1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Nuvoton NPCM7xx I2C Controller driver
4 *
5 * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6 */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22
23 enum i2c_mode {
24 I2C_MASTER,
25 I2C_SLAVE,
26 };
27
28 /*
29 * External I2C Interface driver xfer indication values, which indicate status
30 * of the bus.
31 */
32 enum i2c_state_ind {
33 I2C_NO_STATUS_IND = 0,
34 I2C_SLAVE_RCV_IND,
35 I2C_SLAVE_XMIT_IND,
36 I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 I2C_SLAVE_RESTART_IND,
38 I2C_SLAVE_DONE_IND,
39 I2C_MASTER_DONE_IND,
40 I2C_NACK_IND,
41 I2C_BUS_ERR_IND,
42 I2C_WAKE_UP_IND,
43 I2C_BLOCK_BYTES_ERR_IND,
44 I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46
47 /*
48 * Operation type values (used to define the operation currently running)
49 * module is interrupt driven, on each interrupt the current operation is
50 * checked to see if the module is currently reading or writing.
51 */
52 enum i2c_oper {
53 I2C_NO_OPER = 0,
54 I2C_WRITE_OPER,
55 I2C_READ_OPER,
56 };
57
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 I2C_BANK_0 = 0,
61 I2C_BANK_1,
62 };
63
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 I2C_DISABLE = 0,
67 I2C_IDLE,
68 I2C_MASTER_START,
69 I2C_SLAVE_MATCH,
70 I2C_OPER_STARTED,
71 I2C_STOP_PENDING,
72 };
73
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 I2C_SLAVE_ADDR1 = 0,
78 I2C_SLAVE_ADDR2,
79 I2C_SLAVE_ADDR3,
80 I2C_SLAVE_ADDR4,
81 I2C_SLAVE_ADDR5,
82 I2C_SLAVE_ADDR6,
83 I2C_SLAVE_ADDR7,
84 I2C_SLAVE_ADDR8,
85 I2C_SLAVE_ADDR9,
86 I2C_SLAVE_ADDR10,
87 I2C_GC_ADDR,
88 I2C_ARP_ADDR,
89 };
90 #endif
91
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL 0xE4
94
95 /* Common regs */
96 #define NPCM_I2CSDA 0x00
97 #define NPCM_I2CST 0x02
98 #define NPCM_I2CCST 0x04
99 #define NPCM_I2CCTL1 0x06
100 #define NPCM_I2CADDR1 0x08
101 #define NPCM_I2CCTL2 0x0A
102 #define NPCM_I2CADDR2 0x0C
103 #define NPCM_I2CCTL3 0x0E
104 #define NPCM_I2CCST2 0x18
105 #define NPCM_I2CCST3 0x19
106 #define I2C_VER 0x1F
107
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3 0x10
110 #define NPCM_I2CADDR7 0x11
111 #define NPCM_I2CADDR4 0x12
112 #define NPCM_I2CADDR8 0x13
113 #define NPCM_I2CADDR5 0x14
114 #define NPCM_I2CADDR9 0x15
115 #define NPCM_I2CADDR6 0x16
116 #define NPCM_I2CADDR10 0x17
117 #define NPCM_I2CCTL4 0x1A
118 #define NPCM_I2CCTL5 0x1B
119 #define NPCM_I2CSCLLT 0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL 0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT 0x1E /* SCL High Time */
122
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS 0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL 0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT 0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC 0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS 0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS 0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL 0x1E /* Rx-FIFO Control */
131
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134 * npcm_i2caddr array:
135 * The module supports having multiple own slave addresses.
136 * Since the addr regs are sprinkled all over the address space,
137 * use this array to get the address or each register.
138 */
139 #define I2C_NUM_OWN_ADDR 2
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 NPCM_I2CADDR1, NPCM_I2CADDR2,
144 };
145 #endif
146
147 /* NPCM_I2CST reg fields */
148 #define NPCM_I2CST_XMIT BIT(0) /* Transmit mode */
149 #define NPCM_I2CST_MASTER BIT(1) /* Master mode */
150 #define NPCM_I2CST_NMATCH BIT(2) /* New match */
151 #define NPCM_I2CST_STASTR BIT(3) /* Stall after start */
152 #define NPCM_I2CST_NEGACK BIT(4) /* Negative ACK */
153 #define NPCM_I2CST_BER BIT(5) /* Bus error */
154 #define NPCM_I2CST_SDAST BIT(6) /* SDA status */
155 #define NPCM_I2CST_SLVSTP BIT(7) /* Slave stop */
156
157 /* NPCM_I2CCST reg fields */
158 #define NPCM_I2CCST_BUSY BIT(0) /* Busy */
159 #define NPCM_I2CCST_BB BIT(1) /* Bus busy */
160 #define NPCM_I2CCST_MATCH BIT(2) /* Address match */
161 #define NPCM_I2CCST_GCMATCH BIT(3) /* Global call match */
162 #define NPCM_I2CCST_TSDA BIT(4) /* Test SDA line */
163 #define NPCM_I2CCST_TGSCL BIT(5) /* Toggle SCL line */
164 #define NPCM_I2CCST_MATCHAF BIT(6) /* Match address field */
165 #define NPCM_I2CCST_ARPMATCH BIT(7) /* ARP address match */
166
167 /* NPCM_I2CCTL1 reg fields */
168 #define NPCM_I2CCTL1_START BIT(0) /* Generate start condition */
169 #define NPCM_I2CCTL1_STOP BIT(1) /* Generate stop condition */
170 #define NPCM_I2CCTL1_INTEN BIT(2) /* Interrupt enable */
171 #define NPCM_I2CCTL1_EOBINTE BIT(3)
172 #define NPCM_I2CCTL1_ACK BIT(4)
173 #define NPCM_I2CCTL1_GCMEN BIT(5) /* Global call match enable */
174 #define NPCM_I2CCTL1_NMINTE BIT(6) /* New match interrupt enable */
175 #define NPCM_I2CCTL1_STASTRE BIT(7) /* Stall after start enable */
176
177 /* RW1S fields (inside a RW reg): */
178 #define NPCM_I2CCTL1_RWS \
179 (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
180
181 /* npcm_i2caddr reg fields */
182 #define NPCM_I2CADDR_A GENMASK(6, 0) /* Address */
183 #define NPCM_I2CADDR_SAEN BIT(7) /* Slave address enable */
184
185 /* NPCM_I2CCTL2 reg fields */
186 #define I2CCTL2_ENABLE BIT(0) /* Module enable */
187 #define I2CCTL2_SCLFRQ6_0 GENMASK(7, 1) /* Bits 0:6 of frequency divisor */
188
189 /* NPCM_I2CCTL3 reg fields */
190 #define I2CCTL3_SCLFRQ8_7 GENMASK(1, 0) /* Bits 7:8 of frequency divisor */
191 #define I2CCTL3_ARPMEN BIT(2) /* ARP match enable */
192 #define I2CCTL3_IDL_START BIT(3)
193 #define I2CCTL3_400K_MODE BIT(4)
194 #define I2CCTL3_BNK_SEL BIT(5)
195 #define I2CCTL3_SDA_LVL BIT(6)
196 #define I2CCTL3_SCL_LVL BIT(7)
197
198 /* NPCM_I2CCST2 reg fields */
199 #define NPCM_I2CCST2_MATCHA1F BIT(0)
200 #define NPCM_I2CCST2_MATCHA2F BIT(1)
201 #define NPCM_I2CCST2_MATCHA3F BIT(2)
202 #define NPCM_I2CCST2_MATCHA4F BIT(3)
203 #define NPCM_I2CCST2_MATCHA5F BIT(4)
204 #define NPCM_I2CCST2_MATCHA6F BIT(5)
205 #define NPCM_I2CCST2_MATCHA7F BIT(5)
206 #define NPCM_I2CCST2_INTSTS BIT(7)
207
208 /* NPCM_I2CCST3 reg fields */
209 #define NPCM_I2CCST3_MATCHA8F BIT(0)
210 #define NPCM_I2CCST3_MATCHA9F BIT(1)
211 #define NPCM_I2CCST3_MATCHA10F BIT(2)
212 #define NPCM_I2CCST3_EO_BUSY BIT(7)
213
214 /* NPCM_I2CCTL4 reg fields */
215 #define I2CCTL4_HLDT GENMASK(5, 0)
216 #define I2CCTL4_LVL_WE BIT(7)
217
218 /* NPCM_I2CCTL5 reg fields */
219 #define I2CCTL5_DBNCT GENMASK(3, 0)
220
221 /* NPCM_I2CFIF_CTS reg fields */
222 #define NPCM_I2CFIF_CTS_RXF_TXE BIT(1)
223 #define NPCM_I2CFIF_CTS_RFTE_IE BIT(3)
224 #define NPCM_I2CFIF_CTS_CLR_FIFO BIT(6)
225 #define NPCM_I2CFIF_CTS_SLVRSTR BIT(7)
226
227 /* NPCM_I2CTXF_CTL reg field */
228 #define NPCM_I2CTXF_CTL_THR_TXIE BIT(6)
229
230 /* NPCM_I2CT_OUT reg fields */
231 #define NPCM_I2CT_OUT_TO_CKDIV GENMASK(5, 0)
232 #define NPCM_I2CT_OUT_T_OUTIE BIT(6)
233 #define NPCM_I2CT_OUT_T_OUTST BIT(7)
234
235 /* NPCM_I2CTXF_STS reg fields */
236 #define NPCM_I2CTXF_STS_TX_THST BIT(6)
237
238 /* NPCM_I2CRXF_STS reg fields */
239 #define NPCM_I2CRXF_STS_RX_THST BIT(6)
240
241 /* NPCM_I2CFIF_CTL reg fields */
242 #define NPCM_I2CFIF_CTL_FIFO_EN BIT(4)
243
244 /* NPCM_I2CRXF_CTL reg fields */
245 #define NPCM_I2CRXF_CTL_THR_RXIE BIT(6)
246
247 #define MAX_I2C_HW_FIFO_SIZE 32
248
249 /* I2C_VER reg fields */
250 #define I2C_VER_VERSION GENMASK(6, 0)
251 #define I2C_VER_FIFO_EN BIT(7)
252
253 /* stall/stuck timeout in us */
254 #define DEFAULT_STALL_COUNT 25
255
256 /* SCLFRQ field position */
257 #define SCLFRQ_0_TO_6 GENMASK(6, 0)
258 #define SCLFRQ_7_TO_8 GENMASK(8, 7)
259
260 /* supported clk settings. values in Hz. */
261 #define I2C_FREQ_MIN_HZ 10000
262 #define I2C_FREQ_MAX_HZ I2C_MAX_FAST_MODE_PLUS_FREQ
263
264 struct npcm_i2c_data {
265 u8 fifo_size;
266 u32 segctl_init_val;
267 u8 txf_sts_tx_bytes;
268 u8 rxf_sts_rx_bytes;
269 u8 rxf_ctl_last_pec;
270 };
271
272 static const struct npcm_i2c_data npxm7xx_i2c_data = {
