 1) >> 1;
608     assert(4096 <= r && r < 8192);
609     return r;
610 }
611 
612 /*
613  * Common wrapper to call recip_estimate
614  *
615  * The parameters are exponent and 64 bit fraction (without implicit
616  * bit) where the binary point is nominally at bit 52. Returns a
617  * float64 which can then be rounded to the appropriate size by the
618  * callee.
619  */
620 
621 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac,
622                                     bool increasedprecision)
623 {
624     uint32_t scaled, estimate;
625     uint64_t result_frac;
626     int result_exp;
627 
628     /* Handle sub-normals */
629     if (*exp == 0) {
630         if (extract64(frac, 51, 1) == 0) {
631             *exp = -1;
632             frac <<= 2;
633         } else {
634             frac <<= 1;
635         }
636     }
637 
638     if (increasedprecision) {
639         /* scaled = UInt('1':fraction<51:41>) */
640         scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
641         estimate = recip_estimate_incprec(scaled);
642     } else {
643         /* scaled = UInt('1':fraction<51:44>) */
644         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
645         estimate = recip_estimate(scaled);
646     }
647 
648     result_exp = exp_off - *exp;
649     if (increasedprecision) {
650         result_frac = deposit64(0, 40, 12, estimate);
651     } else {
652         result_frac = deposit64(0, 44, 8, estimate);
653     }
654     if (result_exp == 0) {
655         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
656     } else if (result_exp == -1) {
657         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
658         result_exp = 0;
659     }
660 
661     *exp = result_exp;
662 
663     return result_frac;
664 }
665 
666 static bool round_to_inf(float_status *fpst, bool sign_bit)
667 {
668     switch (fpst->float_rounding_mode) {
669     case float_round_nearest_even: /* Round to Nearest */
670         return true;
671     case float_round_up: /* Round to +Inf */
672         return !sign_bit;
673     case float_round_down: /* Round to -Inf */
674         return sign_bit;
675     case float_round_to_zero: /* Round to Zero */
676         return false;
677     default:
678         g_assert_not_reached();
679     }
680 }
681 
682 uint32_t HELPER(recpe_f16)(uint32_t input, float_status *fpst)
683 {
684     float16 f16 = float16_squash_input_denormal(input, fpst);
685     uint32_t f16_val = float16_val(f16);
686     uint32_t f16_sign = float16_is_neg(f16);
687     int f16_exp = extract32(f16_val, 10, 5);
688     uint32_t f16_frac = extract32(f16_val, 0, 10);
689     uint64_t f64_frac;
690 
691     if (float16_is_any_nan(f16)) {
692         float16 nan = f16;
693         if (float16_is_signaling_nan(f16, fpst)) {
694             float_raise(float_flag_invalid, fpst);
695             if (!fpst->default_nan_mode) {
696                 nan = float16_silence_nan(f16, fpst);
697             }
698         }
699         if (fpst->default_nan_mode) {
700             nan =  float16_default_nan(fpst);
701         }
702         return nan;
703     } else if (float16_is_infinity(f16)) {
704         return float16_set_sign(float16_zero, float16_is_neg(f16));
705     } else if (float16_is_zero(f16)) {
706         float_raise(float_flag_divbyzero, fpst);
707         return float16_set_sign(float16_infinity, float16_is_neg(f16));
708     } else if (float16_abs(f16) < (1 << 8)) {
709         /* Abs(value) < 2.0^-16 */
710         float_raise(float_flag_overflow | float_flag_inexact, fpst);
711         if (round_to_inf(fpst, f16_sign)) {
712             return float16_set_sign(float16_infinity, f16_sign);
713         } else {
714             return float16_set_sign(float16_maxnorm, f16_sign);
715         }
716     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
717         float_raise(float_flag_underflow, fpst);
718         return float16_set_sign(float16_zero, float16_is_neg(f16));
719     }
720 
721     f64_frac = call_recip_estimate(&f16_exp, 29,
722                                    ((uint64_t) f16_frac) << (52 - 10), false);
723 
724     /* result = sign : result_exp<4:0> : fraction<51:42> */
725     f16_val = deposit32(0, 15, 1, f16_sign);
726     f16_val = deposit32(f16_val, 10, 5, f16_exp);
727     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
728     return make_float16(f16_val);
729 }
730 
731 /*
732  * FEAT_RPRES means the f32 FRECPE has an "increased precision" variant
733  * which is used when FPCR.AH == 1.
