xref: /qemu/rust/qemu-api/src/qom.rs (revision 43ba160cb4bbb193560eb0d2d7decc4b5fc599fe)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!   The traits have the appropriate specialization of `IsA<>` as a supertrait,
41 //!   for example `IsA<DeviceState>` for `DeviceImpl`.
42 //!
43 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
44 //!   automatically implemented for any reference or smart pointer to a device
45 //!   instance.  It calls into the vtable provides access across all subclasses
46 //!   to methods defined for the class.
47 //!
48 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
49 //!   This provides access to class-wide functionality that doesn't depend on
50 //!   instance data. Like instance methods, these are automatically inherited by
51 //!   child classes.
52 //!
53 //! # Class structures
54 //!
55 //! Each QOM class that has virtual methods describes them in a
56 //! _class struct_.  Class structs include a parent field corresponding
57 //! to the vtable of the parent class, all the way up to [`ObjectClass`].
58 //!
59 //! As mentioned above, virtual methods are defined via traits such as
60 //! `DeviceImpl`.  Class structs do not define any trait but, conventionally,
61 //! all of them have a `class_init` method to initialize the virtual methods
62 //! based on the trait and then call the same method on the superclass.
63 //!
64 //! ```ignore
65 //! impl YourSubclassClass
66 //! {
67 //!     pub fn class_init<T: YourSubclassImpl>(&mut self) {
68 //!         ...
69 //!         klass.parent_class::class_init<T>();
70 //!     }
71 //! }
72 //! ```
73 //!
74 //! If a class implements a QOM interface.  In that case, the function must
75 //! contain, for each interface, an extra forwarding call as follows:
76 //!
77 //! ```ignore
78 //! ResettableClass::cast::<Self>(self).class_init::<Self>();
79 //! ```
80 //!
81 //! These `class_init` functions are methods on the class rather than a trait,
82 //! because the bound on `T` (`DeviceImpl` in this case), will change for every
83 //! class struct.  The functions are pointed to by the
84 //! [`ObjectImpl::CLASS_INIT`] function pointer. While there is no default
85 //! implementation, in most cases it will be enough to write it as follows:
86 //!
87 //! ```ignore
88 //! const CLASS_INIT: fn(&mut Self::Class)> = Self::Class::class_init::<Self>;
89 //! ```
90 //!
91 //! This design incurs a small amount of code duplication but, by not using
92 //! traits, it allows the flexibility of implementing bindings in any crate,
93 //! without incurring into violations of orphan rules for traits.
94 
95 use std::{
96     ffi::{c_void, CStr},
97     fmt,
98     marker::PhantomData,
99     mem::{ManuallyDrop, MaybeUninit},
100     ops::{Deref, DerefMut},
101     ptr::NonNull,
102 };
103 
104 pub use bindings::ObjectClass;
105 
106 use crate::{
107     bindings::{
108         self, object_class_dynamic_cast, object_dynamic_cast, object_get_class,
109         object_get_typename, object_new, object_ref, object_unref, TypeInfo,
110     },
111     cell::{bql_locked, Opaque},
112 };
113 
114 /// A safe wrapper around [`bindings::Object`].
115 #[repr(transparent)]
116 #[derive(Debug, qemu_api_macros::Wrapper)]
117 pub struct Object(Opaque<bindings::Object>);
118 
119 unsafe impl Send for Object {}
120 unsafe impl Sync for Object {}
121 
122 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
123 /// or indirect parent of `Self`).
124 ///
125 /// # Safety
126 ///
127 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
128 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
129 /// which rely on `IsA<>` for static checking, are rejected at compile time.
130 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
131 
132 // SAFETY: it is always safe to cast to your own type
133 unsafe impl<T: ObjectType> IsA<T> for T {}
134 
135 /// Macro to mark superclasses of QOM classes.  This enables type-safe
136 /// up- and downcasting.
137 ///
138 /// # Safety
139 ///
140 /// This macro is a thin wrapper around the [`IsA`] trait and performs
141 /// no checking whatsoever of what is declared.  It is the caller's
142 /// responsibility to have $struct begin, directly or indirectly, with
143 /// a field of type `$parent`.
144 #[macro_export]
145 macro_rules! qom_isa {
146     ($struct:ty : $($parent:ty),* ) => {
147         $(
148             // SAFETY: it is the caller responsibility to have $parent as the
149             // first field
150             unsafe impl $crate::qom::IsA<$parent> for $struct {}
151 
152             impl AsRef<$parent> for $struct {
153                 fn as_ref(&self) -> &$parent {
154                     // SAFETY: follows the same rules as for IsA<U>, which is
155                     // declared above.