273 .fifo_size = 16,
274 .segctl_init_val = 0x0333F000,
275 .txf_sts_tx_bytes = GENMASK(4, 0),
276 .rxf_sts_rx_bytes = GENMASK(4, 0),
277 .rxf_ctl_last_pec = BIT(5),
278 };
279
280 static const struct npcm_i2c_data npxm8xx_i2c_data = {
281 .fifo_size = 32,
282 .segctl_init_val = 0x9333F000,
283 .txf_sts_tx_bytes = GENMASK(5, 0),
284 .rxf_sts_rx_bytes = GENMASK(5, 0),
285 .rxf_ctl_last_pec = BIT(7),
286 };
287
288 /* Status of one I2C module */
289 struct npcm_i2c {
290 struct i2c_adapter adap;
291 struct device *dev;
292 unsigned char __iomem *reg;
293 const struct npcm_i2c_data *data;
294 spinlock_t lock; /* IRQ synchronization */
295 struct completion cmd_complete;
296 int cmd_err;
297 struct i2c_msg *msgs;
298 int msgs_num;
299 int num;
300 u32 apb_clk;
301 struct i2c_bus_recovery_info rinfo;
302 enum i2c_state state;
303 enum i2c_oper operation;
304 enum i2c_mode master_or_slave;
305 enum i2c_state_ind stop_ind;
306 u8 dest_addr;
307 u8 *rd_buf;
308 u16 rd_size;
309 u16 rd_ind;
310 u8 *wr_buf;
311 u16 wr_size;
312 u16 wr_ind;
313 bool fifo_use;
314 u16 PEC_mask; /* PEC bit mask per slave address */
315 bool PEC_use;
316 bool read_block_use;
317 unsigned long int_time_stamp;
318 unsigned long bus_freq; /* in Hz */
319 #if IS_ENABLED(CONFIG_I2C_SLAVE)
320 u8 own_slave_addr;
321 struct i2c_client *slave;
322 int slv_rd_size;
323 int slv_rd_ind;
324 int slv_wr_size;
325 int slv_wr_ind;
326 u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
327 u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
328 #endif
329 u64 ber_cnt;
330 u64 rec_succ_cnt;
331 u64 rec_fail_cnt;
332 u64 nack_cnt;
333 u64 timeout_cnt;
334 u64 tx_complete_cnt;
335 };
336
npcm_i2c_select_bank(struct npcm_i2c * bus,enum i2c_bank bank)337 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
338 enum i2c_bank bank)
339 {
340 u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
341
342 if (bank == I2C_BANK_0)
343 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
344 else
345 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
346 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
347 }
348
npcm_i2c_init_params(struct npcm_i2c * bus)349 static void npcm_i2c_init_params(struct npcm_i2c *bus)
350 {
351 bus->stop_ind = I2C_NO_STATUS_IND;
352 bus->rd_size = 0;
353 bus->wr_size = 0;
354 bus->rd_ind = 0;
355 bus->wr_ind = 0;
356 bus->read_block_use = false;
357 bus->int_time_stamp = 0;
358 bus->PEC_use = false;
359 bus->PEC_mask = 0;
360 #if IS_ENABLED(CONFIG_I2C_SLAVE)
361 if (bus->slave)
362 bus->master_or_slave = I2C_SLAVE;
363 #endif
364 }
365
npcm_i2c_wr_byte(struct npcm_i2c * bus,u8 data)366 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
367 {
368 iowrite8(data, bus->reg + NPCM_I2CSDA);
369 }
370
npcm_i2c_rd_byte(struct npcm_i2c * bus)371 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
372 {
373 return ioread8(bus->reg + NPCM_I2CSDA);
374 }
375
npcm_i2c_get_SCL(struct i2c_adapter * _adap)376 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
377 {
378 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
379
380 return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
381 }
382
npcm_i2c_get_SDA(struct i2c_adapter * _adap)383 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
384 {
385 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
386
387 return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
388 }
389
npcm_i2c_get_index(struct npcm_i2c * bus)390 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
391 {
392 if (bus->operation == I2C_READ_OPER)
393 return bus->rd_ind;
394 if (bus->operation == I2C_WRITE_OPER)
395 return bus->wr_ind;
396 return 0;
397 }
398
399 /* quick protocol (just address) */
npcm_i2c_is_quick(struct npcm_i2c * bus)400 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
401 {
402 return bus->wr_size == 0 && bus->rd_size == 0;
403 }
404
npcm_i2c_disable(struct npcm_i2c * bus)405 static void npcm_i2c_disable(struct npcm_i2c *bus)
406 {
407 u8 i2cctl2;
408
409 #if IS_ENABLED(CONFIG_I2C_SLAVE)
410 int i;
411
412 /* Slave addresses removal */
413 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
414 iowrite8(0, bus->reg + npcm_i2caddr[i]);
415
416 #endif
417 /* Disable module */
418 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
419 i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
420 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
421
422 bus->state = I2C_DISABLE;
423 }
424
npcm_i2c_enable(struct npcm_i2c * bus)425 static void npcm_i2c_enable(struct npcm_i2c *bus)
426 {
427 u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
428
429 i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
430 iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
431 bus->state = I2C_IDLE;
432 }
433
434 /* enable\disable end of busy (EOB) interrupts */
npcm_i2c_eob_int(struct npcm_i2c * bus,bool enable)435 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
436 {
437 u8 val;
438
439 /* Clear EO_BUSY pending bit: */
440 val = ioread8(bus->reg + NPCM_I2CCST3);
441 val = val | NPCM_I2CCST3_EO_BUSY;
442 iowrite8(val, bus->reg + NPCM_I2CCST3);
443
444 val = ioread8(bus->reg + NPCM_I2CCTL1);
445 val &= ~NPCM_I2CCTL1_RWS;
446 if (enable)
447 val |= NPCM_I2CCTL1_EOBINTE;
448 else
449 val &= ~NPCM_I2CCTL1_EOBINTE;
450 iowrite8(val, bus->reg + NPCM_I2CCTL1);
451 }
452
npcm_i2c_tx_fifo_empty(struct npcm_i2c * bus)453 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
454 {
455 u8 tx_fifo_sts;
456
457 tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
458 /* check if TX FIFO is not empty */
459 if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
460 return false;
461
462 /* check if TX FIFO status bit is set: */
463 return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
464 }
465
npcm_i2c_rx_fifo_full(struct npcm_i2c * bus)466 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
467 {
468 u8 rx_fifo_sts;
469
470 rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
471 /* check if RX FIFO is not empty: */
472 if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
473 return false;
474
475 /* check if rx fifo full status is set: */
476 return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
477 }
478
npcm_i2c_clear_fifo_int(struct npcm_i2c * bus)479 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
480 {
481 u8 val;
482
483 val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
484 val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
485 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
486 }
487
npcm_i2c_clear_tx_fifo(struct npcm_i2c * bus)488 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
489 {
490 u8 val;
491
492 val = ioread8(bus->reg + NPCM_I2CTXF_STS);
493 val = val | NPCM_I2CTXF_STS_TX_THST;
494 iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
495 }
496
npcm_i2c_clear_rx_fifo(struct npcm_i2c * bus)497 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
498 {
499 u8 val;
500
501 val = ioread8(bus->reg + NPCM_I2CRXF_STS);
502 val = val | NPCM_I2CRXF_STS_RX_THST;
503 iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
504 }
505
npcm_i2c_int_enable(struct npcm_i2c * bus,bool enable)506 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
507 {
508 u8 val;
509
510 val = ioread8(bus->reg + NPCM_I2CCTL1);
511 val &= ~NPCM_I2CCTL1_RWS;
512 if (enable)
513 val |= NPCM_I2CCTL1_INTEN;
514 else
515 val &= ~NPCM_I2CCTL1_INTEN;
516 iowrite8(val, bus->reg + NPCM_I2CCTL1);
517 }
518
npcm_i2c_master_start(struct npcm_i2c * bus)519 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
520 {
521 u8 val;
522
523 val = ioread8(bus->reg + NPCM_I2CCTL1);
524 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
525 val |= NPCM_I2CCTL1_START;
526 iowrite8(val, bus->reg + NPCM_I2CCTL1);
527 }
528
npcm_i2c_master_stop(struct npcm_i2c * bus)529 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
530 {
531 u8 val;
532
533 /*
534 * override HW issue: I2C may fail to supply stop condition in Master
535 * Write operation.