734  */
735 static float32 do_recpe_f32(float32 input, float_status *fpst, bool rpres)
736 {
737     float32 f32 = float32_squash_input_denormal(input, fpst);
738     uint32_t f32_val = float32_val(f32);
739     bool f32_sign = float32_is_neg(f32);
740     int f32_exp = extract32(f32_val, 23, 8);
741     uint32_t f32_frac = extract32(f32_val, 0, 23);
742     uint64_t f64_frac;
743 
744     if (float32_is_any_nan(f32)) {
745         float32 nan = f32;
746         if (float32_is_signaling_nan(f32, fpst)) {
747             float_raise(float_flag_invalid, fpst);
748             if (!fpst->default_nan_mode) {
749                 nan = float32_silence_nan(f32, fpst);
750             }
751         }
752         if (fpst->default_nan_mode) {
753             nan =  float32_default_nan(fpst);
754         }
755         return nan;
756     } else if (float32_is_infinity(f32)) {
757         return float32_set_sign(float32_zero, float32_is_neg(f32));
758     } else if (float32_is_zero(f32)) {
759         float_raise(float_flag_divbyzero, fpst);
760         return float32_set_sign(float32_infinity, float32_is_neg(f32));
761     } else if (float32_abs(f32) < (1ULL << 21)) {
762         /* Abs(value) < 2.0^-128 */
763         float_raise(float_flag_overflow | float_flag_inexact, fpst);
764         if (round_to_inf(fpst, f32_sign)) {
765             return float32_set_sign(float32_infinity, f32_sign);
766         } else {
767             return float32_set_sign(float32_maxnorm, f32_sign);
768         }
769     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
770         float_raise(float_flag_underflow, fpst);
771         return float32_set_sign(float32_zero, float32_is_neg(f32));
772     }
773 
774     f64_frac = call_recip_estimate(&f32_exp, 253,
775                                    ((uint64_t) f32_frac) << (52 - 23), rpres);
776 
777     /* result = sign : result_exp<7:0> : fraction<51:29> */
778     f32_val = deposit32(0, 31, 1, f32_sign);
779     f32_val = deposit32(f32_val, 23, 8, f32_exp);
780     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
781     return make_float32(f32_val);
782 }
783 
784 float32 HELPER(recpe_f32)(float32 input, float_status *fpst)
785 {
786     return do_recpe_f32(input, fpst, false);
787 }
788 
789 float32 HELPER(recpe_rpres_f32)(float32 input, float_status *fpst)
790 {
791     return do_recpe_f32(input, fpst, true);
792 }
793 
794 float64 HELPER(recpe_f64)(float64 input, float_status *fpst)
795 {
796     float64 f64 = float64_squash_input_denormal(input, fpst);
797     uint64_t f64_val = float64_val(f64);
798     bool f64_sign = float64_is_neg(f64);
799     int f64_exp = extract64(f64_val, 52, 11);
800     uint64_t f64_frac = extract64(f64_val, 0, 52);
801 
802     /* Deal with any special cases */
803     if (float64_is_any_nan(f64)) {
804         float64 nan = f64;
805         if (float64_is_signaling_nan(f64, fpst)) {
806             float_raise(float_flag_invalid, fpst);
807             if (!fpst->default_nan_mode) {
808                 nan = float64_silence_nan(f64, fpst);
809             }
810         }
811         if (fpst->default_nan_mode) {
812             nan =  float64_default_nan(fpst);
813         }
814         return nan;
815     } else if (float64_is_infinity(f64)) {
816         return float64_set_sign(float64_zero, float64_is_neg(f64));
817     } else if (float64_is_zero(f64)) {
818         float_raise(float_flag_divbyzero, fpst);
819         return float64_set_sign(float64_infinity, float64_is_neg(f64));
820     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
821         /* Abs(value) < 2.0^-1024 */
822         float_raise(float_flag_overflow | float_flag_inexact, fpst);
823         if (round_to_inf(fpst, f64_sign)) {
824             return float64_set_sign(float64_infinity, f64_sign);
825         } else {
826             return float64_set_sign(float64_maxnorm, f64_sign);
827         }
828     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
829         float_raise(float_flag_underflow, fpst);
830         return float64_set_sign(float64_zero, float64_is_neg(f64));
831     }
832 
833     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac, false);
834 
835     /* result = sign : result_exp<10:0> : fraction<51:0>; */
836     f64_val = deposit64(0, 63, 1, f64_sign);
837     f64_val = deposit64(f64_val, 52, 11, f64_exp);
838     f64_val = deposit64(f64_val, 0, 52, f64_frac);
839     return make_float64(f64_val);
840 }
841 
842 /* The algorithm that must be used to calculate the estimate
843  * is specified by the ARM ARM.