156                     let ptr: *const Self = self;
157                     unsafe { &*ptr.cast::<$parent>() }
158                 }
159             }
160         )*
161     };
162 }
163 
164 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
165 /// it hides the standard methods of `ManuallyDrop`.
166 ///
167 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
168 /// (Technically, this is only necessary if there is at least one Rust
169 /// superclass in the hierarchy).  This is to ensure that the parent field is
170 /// dropped after the subclass; this drop order is enforced by the C
171 /// `object_deinit` function.
172 ///
173 /// # Examples
174 ///
175 /// ```ignore
176 /// #[repr(C)]
177 /// #[derive(qemu_api_macros::Object)]
178 /// pub struct MyDevice {
179 ///     parent: ParentField<DeviceState>,
180 ///     ...
181 /// }
182 /// ```
183 #[derive(Debug)]
184 #[repr(transparent)]
185 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
186 
187 impl<T: ObjectType> Deref for ParentField<T> {
188     type Target = T;
189 
190     #[inline(always)]
deref(&self) -> &Self::Target191     fn deref(&self) -> &Self::Target {
192         &self.0
193     }
194 }
195 
196 impl<T: ObjectType> DerefMut for ParentField<T> {
197     #[inline(always)]
deref_mut(&mut self) -> &mut Self::Target198     fn deref_mut(&mut self) -> &mut Self::Target {
199         &mut self.0
200     }
201 }
202 
203 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
204     #[inline(always)]
fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error>205     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
206         self.0.fmt(f)
207     }
208 }
209 
210 /// This struct knows that the superclasses of the object have already been
211 /// initialized.
212 ///
213 /// The declaration of `ParentInit` is.. *"a kind of magic"*.  It uses a
214 /// technique that is found in several crates, the main ones probably being
215 /// `ghost-cell` (in fact it was introduced by the [`GhostCell` paper](https://plv.mpi-sws.org/rustbelt/ghostcell/))
216 /// and `generativity`.
217 ///
218 /// The `PhantomData` makes the `ParentInit` type *invariant* with respect to
219 /// the lifetime argument `'init`.  This, together with the `for<'...>` in
220 /// `[ParentInit::with]`, block any attempt of the compiler to be creative when
221 /// operating on types of type `ParentInit` and to extend their lifetimes.  In
222 /// particular, it ensures that the `ParentInit` cannot be made to outlive the
223 /// `rust_instance_init()` function that creates it, and therefore that the
224 /// `&'init T` reference is valid.
225 ///
226 /// This implementation of the same concept, without the QOM baggage, can help
227 /// understanding the effect:
228 ///
229 /// ```
230 /// use std::marker::PhantomData;
231 ///
232 /// #[derive(PartialEq, Eq)]
233 /// pub struct Jail<'closure, T: Copy>(&'closure T, PhantomData<fn(&'closure ()) -> &'closure ()>);
234 ///
235 /// impl<'closure, T: Copy> Jail<'closure, T> {
236 ///     fn get(&self) -> T {
237 ///         *self.0
238 ///     }
239 ///
240 ///     #[inline]
241 ///     fn with<U>(v: T, f: impl for<'id> FnOnce(Jail<'id, T>) -> U) -> U {
242 ///         let parent_init = Jail(&v, PhantomData);
243 ///         f(parent_init)
244 ///     }
245 /// }
246 /// ```
247 ///
248 /// It's impossible to escape the `Jail`; `token1` cannot be moved out of the
249 /// closure:
250 ///
251 /// ```ignore
252 /// let x = 42;
253 /// let escape = Jail::with(&x, |token1| {
254 ///     println!("{}", token1.get());
255 ///     // fails to compile...
256 ///     token1
257 /// });
258 /// // ... so you cannot do this:
259 /// println!("{}", escape.get());
260 /// ```
261 ///
262 /// Likewise, in the QOM case the `ParentInit` cannot be moved out of
263 /// `instance_init()`. Without this trick it would be possible to stash a
264 /// `ParentInit` and use it later to access uninitialized memory.
265 ///
266 /// Here is another example, showing how separately-created "identities" stay
267 /// isolated:
268 ///
269 /// ```ignore
270 /// impl<'closure, T: Copy> Clone for Jail<'closure, T> {
271 ///     fn clone(&self) -> Jail<'closure, T> {
272 ///         Jail(self.0, PhantomData)
273 ///     }
274 /// }
275 ///
276 /// fn main() {
277 ///     Jail::with(42, |token1| {
278 ///         // this works and returns true: the clone has the same "identity"
279 ///         println!("{}", token1 == token1.clone());
280 ///         Jail::with(42, |token2| {
281 ///             // here the outer token remains accessible...