536 * Need to delay at least 5 us from the last int, before issueing a stop
537 */
538 udelay(10); /* function called from interrupt, can't sleep */
539 val = ioread8(bus->reg + NPCM_I2CCTL1);
540 val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
541 val |= NPCM_I2CCTL1_STOP;
542 iowrite8(val, bus->reg + NPCM_I2CCTL1);
543
544 if (!bus->fifo_use)
545 return;
546
547 npcm_i2c_select_bank(bus, I2C_BANK_1);
548
549 if (bus->operation == I2C_READ_OPER)
550 npcm_i2c_clear_rx_fifo(bus);
551 else
552 npcm_i2c_clear_tx_fifo(bus);
553 npcm_i2c_clear_fifo_int(bus);
554 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
555 }
556
npcm_i2c_stall_after_start(struct npcm_i2c * bus,bool stall)557 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
558 {
559 u8 val;
560
561 val = ioread8(bus->reg + NPCM_I2CCTL1);
562 val &= ~NPCM_I2CCTL1_RWS;
563 if (stall)
564 val |= NPCM_I2CCTL1_STASTRE;
565 else
566 val &= ~NPCM_I2CCTL1_STASTRE;
567 iowrite8(val, bus->reg + NPCM_I2CCTL1);
568 }
569
npcm_i2c_nack(struct npcm_i2c * bus)570 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
571 {
572 u8 val;
573
574 val = ioread8(bus->reg + NPCM_I2CCTL1);
575 val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
576 val |= NPCM_I2CCTL1_ACK;
577 iowrite8(val, bus->reg + NPCM_I2CCTL1);
578 }
579
npcm_i2c_clear_master_status(struct npcm_i2c * bus)580 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
581 {
582 u8 val;
583
584 /* Clear NEGACK, STASTR and BER bits */
585 val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
586 iowrite8(val, bus->reg + NPCM_I2CST);
587 }
588
589 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_slave_int_enable(struct npcm_i2c * bus,bool enable)590 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
591 {
592 u8 i2cctl1;
593
594 /* enable interrupt on slave match: */
595 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
596 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
597 if (enable)
598 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
599 else
600 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
601 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
602 }
603
npcm_i2c_slave_enable(struct npcm_i2c * bus,enum i2c_addr addr_type,u8 addr,bool enable)604 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
605 u8 addr, bool enable)
606 {
607 u8 i2cctl1;
608 u8 i2cctl3;
609 u8 sa_reg;
610
611 sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
612 if (addr_type == I2C_GC_ADDR) {
613 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
614 if (enable)
615 i2cctl1 |= NPCM_I2CCTL1_GCMEN;
616 else
617 i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
618 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
619 return 0;
620 } else if (addr_type == I2C_ARP_ADDR) {
621 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
622 if (enable)
623 i2cctl3 |= I2CCTL3_ARPMEN;
624 else
625 i2cctl3 &= ~I2CCTL3_ARPMEN;
626 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
627 return 0;
628 }
629 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
630 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
631
632 if (addr_type >= I2C_ARP_ADDR)
633 return -EFAULT;
634
635 /* Set and enable the address */
636 iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
637 npcm_i2c_slave_int_enable(bus, enable);
638
639 return 0;
640 }
641 #endif
642
npcm_i2c_reset(struct npcm_i2c * bus)643 static void npcm_i2c_reset(struct npcm_i2c *bus)
644 {
645 /*
646 * Save I2CCTL1 relevant bits. It is being cleared when the module
647 * is disabled.
648 */
649 u8 i2cctl1;
650 #if IS_ENABLED(CONFIG_I2C_SLAVE)
651 u8 addr;
652 #endif
653
654 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
655
656 npcm_i2c_disable(bus);
657 npcm_i2c_enable(bus);
658
659 /* Restore NPCM_I2CCTL1 Status */
660 i2cctl1 &= ~NPCM_I2CCTL1_RWS;
661 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
662
663 /* Clear BB (BUS BUSY) bit */
664 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
665 iowrite8(0xFF, bus->reg + NPCM_I2CST);
666
667 /* Clear and disable EOB */
668 npcm_i2c_eob_int(bus, false);
669
670 /* Clear all fifo bits: */
671 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
672
673 #if IS_ENABLED(CONFIG_I2C_SLAVE)
674 if (bus->slave) {
675 addr = bus->slave->addr;
676 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
677 }
678 #endif
679
680 /* Clear status bits for spurious interrupts */
681 npcm_i2c_clear_master_status(bus);
682
683 bus->state = I2C_IDLE;
684 }
685
npcm_i2c_is_master(struct npcm_i2c * bus)686 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
687 {
688 return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
689 }
690
npcm_i2c_callback(struct npcm_i2c * bus,enum i2c_state_ind op_status,u16 info)691 static void npcm_i2c_callback(struct npcm_i2c *bus,
692 enum i2c_state_ind op_status, u16 info)
693 {
694 struct i2c_msg *msgs;
695 int msgs_num;
696 bool do_complete = false;
697
698 msgs = bus->msgs;
699 msgs_num = bus->msgs_num;
700 /*
701 * check that transaction was not timed-out, and msgs still
702 * holds a valid value.
703 */
704 if (!msgs)
705 return;
706
707 if (completion_done(&bus->cmd_complete))
708 return;
709
710 switch (op_status) {
711 case I2C_MASTER_DONE_IND:
712 bus->cmd_err = bus->msgs_num;
713 if (bus->tx_complete_cnt < ULLONG_MAX)
714 bus->tx_complete_cnt++;
715 fallthrough;
716 case I2C_BLOCK_BYTES_ERR_IND:
717 /* Master tx finished and all transmit bytes were sent */
718 if (bus->msgs) {
719 if (msgs[0].flags & I2C_M_RD)
720 msgs[0].len = info;
721 else if (msgs_num == 2 &&
722 msgs[1].flags & I2C_M_RD)
723 msgs[1].len = info;
724 }
725 do_complete = true;
726 break;
727 case I2C_NACK_IND:
728 /* MASTER transmit got a NACK before tx all bytes */
729 bus->cmd_err = -ENXIO;
730 do_complete = true;
731 break;
732 case I2C_BUS_ERR_IND:
733 /* Bus error */
734 bus->cmd_err = -EAGAIN;
735 do_complete = true;
736 break;
737 case I2C_WAKE_UP_IND:
738 /* I2C wake up */
739 break;
740 default:
741 break;
742 }
743
744 bus->operation = I2C_NO_OPER;
745 #if IS_ENABLED(CONFIG_I2C_SLAVE)
746 if (bus->slave)
747 bus->master_or_slave = I2C_SLAVE;
748 #endif
749 if (do_complete)
750 complete(&bus->cmd_complete);
751 }
752
npcm_i2c_fifo_usage(struct npcm_i2c * bus)753 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
754 {
755 if (bus->operation == I2C_WRITE_OPER)
756 return (bus->data->txf_sts_tx_bytes &
757 ioread8(bus->reg + NPCM_I2CTXF_STS));
758 if (bus->operation == I2C_READ_OPER)
759 return (bus->data->rxf_sts_rx_bytes &
760 ioread8(bus->reg + NPCM_I2CRXF_STS));
761 return 0;
762 }
763
npcm_i2c_write_to_fifo_master(struct npcm_i2c * bus,u16 max_bytes)764 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
765 {
766 u8 size_free_fifo;
767
768 /*
769 * Fill the FIFO, while the FIFO is not full and there are more bytes
770 * to write
771 */
772 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
773 while (max_bytes-- && size_free_fifo) {
774 if (bus->wr_ind < bus->wr_size)
775 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
776 else
777 npcm_i2c_wr_byte(bus, 0xFF);
778 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
779 }
780 }
781
782 /*
783 * npcm_i2c_set_fifo:
784 * configure the FIFO before using it. If nread is -1 RX FIFO will not be
785 * configured. same for nwrite
786 */
npcm_i2c_set_fifo(struct npcm_i2c * bus,int nread,int nwrite)787 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
788 {
789 u8 rxf_ctl = 0;
790
791 if (!bus->fifo_use)
792 return;
793 npcm_i2c_select_bank(bus, I2C_BANK_1);
794 npcm_i2c_clear_tx_fifo(bus);
795 npcm_i2c_clear_rx_fifo(bus);
796
797 /* configure RX FIFO */
798 if (nread > 0) {
799 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
800
801 /* set LAST bit. if LAST is set next FIFO packet is nacked */
802 if (nread <= bus->data->fifo_size)
803 rxf_ctl |= bus->data->rxf_ctl_last_pec;
804
805 /*
806 * if we are about to read the first byte in blk rd mode,
807 * don't NACK it. If slave returns zero size HW can't NACK
808 * it immediately, it will read extra byte and then NACK.