844  */
845 
846 static int do_recip_sqrt_estimate(int a)
847 {
848     int b, estimate;
849 
850     assert(128 <= a && a < 512);
851     if (a < 256) {
852         a = a * 2 + 1;
853     } else {
854         a = (a >> 1) << 1;
855         a = (a + 1) * 2;
856     }
857     b = 512;
858     while (a * (b + 1) * (b + 1) < (1 << 28)) {
859         b += 1;
860     }
861     estimate = (b + 1) / 2;
862     assert(256 <= estimate && estimate < 512);
863 
864     return estimate;
865 }
866 
867 static int do_recip_sqrt_estimate_incprec(int a)
868 {
869     /*
870      * The Arm ARM describes the 12-bit precision version of RecipSqrtEstimate
871      * in terms of an infinite-precision floating point calculation of a
872      * square root. We implement this using the same kind of pure integer
873      * algorithm as the 8-bit mantissa, to get the same bit-for-bit result.
874      */
875     int64_t b, estimate;
876 
877     assert(1024 <= a && a < 4096);
878     if (a < 2048) {
879         a = a * 2 + 1;
880     } else {
881         a = (a >> 1) << 1;
882         a = (a + 1) * 2;
883     }
884     b = 8192;
885     while (a * (b + 1) * (b + 1) < (1ULL << 39)) {
886         b += 1;
887     }
888     estimate = (b + 1) / 2;
889 
890     assert(4096 <= estimate && estimate < 8192);
891 
892     return estimate;
893 }
894 
895 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac,
896                                     bool increasedprecision)
897 {
898     int estimate;
899     uint32_t scaled;
900 
901     if (*exp == 0) {
902         while (extract64(frac, 51, 1) == 0) {
903             frac = frac << 1;
904             *exp -= 1;
905         }
906         frac = extract64(frac, 0, 51) << 1;
907     }
908 
909     if (increasedprecision) {
910         if (*exp & 1) {
911             /* scaled = UInt('01':fraction<51:42>) */
912             scaled = deposit32(1 << 10, 0, 10, extract64(frac, 42, 10));
913         } else {
914             /* scaled = UInt('1':fraction<51:41>) */
915             scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
916         }
917         estimate = do_recip_sqrt_estimate_incprec(scaled);
918     } else {
919         if (*exp & 1) {
920             /* scaled = UInt('01':fraction<51:45>) */
921             scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
922         } else {
923             /* scaled = UInt('1':fraction<51:44>) */
924             scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
925         }
926         estimate = do_recip_sqrt_estimate(scaled);
927     }
928 
929     *exp = (exp_off - *exp) / 2;
930     if (increasedprecision) {
931         return extract64(estimate, 0, 12) << 40;
932     } else {
933         return extract64(estimate, 0, 8) << 44;
934     }
935 }
936 
937 uint32_t HELPER(rsqrte_f16)(uint32_t input, float_status *s)
938 {
939     float16 f16 = float16_squash_input_denormal(input, s);
940     uint16_t val = float16_val(f16);
941     bool f16_sign = float16_is_neg(f16);
942     int f16_exp = extract32(val, 10, 5);
943     uint16_t f16_frac = extract32(val, 0, 10);
944     uint64_t f64_frac;
945 
946     if (float16_is_any_nan(f16)) {
947         float16 nan = f16;
948         if (float16_is_signaling_nan(f16, s)) {
949             float_raise(float_flag_invalid, s);
950             if (!s->default_nan_mode) {
951                 nan = float16_silence_nan(f16, s);
952             }
953         }
954         if (s->default_nan_mode) {
955             nan =  float16_default_nan(s);
956         }
957         return nan;
958     } else if (float16_is_zero(f16)) {
959         float_raise(float_flag_divbyzero, s);
960         return float16_set_sign(float16_infinity, f16_sign);
961     } else if (f16_sign) {
962         float_raise(float_flag_invalid, s);
963         return float16_default_nan(s);
964     } else if (float16_is_infinity(f16)) {
965         return float16_zero;
966     }
967 
968     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
969      * preserving the parity of the exponent.  */
970 
971     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
972 
973     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac, false);
974 
975     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
976     val = deposit32(0, 15, 1, f16_sign);
977     val = deposit32(val, 10, 5, f16_exp);
978     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
979     return make_float16(val);
980 }
981 
982 /*
983  * FEAT_RPRES means the f32 FRSQRTE has an "increased precision" variant
984  * which is used when FPCR.AH == 1.