282 ///             println!("{}", token1.get());
283 ///             // ... but the two are separate: this fails to compile:
284 ///             println!("{}", token1 == token2);
285 ///         });
286 ///     });
287 /// }
288 /// ```
289 pub struct ParentInit<'init, T>(
290     &'init mut MaybeUninit<T>,
291     PhantomData<fn(&'init ()) -> &'init ()>,
292 );
293 
294 impl<'init, T> ParentInit<'init, T> {
295     #[inline]
with(obj: &'init mut MaybeUninit<T>, f: impl for<'id> FnOnce(ParentInit<'id, T>))296     pub fn with(obj: &'init mut MaybeUninit<T>, f: impl for<'id> FnOnce(ParentInit<'id, T>)) {
297         let parent_init = ParentInit(obj, PhantomData);
298         f(parent_init)
299     }
300 }
301 
302 impl<T: ObjectType> ParentInit<'_, T> {
303     /// Return the receiver as a mutable raw pointer to Object.
304     ///
305     /// # Safety
306     ///
307     /// Fields beyond `Object` could be uninitialized and it's your
308     /// responsibility to avoid that they're used when the pointer is
309     /// dereferenced, either directly or through a cast.
as_object_mut_ptr(&self) -> *mut bindings::Object310     pub fn as_object_mut_ptr(&self) -> *mut bindings::Object {
311         self.as_object_ptr().cast_mut()
312     }
313 
314     /// Return the receiver as a mutable raw pointer to Object.
315     ///
316     /// # Safety
317     ///
318     /// Fields beyond `Object` could be uninitialized and it's your
319     /// responsibility to avoid that they're used when the pointer is
320     /// dereferenced, either directly or through a cast.
as_object_ptr(&self) -> *const bindings::Object321     pub fn as_object_ptr(&self) -> *const bindings::Object {
322         self.0.as_ptr().cast()
323     }
324 }
325 
326 impl<'a, T: ObjectImpl> ParentInit<'a, T> {
327     /// Convert from a derived type to one of its parent types, which
328     /// have already been initialized.
329     ///
330     /// # Safety
331     ///
332     /// Structurally this is always a safe operation; the [`IsA`] trait
333     /// provides static verification trait that `Self` dereferences to `U` or
334     /// a child of `U`, and only parent types of `T` are allowed.
335     ///
336     /// However, while the fields of the resulting reference are initialized,
337     /// calls might use uninitialized fields of the subclass.  It is your
338     /// responsibility to avoid this.
upcast<U: ObjectType>(&self) -> &'a U where T::ParentType: IsA<U>,339     pub unsafe fn upcast<U: ObjectType>(&self) -> &'a U
340     where
341         T::ParentType: IsA<U>,
342     {
343         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
344         // the parent has been initialized before `instance_init `is called
345         unsafe { &*(self.0.as_ptr().cast::<U>()) }
346     }
347 
348     /// Convert from a derived type to one of its parent types, which
349     /// have already been initialized.
350     ///
351     /// # Safety
352     ///
353     /// Structurally this is always a safe operation; the [`IsA`] trait
354     /// provides static verification trait that `Self` dereferences to `U` or
355     /// a child of `U`, and only parent types of `T` are allowed.
356     ///
357     /// However, while the fields of the resulting reference are initialized,
358     /// calls might use uninitialized fields of the subclass.  It is your
359     /// responsibility to avoid this.