809 */
810 if (bus->rd_ind == 0 && bus->read_block_use) {
811 /* set fifo to read one byte, no last: */
812 rxf_ctl = 1;
813 }
814
815 /* set fifo size: */
816 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
817 }
818
819 /* configure TX FIFO */
820 if (nwrite > 0) {
821 if (nwrite > bus->data->fifo_size)
822 /* data to send is more then FIFO size. */
823 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
824 else
825 iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
826
827 npcm_i2c_clear_tx_fifo(bus);
828 }
829 }
830
npcm_i2c_read_fifo(struct npcm_i2c * bus,u8 bytes_in_fifo)831 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
832 {
833 u8 data;
834
835 while (bytes_in_fifo--) {
836 data = npcm_i2c_rd_byte(bus);
837 if (bus->rd_ind < bus->rd_size)
838 bus->rd_buf[bus->rd_ind++] = data;
839 }
840 }
841
npcm_i2c_master_abort(struct npcm_i2c * bus)842 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
843 {
844 /* Only current master is allowed to issue a stop condition */
845 if (!npcm_i2c_is_master(bus))
846 return;
847
848 npcm_i2c_eob_int(bus, true);
849 npcm_i2c_master_stop(bus);
850 npcm_i2c_clear_master_status(bus);
851 }
852
853 #if IS_ENABLED(CONFIG_I2C_SLAVE)
npcm_i2c_get_slave_addr(struct npcm_i2c * bus,enum i2c_addr addr_type)854 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
855 {
856 u8 slave_add;
857
858 if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
859 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
860
861 slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
862
863 return slave_add;
864 }
865
npcm_i2c_remove_slave_addr(struct npcm_i2c * bus,u8 slave_add)866 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
867 {
868 int i;
869
870 /* Set the enable bit */
871 slave_add |= 0x80;
872
873 for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
874 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
875 iowrite8(0, bus->reg + npcm_i2caddr[i]);
876 }
877
878 return 0;
879 }
880
npcm_i2c_write_fifo_slave(struct npcm_i2c * bus,u16 max_bytes)881 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
882 {
883 /*
884 * Fill the FIFO, while the FIFO is not full and there are more bytes
885 * to write
886 */
887 npcm_i2c_clear_fifo_int(bus);
888 npcm_i2c_clear_tx_fifo(bus);
889 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
890 while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
891 if (bus->slv_wr_size <= 0)
892 break;
893 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
894 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
895 bus->slv_wr_ind++;
896 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
897 bus->slv_wr_size--;
898 }
899 }
900
npcm_i2c_read_fifo_slave(struct npcm_i2c * bus,u8 bytes_in_fifo)901 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
902 {
903 u8 data;
904
905 if (!bus->slave)
906 return;
907
908 while (bytes_in_fifo--) {
909 data = npcm_i2c_rd_byte(bus);
910
911 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
912 bus->slv_rd_buf[bus->slv_rd_ind] = data;
913 bus->slv_rd_ind++;
914
915 /* 1st byte is length in block protocol: */
916 if (bus->slv_rd_ind == 1 && bus->read_block_use)
917 bus->slv_rd_size = data + bus->PEC_use + 1;
918 }
919 }
920
npcm_i2c_slave_get_wr_buf(struct npcm_i2c * bus)921 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
922 {
923 int i;
924 u8 value;
925 int ind;
926 int ret = bus->slv_wr_ind;
927
928 /* fill a cyclic buffer */
929 for (i = 0; i < bus->data->fifo_size; i++) {
930 if (bus->slv_wr_size >= bus->data->fifo_size)
931 break;
932 if (bus->state == I2C_SLAVE_MATCH) {
933 i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
934 bus->state = I2C_OPER_STARTED;
935 } else {
936 i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
937 }
938 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
939 bus->slv_wr_buf[ind] = value;
940 bus->slv_wr_size++;
941 }
942 return bus->data->fifo_size - ret;
943 }
944
npcm_i2c_slave_send_rd_buf(struct npcm_i2c * bus)945 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
946 {
947 int i;
948
949 for (i = 0; i < bus->slv_rd_ind; i++)
950 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
951 &bus->slv_rd_buf[i]);
952 /*
953 * once we send bytes up, need to reset the counter of the wr buf
954 * got data from master (new offset in device), ignore wr fifo:
955 */
956 if (bus->slv_rd_ind) {
957 bus->slv_wr_size = 0;
958 bus->slv_wr_ind = 0;
959 }
960
961 bus->slv_rd_ind = 0;
962 bus->slv_rd_size = bus->adap.quirks->max_read_len;
963
964 npcm_i2c_clear_fifo_int(bus);
965 npcm_i2c_clear_rx_fifo(bus);
966 }
967
npcm_i2c_slave_receive(struct npcm_i2c * bus,u16 nread,u8 * read_data)968 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
969 u8 *read_data)
970 {
971 bus->state = I2C_OPER_STARTED;
972 bus->operation = I2C_READ_OPER;
973 bus->slv_rd_size = nread;
974 bus->slv_rd_ind = 0;
975
976 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
977 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
978 npcm_i2c_clear_tx_fifo(bus);
979 npcm_i2c_clear_rx_fifo(bus);
980 }
981
npcm_i2c_slave_xmit(struct npcm_i2c * bus,u16 nwrite,u8 * write_data)982 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
983 u8 *write_data)
984 {
985 if (nwrite == 0)
986 return;
987
988 bus->operation = I2C_WRITE_OPER;
989
990 /* get the next buffer */
991 npcm_i2c_slave_get_wr_buf(bus);
992 npcm_i2c_write_fifo_slave(bus, nwrite);
993 }
994
995 /*
996 * npcm_i2c_slave_wr_buf_sync:
997 * currently slave IF only supports single byte operations.
998 * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
999 * at a time, pack them in buffer, and then transmit them all together
1000 * to the FIFO and onward to the bus.
1001 * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1002 * sending a NACK wherever the backend requests for it is not supported.
1003 * the next two functions allow reading to local buffer before writing it all
1004 * to the HW FIFO.
1005 */
npcm_i2c_slave_wr_buf_sync(struct npcm_i2c * bus)1006 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1007 {
1008 int left_in_fifo;
1009
1010 left_in_fifo = bus->data->txf_sts_tx_bytes &
1011 ioread8(bus->reg + NPCM_I2CTXF_STS);
1012
1013 /* fifo already full: */
1014 if (left_in_fifo >= bus->data->fifo_size ||
1015 bus->slv_wr_size >= bus->data->fifo_size)
1016 return;
1017
1018 /* update the wr fifo index back to the untransmitted bytes: */
1019 bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1020 bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1021
1022 if (bus->slv_wr_ind < 0)
1023 bus->slv_wr_ind += bus->data->fifo_size;
1024 }
1025
npcm_i2c_slave_rd_wr(struct npcm_i2c * bus)1026 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1027 {
1028 if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1029 /*
1030 * Slave got an address match with direction bit 1 so it should
1031 * transmit data. Write till the master will NACK
1032 */
1033 bus->operation = I2C_WRITE_OPER;
1034 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1035 bus->slv_wr_buf);
1036 } else {
1037 /*
1038 * Slave got an address match with direction bit 0 so it should
1039 * receive data.
1040 * this module does not support saying no to bytes.
1041 * it will always ACK.
1042 */
1043 bus->operation = I2C_READ_OPER;
1044 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1045 bus->stop_ind = I2C_SLAVE_RCV_IND;
1046 npcm_i2c_slave_send_rd_buf(bus);
1047 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1048 bus->slv_rd_buf);
1049 }
1050 }
1051
npcm_i2c_int_slave_handler(struct npcm_i2c * bus)1052 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1053 {
1054 u8 val;
1055 irqreturn_t ret = IRQ_NONE;
1056 u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1057
1058 /* Slave: A NACK has occurred */
1059 if (NPCM_I2CST_NEGACK & i2cst) {
1060 bus->stop_ind = I2C_NACK_IND;
1061 npcm_i2c_slave_wr_buf_sync(bus);
1062 if (bus->fifo_use)
1063 /* clear the FIFO */
1064 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1065 bus->reg + NPCM_I2CFIF_CTS);
1066
1067 /* In slave write, NACK is OK, otherwise it is a problem */
1068 bus->stop_ind = I2C_NO_STATUS_IND;
1069 bus->operation = I2C_NO_OPER;
1070 bus->own_slave_addr = 0xFF;
1071
1072 /*
1073 * Slave has to wait for STOP to decide this is the end
1074 * of the transaction. tx is not yet considered as done
1075 */
1076 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1077
1078 ret = IRQ_HANDLED;
1079 }
1080
1081 /* Slave mode: a Bus Error (BER) has been identified */
1082 if (NPCM_I2CST_BER & i2cst) {
1083 /*
1084 * Check whether bus arbitration or Start or Stop during data
1085 * xfer bus arbitration problem should not result in recovery
1086 */
1087 bus->stop_ind = I2C_BUS_ERR_IND;
1088
1089 /* wait for bus busy before clear fifo */
1090 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1091
1092 bus->state = I2C_IDLE;
1093
1094 /*
1095 * in BER case we might get 2 interrupts: one for slave one for
1096 * master ( for a channel which is master\slave switching)
1097 */
1098 if (completion_done(&bus->cmd_complete) == false) {
1099 bus->cmd_err = -EIO;
1100 complete(&bus->cmd_complete);
1101 }
1102 bus->own_slave_addr = 0xFF;
1103 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1104 ret = IRQ_HANDLED;
1105 }
1106
1107 /* A Slave Stop Condition has been identified */
1108 if (NPCM_I2CST_SLVSTP & i2cst) {
1109 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1110
1111 bus->stop_ind = I2C_SLAVE_DONE_IND;
1112
1113 if (bus->operation == I2C_READ_OPER)
1114 npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1115
1116 /* if the buffer is empty nothing will be sent */
1117 npcm_i2c_slave_send_rd_buf(bus);
1118
1119 /* Slave done transmitting or receiving */
1120 bus->stop_ind = I2C_NO_STATUS_IND;
1121
1122 /*
1123 * Note, just because we got here, it doesn't mean we through
1124 * away the wr buffer.
1125 * we keep it until the next received offset.
1126 */
1127 bus->operation = I2C_NO_OPER;
1128 bus->own_slave_addr = 0xFF;
1129 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1130 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1131 if (bus->fifo_use) {
1132 npcm_i2c_clear_fifo_int(bus);
1133 npcm_i2c_clear_rx_fifo(bus);
1134 npcm_i2c_clear_tx_fifo(bus);
1135
1136 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1137 bus->reg + NPCM_I2CFIF_CTS);
1138 }
1139 bus->state = I2C_IDLE;
1140 ret = IRQ_HANDLED;
1141 }
1142
1143 /* restart condition occurred and Rx-FIFO was not empty */
1144 if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1145 ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1146 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1147 bus->master_or_slave = I2C_SLAVE;
1148 if (bus->operation == I2C_READ_OPER)
1149 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1150 bus->operation = I2C_WRITE_OPER;
1151 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1152 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1153 NPCM_I2CFIF_CTS_RXF_TXE;
1154 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1155 npcm_i2c_slave_rd_wr(bus);
1156 ret = IRQ_HANDLED;
1157 }
1158
1159 /* A Slave Address Match has been identified */
1160 if (NPCM_I2CST_NMATCH & i2cst) {
1161 u8 info = 0;
1162
1163 /* Address match automatically implies slave mode */
1164 bus->master_or_slave = I2C_SLAVE;
1165 npcm_i2c_clear_fifo_int(bus);
1166 npcm_i2c_clear_rx_fifo(bus);
1167 npcm_i2c_clear_tx_fifo(bus);
1168 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1169 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1170 if (NPCM_I2CST_XMIT & i2cst) {
1171 bus->operation = I2C_WRITE_OPER;
1172 } else {
1173 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1174 &info);
1175 bus->operation = I2C_READ_OPER;
1176 }
1177 if (bus->own_slave_addr == 0xFF) {
1178 /* Check which type of address match */
1179 val = ioread8(bus->reg + NPCM_I2CCST);
1180 if (NPCM_I2CCST_MATCH & val) {
1181 u16 addr;
1182 enum i2c_addr eaddr;
1183 u8 i2ccst2;
1184 u8 i2ccst3;
1185
1186 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1187 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1188
1189 /*
1190 * the i2c module can response to 10 own SA.