985  */
986 static float32 do_rsqrte_f32(float32 input, float_status *s, bool rpres)
987 {
988     float32 f32 = float32_squash_input_denormal(input, s);
989     uint32_t val = float32_val(f32);
990     uint32_t f32_sign = float32_is_neg(f32);
991     int f32_exp = extract32(val, 23, 8);
992     uint32_t f32_frac = extract32(val, 0, 23);
993     uint64_t f64_frac;
994 
995     if (float32_is_any_nan(f32)) {
996         float32 nan = f32;
997         if (float32_is_signaling_nan(f32, s)) {
998             float_raise(float_flag_invalid, s);
999             if (!s->default_nan_mode) {
1000                 nan = float32_silence_nan(f32, s);
1001             }
1002         }
1003         if (s->default_nan_mode) {
1004             nan =  float32_default_nan(s);
1005         }
1006         return nan;
1007     } else if (float32_is_zero(f32)) {
1008         float_raise(float_flag_divbyzero, s);
1009         return float32_set_sign(float32_infinity, float32_is_neg(f32));
1010     } else if (float32_is_neg(f32)) {
1011         float_raise(float_flag_invalid, s);
1012         return float32_default_nan(s);
1013     } else if (float32_is_infinity(f32)) {
1014         return float32_zero;
1015     }
1016 
1017     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
1018      * preserving the parity of the exponent.  */
1019 
1020     f64_frac = ((uint64_t) f32_frac) << 29;
1021 
1022     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac, rpres);
1023 
1024     /*
1025      * result = sign : result_exp<7:0> : estimate<7:0> : Zeros(15)
1026      * or for increased precision
1027      * result = sign : result_exp<7:0> : estimate<11:0> : Zeros(11)
1028      */
1029     val = deposit32(0, 31, 1, f32_sign);
1030     val = deposit32(val, 23, 8, f32_exp);
1031     if (rpres) {
1032         val = deposit32(val, 11, 12, extract64(f64_frac, 52 - 12, 12));
1033     } else {
1034         val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
1035     }
1036     return make_float32(val);
1037 }
1038 
1039 float32 HELPER(rsqrte_f32)(float32 input, float_status *s)
1040 {
1041     return do_rsqrte_f32(input, s, false);
1042 }
1043 
1044 float32 HELPER(rsqrte_rpres_f32)(float32 input, float_status *s)
1045 {
1046     return do_rsqrte_f32(input, s, true);
1047 }
1048 
1049 float64 HELPER(rsqrte_f64)(float64 input, float_status *s)
1050 {
1051     float64 f64 = float64_squash_input_denormal(input, s);
1052     uint64_t val = float64_val(f64);
1053     bool f64_sign = float64_is_neg(f64);
1054     int f64_exp = extract64(val, 52, 11);
1055     uint64_t f64_frac = extract64(val, 0, 52);
1056 
1057     if (float64_is_any_nan(f64)) {
1058         float64 nan = f64;
1059         if (float64_is_signaling_nan(f64, s)) {
1060             float_raise(float_flag_invalid, s);
1061             if (!s->default_nan_mode) {
1062                 nan = float64_silence_nan(f64, s);
1063             }
1064         }
1065         if (s->default_nan_mode) {
1066             nan =  float64_default_nan(s);
1067         }
1068         return nan;
1069     } else if (float64_is_zero(f64)) {
1070         float_raise(float_flag_divbyzero, s);
1071         return float64_set_sign(float64_infinity, float64_is_neg(f64));
1072     } else if (float64_is_neg(f64)) {
1073         float_raise(float_flag_invalid, s);
1074         return float64_default_nan(s);
1075     } else if (float64_is_infinity(f64)) {
1076         return float64_zero;
1077     }
1078 
1079     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac, false);
1080 
1081     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1082     val = deposit64(0, 61, 1, f64_sign);
1083     val = deposit64(val, 52, 11, f64_exp);
1084     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
1085     return make_float64(val);
1086 }
1087 
1088 uint32_t HELPER(recpe_u32)(uint32_t a)