upcast_mut<U: ObjectType>(&mut self) -> &'a mut U where T::ParentType: IsA<U>,360     pub unsafe fn upcast_mut<U: ObjectType>(&mut self) -> &'a mut U
361     where
362         T::ParentType: IsA<U>,
363     {
364         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
365         // the parent has been initialized before `instance_init `is called
366         unsafe { &mut *(self.0.as_mut_ptr().cast::<U>()) }
367     }
368 }
369 
370 impl<T> Deref for ParentInit<'_, T> {
371     type Target = MaybeUninit<T>;
372 
deref(&self) -> &Self::Target373     fn deref(&self) -> &Self::Target {
374         self.0
375     }
376 }
377 
378 impl<T> DerefMut for ParentInit<'_, T> {
deref_mut(&mut self) -> &mut Self::Target379     fn deref_mut(&mut self) -> &mut Self::Target {
380         self.0
381     }
382 }
383 
rust_instance_init<T: ObjectImpl>(obj: *mut bindings::Object)384 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut bindings::Object) {
385     let mut state = NonNull::new(obj).unwrap().cast::<MaybeUninit<T>>();
386 
387     // SAFETY: obj is an instance of T, since rust_instance_init<T>
388     // is called from QOM core as the instance_init function
389     // for class T
390     unsafe {
391         ParentInit::with(state.as_mut(), |parent_init| {
392             T::INSTANCE_INIT.unwrap()(parent_init);
393         });
394     }
395 }
396 
rust_instance_post_init<T: ObjectImpl>(obj: *mut bindings::Object)397 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut bindings::Object) {
398     let state = NonNull::new(obj).unwrap().cast::<T>();
399     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
400     // is called from QOM core as the instance_post_init function
401     // for class T
402     T::INSTANCE_POST_INIT.unwrap()(unsafe { state.as_ref() });
403 }
404 
rust_class_init<T: ObjectType + ObjectImpl>( klass: *mut ObjectClass, _data: *const c_void, )405 unsafe extern "C" fn rust_class_init<T: ObjectType + ObjectImpl>(
406     klass: *mut ObjectClass,
407     _data: *const c_void,
408 ) {
409     let mut klass = NonNull::new(klass)
410         .unwrap()
411         .cast::<<T as ObjectType>::Class>();
412     // SAFETY: klass is a T::Class, since rust_class_init<T>
413     // is called from QOM core as the class_init function
414     // for class T
415     <T as ObjectImpl>::CLASS_INIT(unsafe { klass.as_mut() })
416 }
417 
drop_object<T: ObjectImpl>(obj: *mut bindings::Object)418 unsafe extern "C" fn drop_object<T: ObjectImpl>(obj: *mut bindings::Object) {
419     // SAFETY: obj is an instance of T, since drop_object<T> is called
420     // from the QOM core function object_deinit() as the instance_finalize
421     // function for class T.  Note that while object_deinit() will drop the
422     // superclass field separately after this function returns, `T` must
423     // implement the unsafe trait ObjectType; the safety rules for the
424     // trait mandate that the parent field is manually dropped.
425     unsafe { std::ptr::drop_in_place(obj.cast::<T>()) }
426 }
427 
428 /// Trait exposed by all structs corresponding to QOM objects.
429 ///
430 /// # Safety
431 ///
432 /// For classes declared in C:
433 ///
434 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
435 ///
436 /// - the first field of the struct must be of the instance type corresponding
437 ///   to the superclass, as declared in the `TypeInfo`
438 ///
439 /// - likewise, the first field of the `Class` struct must be of the class type
440 ///   corresponding to the superclass
441 ///
442 /// For classes declared in Rust and implementing [`ObjectImpl`]:
443 ///
444 /// - the struct must be `#[repr(C)]`;
445 ///
446 /// - the first field of the struct must be of type
447 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
448 ///   [`ObjectImpl::ParentType`]
449 ///
450 /// - the first field of the `Class` must be of the class struct corresponding
451 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
452 ///   is not needed here.
453 ///
454 /// In both cases, having a separate class type is not necessary if the subclass
455 /// does not add any field.
456 pub unsafe trait ObjectType: Sized {
457     /// The QOM class object corresponding to this struct.  This is used
458     /// to automatically generate a `class_init` method.
459     type Class;
460 
461     /// The name of the type, which can be passed to `object_new()` to
462     /// generate an instance of this type.
463     const TYPE_NAME: &'static CStr;
464 
465     /// Return the receiver as an Object.  This is always safe, even
466     /// if this type represents an interface.
as_object(&self) -> &Object467     fn as_object(&self) -> &Object {
468         unsafe { &*self.as_ptr().cast() }
469     }
470 
471     /// Return the receiver as a const raw pointer to Object.
472     /// This is preferable to `as_object_mut_ptr()` if a C
473     /// function only needs a `const Object *`.
as_object_ptr(&self) -> *const bindings::Object474     fn as_object_ptr(&self) -> *const bindings::Object {
475         self.as_object().as_ptr()
476     }
477 
478     /// Return the receiver as a mutable raw pointer to Object.
479     ///
480     /// # Safety
481     ///
482     /// This cast is always safe, but because the result is mutable
483     /// and the incoming reference is not, this should only be used
484     /// for calls to C functions, and only if needed.
as_object_mut_ptr(&self) -> *mut bindings::Object485     unsafe fn as_object_mut_ptr(&self) -> *mut bindings::Object {
486         self.as_object().as_mut_ptr()
487     }
488 }
489 
490 /// Trait exposed by all structs corresponding to QOM interfaces.
491 /// Unlike `ObjectType`, it is implemented on the class type (which provides
492 /// the vtable for the interfaces).
493 ///
494 /// # Safety
495 ///
496 /// `TYPE` must match the contents of the `TypeInfo` as found in the C code;
497 /// right now, interfaces can only be declared in C.