1191 * check which one was addressed by the master.
1192 * respond to the first one.
1193 */
1194 addr = ((i2ccst3 & 0x07) << 7) |
1195 (i2ccst2 & 0x7F);
1196 info = ffs(addr);
1197 eaddr = (enum i2c_addr)info;
1198 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1199 addr &= 0x7F;
1200 bus->own_slave_addr = addr;
1201 if (bus->PEC_mask & BIT(info))
1202 bus->PEC_use = true;
1203 else
1204 bus->PEC_use = false;
1205 } else {
1206 if (NPCM_I2CCST_GCMATCH & val)
1207 bus->own_slave_addr = 0;
1208 if (NPCM_I2CCST_ARPMATCH & val)
1209 bus->own_slave_addr = 0x61;
1210 }
1211 } else {
1212 /*
1213 * Slave match can happen in two options:
1214 * 1. Start, SA, read (slave read without further ado)
1215 * 2. Start, SA, read, data, restart, SA, read, ...
1216 * (slave read in fragmented mode)
1217 * 3. Start, SA, write, data, restart, SA, read, ..
1218 * (regular write-read mode)
1219 */
1220 if ((bus->state == I2C_OPER_STARTED &&
1221 bus->operation == I2C_READ_OPER &&
1222 bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1223 bus->stop_ind == I2C_SLAVE_RCV_IND) {
1224 /* slave tx after slave rx w/o STOP */
1225 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1226 }
1227 }
1228
1229 if (NPCM_I2CST_XMIT & i2cst)
1230 bus->stop_ind = I2C_SLAVE_XMIT_IND;
1231 else
1232 bus->stop_ind = I2C_SLAVE_RCV_IND;
1233 bus->state = I2C_SLAVE_MATCH;
1234 npcm_i2c_slave_rd_wr(bus);
1235 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1236 ret = IRQ_HANDLED;
1237 }
1238
1239 /* Slave SDA status is set - tx or rx */
1240 if ((NPCM_I2CST_SDAST & i2cst) ||
1241 (bus->fifo_use &&
1242 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1243 npcm_i2c_slave_rd_wr(bus);
1244 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1245 ret = IRQ_HANDLED;
1246 } /* SDAST */
1247
1248 /*
1249 * If irq is not one of the above, make sure EOB is disabled and all
1250 * status bits are cleared.
1251 */
1252 if (ret == IRQ_NONE) {
1253 npcm_i2c_eob_int(bus, false);
1254 npcm_i2c_clear_master_status(bus);
1255 }
1256
1257 return IRQ_HANDLED;
1258 }
1259
npcm_i2c_reg_slave(struct i2c_client * client)1260 static int npcm_i2c_reg_slave(struct i2c_client *client)
1261 {
1262 unsigned long lock_flags;
1263 struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1264
1265 bus->slave = client;
1266
1267 if (!bus->slave)
1268 return -EINVAL;
1269
1270 if (client->flags & I2C_CLIENT_TEN)
1271 return -EAFNOSUPPORT;
1272
1273 spin_lock_irqsave(&bus->lock, lock_flags);
1274
1275 npcm_i2c_init_params(bus);
1276 bus->slv_rd_size = 0;
1277 bus->slv_wr_size = 0;
1278 bus->slv_rd_ind = 0;
1279 bus->slv_wr_ind = 0;
1280 if (client->flags & I2C_CLIENT_PEC)
1281 bus->PEC_use = true;
1282
1283 dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1284 client->addr, bus->PEC_use);
1285
1286 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1287 npcm_i2c_clear_fifo_int(bus);
1288 npcm_i2c_clear_rx_fifo(bus);
1289 npcm_i2c_clear_tx_fifo(bus);
1290 npcm_i2c_slave_int_enable(bus, true);
1291
1292 spin_unlock_irqrestore(&bus->lock, lock_flags);
1293 return 0;
1294 }
1295
npcm_i2c_unreg_slave(struct i2c_client * client)1296 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1297 {
1298 struct npcm_i2c *bus = client->adapter->algo_data;
1299 unsigned long lock_flags;
1300
1301 spin_lock_irqsave(&bus->lock, lock_flags);
1302 if (!bus->slave) {
1303 spin_unlock_irqrestore(&bus->lock, lock_flags);
1304 return -EINVAL;
1305 }
1306 npcm_i2c_slave_int_enable(bus, false);
1307 npcm_i2c_remove_slave_addr(bus, client->addr);
1308 bus->slave = NULL;
1309 spin_unlock_irqrestore(&bus->lock, lock_flags);
1310 return 0;
1311 }
1312 #endif /* CONFIG_I2C_SLAVE */
1313
npcm_i2c_master_fifo_read(struct npcm_i2c * bus)1314 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1315 {
1316 int rcount;
1317 int fifo_bytes;
1318 enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1319
1320 fifo_bytes = npcm_i2c_fifo_usage(bus);
1321 rcount = bus->rd_size - bus->rd_ind;
1322
1323 /*
1324 * In order not to change the RX_TRH during transaction (we found that
1325 * this might be problematic if it takes too much time to read the FIFO)
1326 * we read the data in the following way. If the number of bytes to
1327 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1328 * and in the next int we read rest of the data.
1329 */
1330 if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1331 fifo_bytes = rcount - bus->data->fifo_size;
1332
1333 if (rcount <= fifo_bytes) {
1334 /* last bytes are about to be read - end of tx */
1335 bus->state = I2C_STOP_PENDING;
1336 bus->stop_ind = ind;
1337 npcm_i2c_eob_int(bus, true);
1338 /* Stop should be set before reading last byte. */
1339 npcm_i2c_master_stop(bus);
1340 npcm_i2c_read_fifo(bus, fifo_bytes);
1341 } else {
1342 npcm_i2c_read_fifo(bus, fifo_bytes);
1343 rcount = bus->rd_size - bus->rd_ind;
1344 npcm_i2c_set_fifo(bus, rcount, -1);
1345 }
1346 }
1347
npcm_i2c_irq_master_handler_write(struct npcm_i2c * bus)1348 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1349 {
1350 u16 wcount;
1351
1352 if (bus->fifo_use)
1353 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1354
1355 /* Master write operation - last byte handling */
1356 if (bus->wr_ind == bus->wr_size) {
1357 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1358 /*
1359 * No more bytes to send (to add to the FIFO),
1360 * however the FIFO is not empty yet. It is
1361 * still in the middle of tx. Currently there's nothing
1362 * to do except for waiting to the end of the tx
1363 * We will get an int when the FIFO will get empty.
1364 */
1365 return;
1366
1367 if (bus->rd_size == 0) {
1368 /* all bytes have been written, in wr only operation */
1369 npcm_i2c_eob_int(bus, true);
1370 bus->state = I2C_STOP_PENDING;
1371 bus->stop_ind = I2C_MASTER_DONE_IND;
1372 npcm_i2c_master_stop(bus);
1373 /* Clear SDA Status bit (by writing dummy byte) */
1374 npcm_i2c_wr_byte(bus, 0xFF);
1375
1376 } else {
1377 /* last write-byte written on previous int - restart */
1378 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1379 /* Generate repeated start upon next write to SDA */
1380 npcm_i2c_master_start(bus);
1381
1382 /*
1383 * Receiving one byte only - stall after successful
1384 * completion of send address byte. If we NACK here, and
1385 * slave doesn't ACK the address, we might
1386 * unintentionally NACK the next multi-byte read.
1387 */
1388 if (bus->rd_size == 1)
1389 npcm_i2c_stall_after_start(bus, true);
1390
1391 /* Next int will occur on read */
1392 bus->operation = I2C_READ_OPER;
1393 /* send the slave address in read direction */
1394 npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1395 }
1396 } else {
1397 /* write next byte not last byte and not slave address */
1398 if (!bus->fifo_use || bus->wr_size == 1) {
1399 npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1400 } else {
1401 wcount = bus->wr_size - bus->wr_ind;
1402 npcm_i2c_set_fifo(bus, -1, wcount);
1403 if (wcount)
1404 npcm_i2c_write_to_fifo_master(bus, wcount);
1405 }
1406 }
1407 }
1408
npcm_i2c_irq_master_handler_read(struct npcm_i2c * bus)1409 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1410 {
1411 u16 block_extra_bytes_size;
1412 u8 data;
1413
1414 /* added bytes to the packet: */
1415 block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1416
1417 /*
1418 * Perform master read, distinguishing between last byte and the rest of
1419 * the bytes. The last byte should be read when the clock is stopped
1420 */
1421 if (bus->rd_ind == 0) { /* first byte handling: */
1422 if (bus->read_block_use) {
1423 /* first byte in block protocol is the size: */
1424 data = npcm_i2c_rd_byte(bus);
1425 data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1426 bus->rd_size = data + block_extra_bytes_size;
1427 bus->rd_buf[bus->rd_ind++] = data;
1428
1429 /* clear RX FIFO interrupt status: */
1430 if (bus->fifo_use) {
1431 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1432 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1433 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1434 }
1435
1436 npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1437 npcm_i2c_stall_after_start(bus, false);
1438 } else {
1439 npcm_i2c_clear_tx_fifo(bus);
1440 npcm_i2c_master_fifo_read(bus);
1441 }
1442 } else {
1443 if (bus->rd_size == block_extra_bytes_size &&
1444 bus->read_block_use) {
1445 bus->state = I2C_STOP_PENDING;
1446 bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1447 bus->cmd_err = -EIO;
1448 npcm_i2c_eob_int(bus, true);
1449 npcm_i2c_master_stop(bus);
1450 npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1451 } else {
1452 npcm_i2c_master_fifo_read(bus);
1453 }
1454 }
1455 }
1456
npcm_i2c_irq_handle_nmatch(struct npcm_i2c * bus)1457 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1458 {
1459 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1460 npcm_i2c_nack(bus);
1461 bus->stop_ind = I2C_BUS_ERR_IND;
1462 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1463 }
1464
1465 /* A NACK has occurred */
npcm_i2c_irq_handle_nack(struct npcm_i2c * bus)1466 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1467 {
1468 u8 val;
1469
1470 if (bus->nack_cnt < ULLONG_MAX)
1471 bus->nack_cnt++;
1472
1473 if (bus->fifo_use) {
1474 /*
1475 * if there are still untransmitted bytes in TX FIFO
1476 * reduce them from wr_ind
1477 */
1478 if (bus->operation == I2C_WRITE_OPER)
1479 bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1480
1481 /* clear the FIFO */
1482 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1483 }
1484
1485 /* In master write operation, got unexpected NACK */
1486 bus->stop_ind = I2C_NACK_IND;
1487 /* Only current master is allowed to issue Stop Condition */
1488 if (npcm_i2c_is_master(bus)) {
1489 /* stopping in the middle */
1490 npcm_i2c_eob_int(bus, false);
1491 npcm_i2c_master_stop(bus);
1492
1493 /* Clear SDA Status bit (by reading dummy byte) */
1494 npcm_i2c_rd_byte(bus);
1495
1496 /*
1497 * The bus is released from stall only after the SW clears
1498 * NEGACK bit. Then a Stop condition is sent.