1089 {
1090     int input, estimate;
1091 
1092     if ((a & 0x80000000) == 0) {
1093         return 0xffffffff;
1094     }
1095 
1096     input = extract32(a, 23, 9);
1097     estimate = recip_estimate(input);
1098 
1099     return deposit32(0, (32 - 9), 9, estimate);
1100 }
1101 
1102 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1103 {
1104     int estimate;
1105 
1106     if ((a & 0xc0000000) == 0) {
1107         return 0xffffffff;
1108     }
1109 
1110     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1111 
1112     return deposit32(0, 23, 9, estimate);
1113 }
1114 
1115 /* VFPv4 fused multiply-accumulate */
1116 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1117                                    dh_ctype_f16 c, float_status *fpst)
1118 {
1119     return float16_muladd(a, b, c, 0, fpst);
1120 }
1121 
1122 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c,
1123                               float_status *fpst)
1124 {
1125     return float32_muladd(a, b, c, 0, fpst);
1126 }
1127 
1128 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c,
1129                               float_status *fpst)
1130 {
1131     return float64_muladd(a, b, c, 0, fpst);
1132 }
1133 
1134 /* ARMv8 round to integral */
1135 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, float_status *fp_status)
1136 {
1137     return float16_round_to_int(x, fp_status);
1138 }
1139 
1140 float32 HELPER(rints_exact)(float32 x, float_status *fp_status)
1141 {
1142     return float32_round_to_int(x, fp_status);
1143 }
1144 
1145 float64 HELPER(rintd_exact)(float64 x, float_status *fp_status)
1146 {
1147     return float64_round_to_int(x, fp_status);
1148 }
1149 
1150 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, float_status *fp_status)
1151 {
1152     int old_flags = get_float_exception_flags(fp_status), new_flags;
1153     float16 ret;
1154 
1155     ret = float16_round_to_int(x, fp_status);
1156 
1157     /* Suppress any inexact exceptions the conversion produced */
1158     if (!(old_flags & float_flag_inexact)) {
1159         new_flags = get_float_exception_flags(fp_status);
1160         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1161     }
1162 
1163     return ret;
1164 }
1165 
1166 float32 HELPER(rints)(float32 x, float_status *fp_status)
1167 {
1168     int old_flags = get_float_exception_flags(fp_status), new_flags;
1169     float32 ret;
1170 
1171     ret = float32_round_to_int(x, fp_status);
1172 
1173     /* Suppress any inexact exceptions the conversion produced */
1174     if (!(old_flags & float_flag_inexact)) {
1175         new_flags = get_float_exception_flags(fp_status);
1176         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1177     }
1178 
1179     return ret;
1180 }
1181 
1182 float64 HELPER(rintd)(float64 x, float_status *fp_status)
1183 {
1184     int old_flags = get_float_exception_flags(fp_status), new_flags;
1185     float64 ret;
1186 
1187     ret = float64_round_to_int(x, fp_status);
1188 
1189     /* Suppress any inexact exceptions the conversion produced */
1190     if (!(old_flags & float_flag_inexact)) {
1191         new_flags = get_float_exception_flags(fp_status);
1192         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1193     }
1194 
1195     return ret;
1196 }
1197 
1198 /* Convert ARM rounding mode to softfloat */
1199 const FloatRoundMode arm_rmode_to_sf_map[] = {
1200     [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1201     [FPROUNDING_POSINF] = float_round_up,
1202     [FPROUNDING_NEGINF] = float_round_down,
1203     [FPROUNDING_ZERO] = float_round_to_zero,
1204     [FPROUNDING_TIEAWAY] = float_round_ties_away,
1205     [FPROUNDING_ODD] = float_round_to_odd,
1206 };
1207 
1208 /*
1209  * Implement float64 to int32_t conversion without saturation;
1210  * the result is supplied modulo 2^32.