498 pub unsafe trait InterfaceType: Sized {
499     /// The name of the type, which can be passed to
500     /// `object_class_dynamic_cast()` to obtain the pointer to the vtable
501     /// for this interface.
502     const TYPE_NAME: &'static CStr;
503 
504     /// Return the vtable for the interface; `U` is the type that
505     /// lists the interface in its `TypeInfo`.
506     ///
507     /// # Examples
508     ///
509     /// This function is usually called by a `class_init` method in `U::Class`.
510     /// For example, `DeviceClass::class_init<T>` initializes its `Resettable`
511     /// interface as follows:
512     ///
513     /// ```ignore
514     /// ResettableClass::cast::<DeviceState>(self).class_init::<T>();
515     /// ```
516     ///
517     /// where `T` is the concrete subclass that is being initialized.
518     ///
519     /// # Panics
520     ///
521     /// Panic if the incoming argument if `T` does not implement the interface.
cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self522     fn cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self {
523         unsafe {
524             // SAFETY: upcasting to ObjectClass is always valid, and the
525             // return type is either NULL or the argument itself
526             let result: *mut Self = object_class_dynamic_cast(
527                 (klass as *mut U::Class).cast(),
528                 Self::TYPE_NAME.as_ptr(),
529             )
530             .cast();
531             result.as_mut().unwrap()
532         }
533     }
534 }
535 
536 /// This trait provides safe casting operations for QOM objects to raw pointers,
537 /// to be used for example for FFI. The trait can be applied to any kind of
538 /// reference or smart pointers, and enforces correctness through the [`IsA`]
539 /// trait.
540 pub trait ObjectDeref: Deref
541 where
542     Self::Target: ObjectType,
543 {
544     /// Convert to a const Rust pointer, to be used for example for FFI.
545     /// The target pointer type must be the type of `self` or a superclass
as_ptr<U: ObjectType>(&self) -> *const U where Self::Target: IsA<U>,546     fn as_ptr<U: ObjectType>(&self) -> *const U
547     where
548         Self::Target: IsA<U>,
549     {
550         let ptr: *const Self::Target = self.deref();
551         ptr.cast::<U>()
552     }
553 
554     /// Convert to a mutable Rust pointer, to be used for example for FFI.
555     /// The target pointer type must be the type of `self` or a superclass.
556     /// Used to implement interior mutability for objects.
557     ///
558     /// # Safety
559     ///
560     /// This method is safe because only the actual dereference of the pointer
561     /// has to be unsafe.  Bindings to C APIs will use it a lot, but care has
562     /// to be taken because it overrides the const-ness of `&self`.
as_mut_ptr<U: ObjectType>(&self) -> *mut U where Self::Target: IsA<U>,563     fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
564     where
565         Self::Target: IsA<U>,
566     {
567         #[allow(clippy::as_ptr_cast_mut)]
568         {
569             self.as_ptr::<U>().cast_mut()
570         }
571     }
572 }
573 
574 /// Trait that adds extra functionality for `&T` where `T` is a QOM
575 /// object type.  Allows conversion to/from C objects in generic code.
576 pub trait ObjectCast: ObjectDeref + Copy
577 where
578     Self::Target: ObjectType,
579 {
580     /// Safely convert from a derived type to one of its parent types.
581     ///
582     /// This is always safe; the [`IsA`] trait provides static verification
583     /// trait that `Self` dereferences to `U` or a child of `U`.
upcast<'a, U: ObjectType>(self) -> &'a U where Self::Target: IsA<U>, Self: 'a,584     fn upcast<'a, U: ObjectType>(self) -> &'a U
585     where
586         Self::Target: IsA<U>,
587         Self: 'a,
588     {
589         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
590         unsafe { self.unsafe_cast::<U>() }
591     }
592 
593     /// Attempt to convert to a derived type.
594     ///
595     /// Returns `None` if the object is not actually of type `U`. This is
596     /// verified at runtime by checking the object's type information.
downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U> where Self: 'a,597     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
598     where
599         Self: 'a,
600     {
601         self.dynamic_cast::<U>()
602     }
603 
604     /// Attempt to convert between any two types in the QOM hierarchy.
605     ///
606     /// Returns `None` if the object is not actually of type `U`. This is
607     /// verified at runtime by checking the object's type information.
dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U> where Self: 'a,608     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
609     where
610         Self: 'a,
611     {
612         unsafe {
613             // SAFETY: upcasting to Object is always valid, and the
614             // return type is either NULL or the argument itself
615             let result: *const U =
616                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
617 
618             result.as_ref()
619         }
620     }
621 
622     /// Convert to any QOM type without verification.