1499 */
1500 npcm_i2c_clear_master_status(bus);
1501 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1502 !(val & NPCM_I2CCST_BUSY), 10, 200);
1503 /* Verify no status bits are still set after bus is released */
1504 npcm_i2c_clear_master_status(bus);
1505 }
1506 bus->state = I2C_IDLE;
1507
1508 /*
1509 * In Master mode, NACK should be cleared only after STOP.
1510 * In such case, the bus is released from stall only after the
1511 * software clears NACK bit. Then a Stop condition is sent.
1512 */
1513 npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1514 }
1515
1516 /* Master mode: a Bus Error has been identified */
npcm_i2c_irq_handle_ber(struct npcm_i2c * bus)1517 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1518 {
1519 if (bus->ber_cnt < ULLONG_MAX)
1520 bus->ber_cnt++;
1521 bus->stop_ind = I2C_BUS_ERR_IND;
1522 if (npcm_i2c_is_master(bus)) {
1523 npcm_i2c_master_abort(bus);
1524 } else {
1525 npcm_i2c_clear_master_status(bus);
1526
1527 /* Clear BB (BUS BUSY) bit */
1528 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1529
1530 bus->cmd_err = -EAGAIN;
1531 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1532 }
1533 bus->state = I2C_IDLE;
1534 }
1535
1536 /* EOB: a master End Of Busy (meaning STOP completed) */
npcm_i2c_irq_handle_eob(struct npcm_i2c * bus)1537 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1538 {
1539 npcm_i2c_eob_int(bus, false);
1540 bus->state = I2C_IDLE;
1541 npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1542 }
1543
1544 /* Address sent and requested stall occurred (Master mode) */
npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c * bus)1545 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1546 {
1547 if (npcm_i2c_is_quick(bus)) {
1548 bus->state = I2C_STOP_PENDING;
1549 bus->stop_ind = I2C_MASTER_DONE_IND;
1550 npcm_i2c_eob_int(bus, true);
1551 npcm_i2c_master_stop(bus);
1552 } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1553 /*
1554 * Receiving one byte only - set NACK after ensuring
1555 * slave ACKed the address byte.
1556 */
1557 npcm_i2c_nack(bus);
1558 }
1559
1560 /* Reset stall-after-address-byte */
1561 npcm_i2c_stall_after_start(bus, false);
1562
1563 /* Clear stall only after setting STOP */
1564 iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1565 }
1566
1567 /* SDA status is set - TX or RX, master */
npcm_i2c_irq_handle_sda(struct npcm_i2c * bus,u8 i2cst)1568 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1569 {
1570 u8 fif_cts;
1571
1572 if (!npcm_i2c_is_master(bus))
1573 return;
1574
1575 if (bus->state == I2C_IDLE) {
1576 bus->stop_ind = I2C_WAKE_UP_IND;
1577
1578 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1579 /*
1580 * Need to stall after successful
1581 * completion of sending address byte
1582 */
1583 npcm_i2c_stall_after_start(bus, true);
1584 else
1585 npcm_i2c_stall_after_start(bus, false);
1586
1587 /*
1588 * Receiving one byte only - stall after successful completion
1589 * of sending address byte If we NACK here, and slave doesn't
1590 * ACK the address, we might unintentionally NACK the next
1591 * multi-byte read
1592 */
1593 if (bus->wr_size == 0 && bus->rd_size == 1)
1594 npcm_i2c_stall_after_start(bus, true);
1595
1596 /* Initiate I2C master tx */
1597
1598 /* select bank 1 for FIFO regs */
1599 npcm_i2c_select_bank(bus, I2C_BANK_1);
1600
1601 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1602 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1603
1604 /* clear FIFO and relevant status bits. */
1605 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1606 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1607
1608 /* re-enable */
1609 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1610 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1611
1612 /*
1613 * Configure the FIFO threshold:
1614 * according to the needed # of bytes to read.
1615 * Note: due to HW limitation can't config the rx fifo before it
1616 * got and ACK on the restart. LAST bit will not be reset unless
1617 * RX completed. It will stay set on the next tx.
1618 */
1619 if (bus->wr_size)
1620 npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1621 else
1622 npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1623
1624 bus->state = I2C_OPER_STARTED;
1625
1626 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1627 npcm_i2c_wr_byte(bus, bus->dest_addr);
1628 else
1629 npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1630 /* SDA interrupt, after start\restart */
1631 } else {
1632 if (NPCM_I2CST_XMIT & i2cst) {
1633 bus->operation = I2C_WRITE_OPER;
1634 npcm_i2c_irq_master_handler_write(bus);
1635 } else {
1636 bus->operation = I2C_READ_OPER;
1637 npcm_i2c_irq_master_handler_read(bus);
1638 }
1639 }
1640 }
1641
npcm_i2c_int_master_handler(struct npcm_i2c * bus)1642 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1643 {
1644 u8 i2cst;
1645 int ret = -EIO;
1646
1647 i2cst = ioread8(bus->reg + NPCM_I2CST);
1648
1649 if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1650 npcm_i2c_irq_handle_nmatch(bus);
1651 return 0;
1652 }
1653 /* A NACK has occurred */
1654 if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1655 npcm_i2c_irq_handle_nack(bus);
1656 return 0;
1657 }
1658
1659 /* Master mode: a Bus Error has been identified */
1660 if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1661 npcm_i2c_irq_handle_ber(bus);
1662 return 0;
1663 }
1664
1665 /* EOB: a master End Of Busy (meaning STOP completed) */
1666 if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1667 ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1668 (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1669 ioread8(bus->reg + NPCM_I2CCST3)))) {
1670 npcm_i2c_irq_handle_eob(bus);
1671 return 0;
1672 }
1673
1674 /* Address sent and requested stall occurred (Master mode) */
1675 if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1676 npcm_i2c_irq_handle_stall_after_start(bus);
1677 ret = 0;
1678 }
1679
1680 /* SDA status is set - TX or RX, master */
1681 if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1682 (bus->fifo_use &&
1683 (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1684 npcm_i2c_irq_handle_sda(bus, i2cst);
1685 ret = 0;
1686 }
1687
1688 return ret;
1689 }
1690
1691 /* recovery using TGCLK functionality of the module */
npcm_i2c_recovery_tgclk(struct i2c_adapter * _adap)1692 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1693 {
1694 u8 val;
1695 u8 fif_cts;
1696 bool done = false;
1697 int status = -ENOTRECOVERABLE;
1698 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1699 /* Allow 3 bytes (27 toggles) to be read from the slave: */
1700 int iter = 27;
1701
1702 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1703 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1704 bus->num, bus->dest_addr);
1705 npcm_i2c_reset(bus);
1706 return 0;
1707 }
1708
1709 npcm_i2c_int_enable(bus, false);
1710 npcm_i2c_disable(bus);
1711 npcm_i2c_enable(bus);
1712 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1713 npcm_i2c_clear_tx_fifo(bus);
1714 npcm_i2c_clear_rx_fifo(bus);
1715 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1716 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1717 npcm_i2c_stall_after_start(bus, false);
1718
1719 /* select bank 1 for FIFO regs */
1720 npcm_i2c_select_bank(bus, I2C_BANK_1);
1721
1722 /* clear FIFO and relevant status bits. */
1723 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1724 fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1725 fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1726 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1727 npcm_i2c_set_fifo(bus, -1, 0);
1728
1729 /* Repeat the following sequence until SDA is released */
1730 do {
1731 /* Issue a single SCL toggle */
1732 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1733 usleep_range(20, 30);
1734 /* If SDA line is inactive (high), stop */
1735 if (npcm_i2c_get_SDA(_adap)) {
1736 done = true;
1737 status = 0;
1738 }
1739 } while (!done && iter--);
1740
1741 /* If SDA line is released: send start-addr-stop, to re-sync. */
1742 if (npcm_i2c_get_SDA(_adap)) {
1743 /* Send an address byte in write direction: */
1744 npcm_i2c_wr_byte(bus, bus->dest_addr);
1745 npcm_i2c_master_start(bus);
1746 /* Wait until START condition is sent */
1747 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1748 20, 200);
1749 /* If START condition was sent */
1750 if (npcm_i2c_is_master(bus) > 0) {
1751 usleep_range(20, 30);
1752 npcm_i2c_master_stop(bus);
1753 usleep_range(200, 500);
1754 }
1755 }
1756 npcm_i2c_reset(bus);
1757 npcm_i2c_int_enable(bus, true);
1758
1759 if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1760 status = 0;
1761 else
1762 status = -ENOTRECOVERABLE;
1763 if (status) {
1764 if (bus->rec_fail_cnt < ULLONG_MAX)
1765 bus->rec_fail_cnt++;
1766 } else {
1767 if (bus->rec_succ_cnt < ULLONG_MAX)
1768 bus->rec_succ_cnt++;
1769 }
1770 return status;
1771 }
1772
1773 /* recovery using bit banging functionality of the module */
npcm_i2c_recovery_init(struct i2c_adapter * _adap)1774 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1775 {
1776 struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1777 struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1778
1779 rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1780
1781 /*
1782 * npcm i2c HW allows direct reading of SCL and SDA.