1211  */
1212 uint64_t HELPER(fjcvtzs)(float64 value, float_status *status)
1213 {
1214     uint32_t frac, e_old, e_new;
1215     bool inexact;
1216 
1217     e_old = get_float_exception_flags(status);
1218     set_float_exception_flags(0, status);
1219     frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1220     e_new = get_float_exception_flags(status);
1221     set_float_exception_flags(e_old | e_new, status);
1222 
1223     /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1224     inexact = e_new & (float_flag_inexact |
1225                        float_flag_input_denormal_flushed |
1226                        float_flag_invalid);
1227 
1228     /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1229     inexact |= value == float64_chs(float64_zero);
1230 
1231     /* Pack the result and the env->ZF representation of Z together.  */
1232     return deposit64(frac, 32, 32, inexact);
1233 }
1234 
1235 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1236 {
1237     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status[FPST_A32]);
1238     uint32_t result = pair;
1239     uint32_t z = (pair >> 32) == 0;
1240 
1241     /* Store Z, clear NCV, in FPSCR.NZCV.  */
1242     env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
1243 
1244     return result;
1245 }
1246 
1247 /* Round a float32 to an integer that fits in int32_t or int64_t.  */
1248 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1249 {
1250     int old_flags = get_float_exception_flags(fpst);
1251     uint32_t exp = extract32(f, 23, 8);
1252 
1253     if (unlikely(exp == 0xff)) {
1254         /* NaN or Inf.  */
1255         goto overflow;
1256     }
1257 
1258     /* Round and re-extract the exponent.  */
1259     f = float32_round_to_int(f, fpst);
1260     exp = extract32(f, 23, 8);
1261 
1262     /* Validate the range of the result.  */
1263     if (exp < 126 + intsize) {
1264         /* abs(F) <= INT{N}_MAX */
1265         return f;
1266     }
1267     if (exp == 126 + intsize) {
1268         uint32_t sign = extract32(f, 31, 1);
1269         uint32_t frac = extract32(f, 0, 23);
1270         if (sign && frac == 0) {
1271             /* F == INT{N}_MIN */
1272             return f;
1273         }
1274     }
1275 
1276  overflow:
1277     /*
1278      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1279      * inexact exception float32_round_to_int may have raised.
1280      */
1281     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1282     return (0x100u + 126u + intsize) << 23;
1283 }
1284 
1285 float32 HELPER(frint32_s)(float32 f, float_status *fpst)
1286 {
1287     return frint_s(f, fpst, 32);
1288 }
1289 
1290 float32 HELPER(frint64_s)(float32 f, float_status *fpst)
1291 {
1292     return frint_s(f, fpst, 64);
1293 }
1294 
1295 /* Round a float64 to an integer that fits in int32_t or int64_t.  */
1296 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1297 {
1298     int old_flags = get_float_exception_flags(fpst);
1299     uint32_t exp = extract64(f, 52, 11);
1300 
1301     if (unlikely(exp == 0x7ff)) {
1302         /* NaN or Inf.  */
1303         goto overflow;
1304     }
1305 
1306     /* Round and re-extract the exponent.  */
1307     f = float64_round_to_int(f, fpst);
1308     exp = extract64(f, 52, 11);
1309 
1310     /* Validate the range of the result.  */
1311     if (exp < 1022 + intsize) {
1312         /* abs(F) <= INT{N}_MAX */
1313         return f;
1314     }
1315     if (exp == 1022 + intsize) {
1316         uint64_t sign = extract64(f, 63, 1);
1317         uint64_t frac = extract64(f, 0, 52);
1318         if (sign && frac == 0) {
1319             /* F == INT{N}_MIN */
1320             return f;
1321         }
1322     }
1323 
1324  overflow:
1325     /*
1326      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1327      * inexact exception float64_round_to_int may have raised.
1328      */
1329     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1330     return (uint64_t)(0x800 + 1022 + intsize) << 52;
1331 }
1332 
1333 float64 HELPER(frint32_d)(float64 f, float_status *fpst)
1334 {
1335     return frint_d(f, fpst, 32);
1336 }
1337 
1338 float64 HELPER(frint64_d)(float64 f, float_status *fpst)
1339 {
1340     return frint_d(f, fpst, 64);
1341 }
1342 
1343 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1344 {
1345     uint32_t syndrome;
1346 
1347     switch (reg) {
1348     case ARM_VFP_MVFR0:
1349     case ARM_VFP_MVFR1:
1350     case ARM_VFP_MVFR2:
1351         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1352             return;
1353         }
1354         break;
1355     case ARM_VFP_FPSID:
1356         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1357             return;
1358         }
1359         break;
1360     default:
1361         g_assert_not_reached();
1362     }
1363 
1364     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1365                 | ARM_EL_IL
1366                 | (1 << 24) | (0xe << 20) | (7 << 14)
1367                 | (reg << 10) | (rt << 5) | 1);
1368 
1369     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1370 }
1371 
1372 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
1373 {
1374     return vfp_get_fpscr(env);
1375 }
1376 
1377 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
1378 {
1379     vfp_set_fpscr(env, val);
1380 }
1381