623     ///
624     /// # Safety
625     ///
626     /// What safety? You need to know yourself that the cast is correct; only
627     /// use when performance is paramount.  It is still better than a raw
628     /// pointer `cast()`, which does not even check that you remain in the
629     /// realm of QOM `ObjectType`s.
630     ///
631     /// `unsafe_cast::<Object>()` is always safe.
unsafe_cast<'a, U: ObjectType>(self) -> &'a U where Self: 'a,632     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
633     where
634         Self: 'a,
635     {
636         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
637     }
638 }
639 
640 impl<T: ObjectType> ObjectDeref for &T {}
641 impl<T: ObjectType> ObjectCast for &T {}
642 
643 impl<T: ObjectType> ObjectDeref for &mut T {}
644 
645 /// Trait a type must implement to be registered with QEMU.
646 pub trait ObjectImpl: ObjectType + IsA<Object> {
647     /// The parent of the type.  This should match the first field of the
648     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
649     type ParentType: ObjectType;
650 
651     /// Whether the object can be instantiated
652     const ABSTRACT: bool = false;
653 
654     /// Function that is called to initialize an object.  The parent class will
655     /// have already been initialized so the type is only responsible for
656     /// initializing its own members.
657     ///
658     /// FIXME: The argument is not really a valid reference. `&mut
659     /// MaybeUninit<Self>` would be a better description.
660     const INSTANCE_INIT: Option<unsafe fn(ParentInit<Self>)> = None;
661 
662     /// Function that is called to finish initialization of an object, once
663     /// `INSTANCE_INIT` functions have been called.
664     const INSTANCE_POST_INIT: Option<fn(&Self)> = None;
665 
666     /// Called on descendant classes after all parent class initialization
667     /// has occurred, but before the class itself is initialized.  This
668     /// is only useful if a class is not a leaf, and can be used to undo
669     /// the effects of copying the contents of the parent's class struct
670     /// to the descendants.
671     const CLASS_BASE_INIT: Option<
672         unsafe extern "C" fn(klass: *mut ObjectClass, data: *const c_void),
673     > = None;
674 
675     const TYPE_INFO: TypeInfo = TypeInfo {
676         name: Self::TYPE_NAME.as_ptr(),
677         parent: Self::ParentType::TYPE_NAME.as_ptr(),
678         instance_size: core::mem::size_of::<Self>(),
679         instance_align: core::mem::align_of::<Self>(),
680         instance_init: match Self::INSTANCE_INIT {
681             None => None,
682             Some(_) => Some(rust_instance_init::<Self>),
683         },
684         instance_post_init: match Self::INSTANCE_POST_INIT {
685             None => None,
686             Some(_) => Some(rust_instance_post_init::<Self>),
687         },
688         instance_finalize: Some(drop_object::<Self>),
689         abstract_: Self::ABSTRACT,
690         class_size: core::mem::size_of::<Self::Class>(),
691         class_init: Some(rust_class_init::<Self>),
692         class_base_init: Self::CLASS_BASE_INIT,
693         class_data: core::ptr::null(),
694         interfaces: core::ptr::null(),
695     };
696 
697     // methods on ObjectClass
698     const UNPARENT: Option<fn(&Self)> = None;
699 
700     /// Store into the argument the virtual method implementations
701     /// for `Self`.  On entry, the virtual method pointers are set to
702     /// the default values coming from the parent classes; the function
703     /// can change them to override virtual methods of a parent class.
704     ///
705     /// Usually defined simply as `Self::Class::class_init::<Self>`;
706     /// however a default implementation cannot be included here, because the
707     /// bounds that the `Self::Class::class_init` method places on `Self` are
708     /// not known in advance.
709     ///
710     /// # Safety
711     ///
712     /// While `klass`'s parent class is initialized on entry, the other fields
713     /// are all zero; it is therefore assumed that all fields in `T` can be
714     /// zeroed, otherwise it would not be possible to provide the class as a
715     /// `&mut T`.  TODO: it may be possible to add an unsafe trait that checks
716     /// that all fields *after the parent class* (but not the parent class
717     /// itself) are Zeroable.  This unsafe trait can be added via a derive
718     /// macro.