1783 * However, it does not support setting SCL and SDA directly.
1784 * The recovery function can toggle SCL when SDA is low (but not set)
1785 * Getter functions used internally, and can be used externally.
1786 */
1787 rinfo->get_scl = npcm_i2c_get_SCL;
1788 rinfo->get_sda = npcm_i2c_get_SDA;
1789 _adap->bus_recovery_info = rinfo;
1790 }
1791
1792 /* SCLFRQ min/max field values */
1793 #define SCLFRQ_MIN 10
1794 #define SCLFRQ_MAX 511
1795 #define clk_coef(freq, mul) DIV_ROUND_UP((freq) * (mul), 1000000)
1796
1797 /*
1798 * npcm_i2c_init_clk: init HW timing parameters.
1799 * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1800 * and bus frequency.
1801 * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1802 * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1803 * by the HW designer, given core clock range (equations in comments below).
1804 *
1805 */
npcm_i2c_init_clk(struct npcm_i2c * bus,u32 bus_freq_hz)1806 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1807 {
1808 u32 k1 = 0;
1809 u32 k2 = 0;
1810 u8 dbnct = 0;
1811 u32 sclfrq = 0;
1812 u8 hldt = 7;
1813 u8 fast_mode = 0;
1814 u32 src_clk_khz;
1815 u32 bus_freq_khz;
1816
1817 src_clk_khz = bus->apb_clk / 1000;
1818 bus_freq_khz = bus_freq_hz / 1000;
1819 bus->bus_freq = bus_freq_hz;
1820
1821 /* 100KHz and below: */
1822 if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1823 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1824
1825 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1826 return -EDOM;
1827
1828 if (src_clk_khz >= 40000)
1829 hldt = 17;
1830 else if (src_clk_khz >= 12500)
1831 hldt = 15;
1832 else
1833 hldt = 7;
1834 }
1835
1836 /* 400KHz: */
1837 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1838 sclfrq = 0;
1839 fast_mode = I2CCTL3_400K_MODE;
1840
1841 if (src_clk_khz < 7500)
1842 /* 400KHZ cannot be supported for core clock < 7.5MHz */
1843 return -EDOM;
1844
1845 else if (src_clk_khz >= 50000) {
1846 k1 = 80;
1847 k2 = 48;
1848 hldt = 12;
1849 dbnct = 7;
1850 }
1851
1852 /* Master or Slave with frequency > 25MHz */
1853 else if (src_clk_khz > 25000) {
1854 hldt = clk_coef(src_clk_khz, 300) + 7;
1855 k1 = clk_coef(src_clk_khz, 1600);
1856 k2 = clk_coef(src_clk_khz, 900);
1857 }
1858 }
1859
1860 /* 1MHz: */
1861 else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1862 sclfrq = 0;
1863 fast_mode = I2CCTL3_400K_MODE;
1864
1865 /* 1MHZ cannot be supported for core clock < 24 MHz */
1866 if (src_clk_khz < 24000)
1867 return -EDOM;
1868
1869 k1 = clk_coef(src_clk_khz, 620);
1870 k2 = clk_coef(src_clk_khz, 380);
1871
1872 /* Core clk > 40 MHz */
1873 if (src_clk_khz > 40000) {
1874 /*
1875 * Set HLDT:
1876 * SDA hold time: (HLDT-7) * T(CLK) >= 120
1877 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1878 */
1879 hldt = clk_coef(src_clk_khz, 120) + 7;
1880 } else {
1881 hldt = 7;
1882 dbnct = 2;
1883 }
1884 }
1885
1886 /* Frequency larger than 1 MHz is not supported */
1887 else
1888 return -EINVAL;
1889
1890 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1891 k1 = round_up(k1, 2);
1892 k2 = round_up(k2 + 1, 2);
1893 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1894 k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1895 return -EDOM;
1896 }
1897
1898 /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1899 iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1900 bus->reg + NPCM_I2CCTL2);
1901
1902 /* bits [8:7] are in I2CCTL3 reg */
1903 iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1904 bus->reg + NPCM_I2CCTL3);
1905
1906 /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1907 npcm_i2c_select_bank(bus, I2C_BANK_0);
1908
1909 if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1910 /*
1911 * Set SCL Low/High Time:
1912 * k1 = 2 * SCLLT7-0 -> Low Time = k1 / 2
1913 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1914 */
1915 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1916 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1917
1918 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1919 }
1920
1921 iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1922
1923 /* Return to Bank 1, and stay there by default: */
1924 npcm_i2c_select_bank(bus, I2C_BANK_1);
1925
1926 return 0;
1927 }
1928
npcm_i2c_init_module(struct npcm_i2c * bus,enum i2c_mode mode,u32 bus_freq_hz)1929 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1930 u32 bus_freq_hz)
1931 {
1932 u8 val;
1933 int ret;
1934
1935 /* Check whether module already enabled or frequency is out of bounds */
1936 if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1937 bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1938 return -EINVAL;
1939
1940 npcm_i2c_int_enable(bus, false);
1941 npcm_i2c_disable(bus);
1942
1943 /* Configure FIFO mode : */
1944 if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1945 bus->fifo_use = true;
1946 npcm_i2c_select_bank(bus, I2C_BANK_0);
1947 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1948 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1949 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1950 npcm_i2c_select_bank(bus, I2C_BANK_1);
1951 } else {
1952 bus->fifo_use = false;
1953 }
1954
1955 /* Configure I2C module clock frequency */
1956 ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1957 if (ret) {
1958 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1959 return ret;
1960 }
1961
1962 /* Enable module (before configuring CTL1) */
1963 npcm_i2c_enable(bus);
1964 bus->state = I2C_IDLE;
1965 val = ioread8(bus->reg + NPCM_I2CCTL1);
1966 val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1967 iowrite8(val, bus->reg + NPCM_I2CCTL1);
1968
1969 npcm_i2c_reset(bus);
1970
1971 /* Check HW is OK: SDA and SCL should be high at this point. */
1972 if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1973 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1974 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1975 npcm_i2c_get_SCL(&bus->adap));
1976 return -ENXIO;
1977 }
1978
1979 npcm_i2c_int_enable(bus, true);
1980 return 0;
1981 }
1982
__npcm_i2c_init(struct npcm_i2c * bus,struct platform_device * pdev)1983 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1984 {
1985 u32 clk_freq_hz;
1986 int ret;
1987
1988 /* Initialize the internal data structures */
1989 bus->state = I2C_DISABLE;
1990 bus->master_or_slave = I2C_SLAVE;
1991 bus->int_time_stamp = 0;
1992 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1993 bus->slave = NULL;
1994 #endif
1995
1996 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1997 &clk_freq_hz);
1998 if (ret) {
1999 dev_info(&pdev->dev, "Could not read clock-frequency property");
2000 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2001 }
2002
2003 ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2004 if (ret) {
2005 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2006 return ret;
2007 }
2008
2009 return 0;
2010 }
2011
npcm_i2c_bus_irq(int irq,void * dev_id)2012 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2013 {
2014 struct npcm_i2c *bus = dev_id;
2015
2016 if (npcm_i2c_is_master(bus))
2017 bus->master_or_slave = I2C_MASTER;
2018
2019 if (bus->master_or_slave == I2C_MASTER) {
2020 bus->int_time_stamp = jiffies;
2021 if (!npcm_i2c_int_master_handler(bus))
2022 return IRQ_HANDLED;
2023 }
2024 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2025 if (bus->slave) {
2026 bus->master_or_slave = I2C_SLAVE;
2027 if (npcm_i2c_int_slave_handler(bus))
2028 return IRQ_HANDLED;
2029 }
2030 #endif
2031 /* Clear status bits for spurious interrupts */
2032 npcm_i2c_clear_master_status(bus);
2033
2034 return IRQ_HANDLED;
2035 }
2036
npcm_i2c_master_start_xmit(struct npcm_i2c * bus,u8 slave_addr,u16 nwrite,u16 nread,u8 * write_data,u8 * read_data,bool use_PEC,bool use_read_block)2037 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2038 u8 slave_addr, u16 nwrite, u16 nread,
2039 u8 *write_data, u8 *read_data,
2040 bool use_PEC, bool use_read_block)
2041 {
2042 if (bus->state != I2C_IDLE) {
2043 bus->cmd_err = -EBUSY;
2044 return false;
2045 }
2046 bus->dest_addr = slave_addr << 1;
2047 bus->wr_buf = write_data;
2048 bus->wr_size = nwrite;
2049 bus->wr_ind = 0;
2050 bus->rd_buf = read_data;
2051 bus->rd_size = nread;
2052 bus->rd_ind = 0;
2053 bus->PEC_use = 0;
2054
2055 /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2056 if (nread)
2057 bus->PEC_use = use_PEC;
2058
2059 bus->read_block_use = use_read_block;
2060 if (nread && !nwrite)
2061 bus->operation = I2C_READ_OPER;
2062 else
2063 bus->operation = I2C_WRITE_OPER;
2064 if (bus->fifo_use) {
2065 u8 i2cfif_cts;
2066
2067 npcm_i2c_select_bank(bus, I2C_BANK_1);
2068 /* clear FIFO and relevant status bits. */
2069 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2070 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2071 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2072 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2073 }
2074
2075 bus->state = I2C_IDLE;
2076 npcm_i2c_stall_after_start(bus, true);
2077 npcm_i2c_master_start(bus);
2078 return true;
2079 }
2080
npcm_i2c_master_xfer(struct i2c_adapter * adap,struct i2c_msg * msgs,int num)2081 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2082 int num)
2083 {
2084 struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2085 struct i2c_msg *msg0, *msg1;
2086 unsigned long time_left, flags;
2087 u16 nwrite, nread;
2088 u8 *write_data, *read_data;
2089 u8 slave_addr;
2090 unsigned long timeout;
2091 bool read_block = false;
2092 bool read_PEC = false;
2093 u8 bus_busy;
2094 unsigned long timeout_usec;
2095
2096 if (bus->state == I2C_DISABLE) {
2097 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2098 return -EINVAL;
2099 }
2100
2101 msg0 = &msgs[0];
2102 slave_addr = msg0->addr;
2103 if (msg0->flags & I2C_M_RD) { /* read */
2104 nwrite = 0;
2105 write_data = NULL;
2106 read_data = msg0->buf;
2107 if (msg0->flags & I2C_M_RECV_LEN) {
2108 nread = 1;
2109 read_block = true;
2110 if (msg0->flags & I2C_CLIENT_PEC)
2111 read_PEC = true;
2112 } else {
2113 nread = msg0->len;
2114 }
2115 } else { /* write */
2116 nwrite = msg0->len;
2117 write_data = msg0->buf;
2118 nread = 0;
2119 read_data = NULL;
2120 if (num == 2) {
2121 msg1 = &msgs[1];
2122 read_data = msg1->buf;
2123 if (msg1->flags & I2C_M_RECV_LEN) {
2124 nread = 1;
2125 read_block = true;
2126 if (msg1->flags & I2C_CLIENT_PEC)
2127 read_PEC = true;
2128 } else {
2129 nread = msg1->len;
2130 read_block = false;
2131 }
2132 }
2133 }
2134
2135 /*
2136 * Adaptive TimeOut: estimated time in usec + 100% margin:
2137 * 2: double the timeout for clock stretching case
2138 * 9: bits per transaction (including the ack/nack)
2139 */
2140 timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2141 timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2142 if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2143 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2144 return -EINVAL;
2145 }
2146
2147 time_left = jiffies + timeout + 1;
2148 do {
2149 /*
2150 * we must clear slave address immediately when the bus is not
2151 * busy, so we spinlock it, but we don't keep the lock for the
2152 * entire while since it is too long.