719     const CLASS_INIT: fn(&mut Self::Class);
720 }
721 
722 /// # Safety
723 ///
724 /// We expect the FFI user of this function to pass a valid pointer that
725 /// can be downcasted to type `T`. We also expect the device is
726 /// readable/writeable from one thread at any time.
rust_unparent_fn<T: ObjectImpl>(dev: *mut bindings::Object)727 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut bindings::Object) {
728     let state = NonNull::new(dev).unwrap().cast::<T>();
729     T::UNPARENT.unwrap()(unsafe { state.as_ref() });
730 }
731 
732 impl ObjectClass {
733     /// Fill in the virtual methods of `ObjectClass` based on the definitions in
734     /// the `ObjectImpl` trait.
class_init<T: ObjectImpl>(&mut self)735     pub fn class_init<T: ObjectImpl>(&mut self) {
736         if <T as ObjectImpl>::UNPARENT.is_some() {
737             self.unparent = Some(rust_unparent_fn::<T>);
738         }
739     }
740 }
741 
742 unsafe impl ObjectType for Object {
743     type Class = ObjectClass;
744     const TYPE_NAME: &'static CStr =
745         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
746 }
747 
748 /// A reference-counted pointer to a QOM object.
749 ///
750 /// `Owned<T>` wraps `T` with automatic reference counting.  It increases the
751 /// reference count when created via [`Owned::from`] or cloned, and decreases
752 /// it when dropped.  This ensures that the reference count remains elevated
753 /// as long as any `Owned<T>` references to it exist.
754 ///
755 /// `Owned<T>` can be used for two reasons:
756 /// * because the lifetime of the QOM object is unknown and someone else could
757 ///   take a reference (similar to `Arc<T>`, for example): in this case, the
758 ///   object can escape and outlive the Rust struct that contains the `Owned<T>`
759 ///   field;
760 ///
761 /// * to ensure that the object stays alive until after `Drop::drop` is called
762 ///   on the Rust struct: in this case, the object will always die together with
763 ///   the Rust struct that contains the `Owned<T>` field.
764 ///
765 /// Child properties are an example of the second case: in C, an object that
766 /// is created with `object_initialize_child` will die *before*
767 /// `instance_finalize` is called, whereas Rust expects the struct to have valid
768 /// contents when `Drop::drop` is called.  Therefore Rust structs that have
769 /// child properties need to keep a reference to the child object.  Right now
770 /// this can be done with `Owned<T>`; in the future one might have a separate
771 /// `Child<'parent, T>` smart pointer that keeps a reference to a `T`, like
772 /// `Owned`, but does not allow cloning.
773 ///
774 /// Note that dropping an `Owned<T>` requires the big QEMU lock to be taken.
775 #[repr(transparent)]
776 #[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
777 pub struct Owned<T: ObjectType>(NonNull<T>);
778 
779 // The following rationale for safety is taken from Linux's kernel::sync::Arc.
780 
781 // SAFETY: It is safe to send `Owned<T>` to another thread when the underlying
782 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
783 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
784 // thread that has an `Owned<T>` may ultimately access `T` using a
785 // mutable reference when the reference count reaches zero and `T` is dropped.
786 unsafe impl<T: ObjectType + Send + Sync> Send for Owned<T> {}
787 
788 // SAFETY: It is safe to send `&Owned<T>` to another thread when the underlying
789 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
790 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
791 // thread that has a `&Owned<T>` may clone it and get an `Owned<T>` on that
792 // thread, so the thread may ultimately access `T` using a mutable reference
793 // when the reference count reaches zero and `T` is dropped.
794 unsafe impl<T: ObjectType + Sync + Send> Sync for Owned<T> {}
795 
796 impl<T: ObjectType> Owned<T> {
797     /// Convert a raw C pointer into an owned reference to the QOM
798     /// object it points to.  The object's reference count will be
799     /// decreased when the `Owned` is dropped.
800     ///
801     /// # Panics
802     ///
803     /// Panics if `ptr` is NULL.
804     ///
805     /// # Safety
806     ///
807     /// The caller must indeed own a reference to the QOM object.
808     /// The object must not be embedded in another unless the outer
809     /// object is guaranteed to have a longer lifetime.
810     ///
811     /// A raw pointer obtained via [`Owned::into_raw()`] can always be passed
812     /// back to `from_raw()` (assuming the original `Owned` was valid!),
813     /// since the owned reference remains there between the calls to
814     /// `into_raw()` and `from_raw()`.
from_raw(ptr: *const T) -> Self815     pub unsafe fn from_raw(ptr: *const T) -> Self {
816         // SAFETY NOTE: while NonNull requires a mutable pointer, only
817         // Deref is implemented so the pointer passed to from_raw
818         // remains const
819         Owned(NonNull::new(ptr.cast_mut()).unwrap())
820     }
821 
822     /// Obtain a raw C pointer from a reference.  `src` is consumed
823     /// and the reference is leaked.
824     #[allow(clippy::missing_const_for_fn)]
into_raw(src: Owned<T>) -> *mut T825     pub fn into_raw(src: Owned<T>) -> *mut T {
826         let src = ManuallyDrop::new(src);
827         src.0.as_ptr()
828     }
829 
830     /// Increase the reference count of a QOM object and return
831     /// a new owned reference to it.
832     ///
833     /// # Safety
834     ///
835     /// The object must not be embedded in another, unless the outer
836     /// object is guaranteed to have a longer lifetime.
from(obj: &T) -> Self837     pub unsafe fn from(obj: &T) -> Self {
838         unsafe {
839             object_ref(obj.as_object_mut_ptr().cast::<c_void>());
840 
841             // SAFETY NOTE: while NonNull requires a mutable pointer, only
842             // Deref is implemented so the reference passed to from_raw
843             // remains shared
844             Owned(NonNull::new_unchecked(obj.as_mut_ptr()))
845         }
846     }
847 }
848 
849 impl<T: ObjectType> Clone for Owned<T> {
clone(&self) -> Self850     fn clone(&self) -> Self {
851         // SAFETY: creation method is unsafe; whoever calls it has
852         // responsibility that the pointer is valid, and remains valid
853         // throughout the lifetime of the `Owned<T>` and its clones.
854         unsafe { Owned::from(self.deref()) }
855     }
856 }
857 
858 impl<T: ObjectType> Deref for Owned<T> {
859     type Target = T;
860 
deref(&self) -> &Self::Target861     fn deref(&self) -> &Self::Target {
862         // SAFETY: creation method is unsafe; whoever calls it has
863         // responsibility that the pointer is valid, and remains valid
864         // throughout the lifetime of the `Owned<T>` and its clones.
865         // With that guarantee, reference counting ensures that
866         // the object remains alive.
867         unsafe { &*self.0.as_ptr() }
868     }
869 }
870 impl<T: ObjectType> ObjectDeref for Owned<T> {}
871 
872 impl<T: ObjectType> Drop for Owned<T> {
drop(&mut self)873     fn drop(&mut self) {
874         assert!(bql_locked());
875         // SAFETY: creation method is unsafe, and whoever calls it has
876         // responsibility that the pointer is valid, and remains valid
877         // throughout the lifetime of the `Owned<T>` and its clones.
878         unsafe {
879             object_unref(self.as_object_mut_ptr().cast::<c_void>());
880         }
881     }
882 }
883 
884 impl<T: IsA<Object>> fmt::Debug for Owned<T> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result885     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
886         self.deref().debug_fmt(f)
887     }
888 }
889 
890 /// Trait for class methods exposed by the Object class.  The methods can be
891 /// called on all objects that have the trait `IsA<Object>`.
892 ///
893 /// The trait should only be used through the blanket implementation,
894 /// which guarantees safety via `IsA`
895 pub trait ObjectClassMethods: IsA<Object> {
896     /// Return a new reference counted instance of this class
new() -> Owned<Self>897     fn new() -> Owned<Self> {
898         assert!(bql_locked());
899         // SAFETY: the object created by object_new is allocated on
900         // the heap and has a reference count of 1
901         unsafe {
902             let raw_obj = object_new(Self::TYPE_NAME.as_ptr());
903             let obj = Object::from_raw(raw_obj).unsafe_cast::<Self>();
904             Owned::from_raw(obj)
905         }
906     }
907 }
908 
909 /// Trait for methods exposed by the Object class.  The methods can be
910 /// called on all objects that have the trait `IsA<Object>`.
911 ///
912 /// The trait should only be used through the blanket implementation,
913 /// which guarantees safety via `IsA`
914 pub trait ObjectMethods: ObjectDeref
915 where
916     Self::Target: IsA<Object>,
917 {
918     /// Return the name of the type of `self`
typename(&self) -> std::borrow::Cow<'_, str>919     fn typename(&self) -> std::borrow::Cow<'_, str> {
920         let obj = self.upcast::<Object>();
921         // SAFETY: safety of this is the requirement for implementing IsA
922         // The result of the C API has static lifetime
923         unsafe {
924             let p = object_get_typename(obj.as_mut_ptr());
925             CStr::from_ptr(p).to_string_lossy()
926         }
927     }
928 
get_class(&self) -> &'static <Self::Target as ObjectType>::Class929     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
930         let obj = self.upcast::<Object>();
931 
932         // SAFETY: all objects can call object_get_class; the actual class
933         // type is guaranteed by the implementation of `ObjectType` and
934         // `ObjectImpl`.
935         let klass: &'static <Self::Target as ObjectType>::Class =
936             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
937 
938         klass
939     }
940 
941     /// Convenience function for implementing the Debug trait
debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result942     fn debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
943         f.debug_tuple(&self.typename())
944             .field(&(self as *const Self))
945             .finish()
946     }
947 }
948 
949 impl<T> ObjectClassMethods for T where T: IsA<Object> {}
950 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
951