2153 */
2154 spin_lock_irqsave(&bus->lock, flags);
2155 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2156 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2157 if (!bus_busy && bus->slave)
2158 iowrite8((bus->slave->addr & 0x7F),
2159 bus->reg + NPCM_I2CADDR1);
2160 #endif
2161 spin_unlock_irqrestore(&bus->lock, flags);
2162
2163 } while (time_is_after_jiffies(time_left) && bus_busy);
2164
2165 if (bus_busy) {
2166 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2167 npcm_i2c_reset(bus);
2168 i2c_recover_bus(adap);
2169 return -EAGAIN;
2170 }
2171
2172 npcm_i2c_init_params(bus);
2173 bus->dest_addr = slave_addr;
2174 bus->msgs = msgs;
2175 bus->msgs_num = num;
2176 bus->cmd_err = 0;
2177 bus->read_block_use = read_block;
2178
2179 reinit_completion(&bus->cmd_complete);
2180
2181 npcm_i2c_int_enable(bus, true);
2182
2183 if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2184 write_data, read_data, read_PEC,
2185 read_block)) {
2186 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2187 timeout);
2188
2189 if (time_left == 0) {
2190 if (bus->timeout_cnt < ULLONG_MAX)
2191 bus->timeout_cnt++;
2192 if (bus->master_or_slave == I2C_MASTER) {
2193 i2c_recover_bus(adap);
2194 bus->cmd_err = -EIO;
2195 bus->state = I2C_IDLE;
2196 }
2197 }
2198 }
2199
2200 /* if there was BER, check if need to recover the bus: */
2201 if (bus->cmd_err == -EAGAIN)
2202 bus->cmd_err = i2c_recover_bus(adap);
2203
2204 /*
2205 * After any type of error, check if LAST bit is still set,
2206 * due to a HW issue.
2207 * It cannot be cleared without resetting the module.
2208 */
2209 else if (bus->cmd_err &&
2210 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2211 npcm_i2c_reset(bus);
2212
2213 /* After any xfer, successful or not, stall and EOB must be disabled */
2214 npcm_i2c_stall_after_start(bus, false);
2215 npcm_i2c_eob_int(bus, false);
2216
2217 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2218 /* reenable slave if it was enabled */
2219 if (bus->slave)
2220 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2221 bus->reg + NPCM_I2CADDR1);
2222 #else
2223 npcm_i2c_int_enable(bus, false);
2224 #endif
2225 return bus->cmd_err;
2226 }
2227
npcm_i2c_functionality(struct i2c_adapter * adap)2228 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2229 {
2230 return I2C_FUNC_I2C |
2231 I2C_FUNC_SMBUS_EMUL |
2232 I2C_FUNC_SMBUS_BLOCK_DATA |
2233 I2C_FUNC_SMBUS_PEC |
2234 I2C_FUNC_SLAVE;
2235 }
2236
2237 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2238 .max_read_len = 32768,
2239 .max_write_len = 32768,
2240 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2241 };
2242
2243 static const struct i2c_algorithm npcm_i2c_algo = {
2244 .master_xfer = npcm_i2c_master_xfer,
2245 .functionality = npcm_i2c_functionality,
2246 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2247 .reg_slave = npcm_i2c_reg_slave,
2248 .unreg_slave = npcm_i2c_unreg_slave,
2249 #endif
2250 };
2251
npcm_i2c_init_debugfs(struct platform_device * pdev,struct npcm_i2c * bus)2252 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2253 struct npcm_i2c *bus)
2254 {
2255 debugfs_create_u64("ber_cnt", 0444, bus->adap.debugfs, &bus->ber_cnt);
2256 debugfs_create_u64("nack_cnt", 0444, bus->adap.debugfs, &bus->nack_cnt);
2257 debugfs_create_u64("rec_succ_cnt", 0444, bus->adap.debugfs, &bus->rec_succ_cnt);
2258 debugfs_create_u64("rec_fail_cnt", 0444, bus->adap.debugfs, &bus->rec_fail_cnt);
2259 debugfs_create_u64("timeout_cnt", 0444, bus->adap.debugfs, &bus->timeout_cnt);
2260 debugfs_create_u64("tx_complete_cnt", 0444, bus->adap.debugfs, &bus->tx_complete_cnt);
2261 }
2262
npcm_i2c_probe_bus(struct platform_device * pdev)2263 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2264 {
2265 struct device_node *np = pdev->dev.of_node;
2266 static struct regmap *gcr_regmap;
2267 struct device *dev = &pdev->dev;
2268 struct i2c_adapter *adap;
2269 struct npcm_i2c *bus;
2270 struct clk *i2c_clk;
2271 int irq;
2272 int ret;
2273
2274 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2275 if (!bus)
2276 return -ENOMEM;
2277
2278 bus->dev = &pdev->dev;
2279
2280 bus->data = of_device_get_match_data(dev);
2281 if (!bus->data) {
2282 dev_err(dev, "OF data missing\n");
2283 return -EINVAL;
2284 }
2285
2286 bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2287 /* core clk must be acquired to calculate module timing settings */
2288 i2c_clk = devm_clk_get(&pdev->dev, NULL);
2289 if (IS_ERR(i2c_clk))
2290 return PTR_ERR(i2c_clk);
2291 bus->apb_clk = clk_get_rate(i2c_clk);
2292
2293 gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2294 if (IS_ERR(gcr_regmap))
2295 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2296
2297 if (IS_ERR(gcr_regmap))
2298 return PTR_ERR(gcr_regmap);
2299 regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2300
2301 bus->reg = devm_platform_ioremap_resource(pdev, 0);
2302 if (IS_ERR(bus->reg))
2303 return PTR_ERR(bus->reg);
2304
2305 spin_lock_init(&bus->lock);
2306 init_completion(&bus->cmd_complete);
2307
2308 adap = &bus->adap;
2309 adap->owner = THIS_MODULE;
2310 adap->retries = 3;
2311 adap->timeout = msecs_to_jiffies(35);
2312 adap->algo = &npcm_i2c_algo;
2313 adap->quirks = &npcm_i2c_quirks;
2314 adap->algo_data = bus;
2315 adap->dev.parent = &pdev->dev;
2316 adap->dev.of_node = pdev->dev.of_node;
2317 adap->nr = pdev->id;
2318
2319 irq = platform_get_irq(pdev, 0);
2320 if (irq < 0)
2321 return irq;
2322
2323 ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2324 dev_name(bus->dev), bus);
2325 if (ret)
2326 return ret;
2327
2328 ret = __npcm_i2c_init(bus, pdev);
2329 if (ret)
2330 return ret;
2331
2332 npcm_i2c_recovery_init(adap);
2333
2334 i2c_set_adapdata(adap, bus);
2335
2336 snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2337 bus->num);
2338 ret = i2c_add_numbered_adapter(&bus->adap);
2339 if (ret)
2340 return ret;
2341
2342 platform_set_drvdata(pdev, bus);
2343 npcm_i2c_init_debugfs(pdev, bus);
2344 return 0;
2345 }
2346
npcm_i2c_remove_bus(struct platform_device * pdev)2347 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2348 {
2349 unsigned long lock_flags;
2350 struct npcm_i2c *bus = platform_get_drvdata(pdev);
2351
2352 spin_lock_irqsave(&bus->lock, lock_flags);
2353 npcm_i2c_disable(bus);
2354 spin_unlock_irqrestore(&bus->lock, lock_flags);
2355 i2c_del_adapter(&bus->adap);
2356 }
2357
2358 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2359 { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2360 { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2361 {}
2362 };
2363 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2364
2365 static struct platform_driver npcm_i2c_bus_driver = {
2366 .probe = npcm_i2c_probe_bus,
2367 .remove_new = npcm_i2c_remove_bus,
2368 .driver = {
2369 .name = "nuvoton-i2c",
2370 .of_match_table = npcm_i2c_bus_of_table,
2371 }
2372 };
2373
2374 module_platform_driver(npcm_i2c_bus_driver);
2375
2376 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2377 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2378 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2379 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2380 MODULE_LICENSE("GPL v2");
2381