xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 #include <linux/hmm.h>
38 #include <linux/hmm-dma.h>
39 #include <linux/pci-p2pdma.h>
40 
41 #include "mlx5_ib.h"
42 #include "cmd.h"
43 #include "umr.h"
44 #include "qp.h"
45 
46 #include <linux/mlx5/eq.h>
47 
48 /* Contains the details of a pagefault. */
49 struct mlx5_pagefault {
50 	u32			bytes_committed;
51 	u64			token;
52 	u8			event_subtype;
53 	u8			type;
54 	union {
55 		/* Initiator or send message responder pagefault details. */
56 		struct {
57 			/* Received packet size, only valid for responders. */
58 			u32	packet_size;
59 			/*
60 			 * Number of resource holding WQE, depends on type.
61 			 */
62 			u32	wq_num;
63 			/*
64 			 * WQE index. Refers to either the send queue or
65 			 * receive queue, according to event_subtype.
66 			 */
67 			u16	wqe_index;
68 		} wqe;
69 		/* RDMA responder pagefault details */
70 		struct {
71 			u32	r_key;
72 			/*
73 			 * Received packet size, minimal size page fault
74 			 * resolution required for forward progress.
75 			 */
76 			u32	packet_size;
77 			u32	rdma_op_len;
78 			u64	rdma_va;
79 		} rdma;
80 		struct {
81 			u64	va;
82 			u32	mkey;
83 			u32	fault_byte_count;
84 			u32     prefetch_before_byte_count;
85 			u32     prefetch_after_byte_count;
86 			u8	flags;
87 		} memory;
88 	};
89 
90 	struct mlx5_ib_pf_eq	*eq;
91 	struct work_struct	work;
92 };
93 
94 #define MAX_PREFETCH_LEN (4*1024*1024U)
95 
96 /* Timeout in ms to wait for an active mmu notifier to complete when handling
97  * a pagefault. */
98 #define MMU_NOTIFIER_TIMEOUT 1000
99 
100 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
101 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
102 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
103 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
104 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
105 
106 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
107 
108 static u64 mlx5_imr_ksm_entries;
109 
populate_klm(struct mlx5_klm * pklm,size_t idx,size_t nentries,struct mlx5_ib_mr * imr,int flags)110 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
111 			struct mlx5_ib_mr *imr, int flags)
112 {
113 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
114 	struct mlx5_klm *end = pklm + nentries;
115 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
116 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
117 			     cpu_to_be32(imr->null_mmkey.key) :
118 			     mr_to_mdev(imr)->mkeys.null_mkey;
119 	u64 va =
120 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
121 
122 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
123 		for (; pklm != end; pklm++, idx++, va += step) {
124 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
125 			pklm->key = key;
126 			pklm->va = cpu_to_be64(va);
127 		}
128 		return;
129 	}
130 
131 	/*
132 	 * The locking here is pretty subtle. Ideally the implicit_children
133 	 * xarray would be protected by the umem_mutex, however that is not
134 	 * possible. Instead this uses a weaker update-then-lock pattern:
135 	 *
136 	 *    xa_store()
137 	 *    mutex_lock(umem_mutex)
138 	 *     mlx5r_umr_update_xlt()
139 	 *    mutex_unlock(umem_mutex)
140 	 *    destroy lkey
141 	 *
142 	 * ie any change the xarray must be followed by the locked update_xlt
143 	 * before destroying.
144 	 *
145 	 * The umem_mutex provides the acquire/release semantic needed to make
146 	 * the xa_store() visible to a racing thread.
147 	 */
148 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
149 
150 	for (; pklm != end; pklm++, idx++, va += step) {
151 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
152 
153 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
154 		if (mtt) {
155 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
156 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
157 		} else {
158 			pklm->key = key;
159 			pklm->va = cpu_to_be64(va);
160 		}
161 	}
162 }
163 
populate_mtt(__be64 * pas,size_t start,size_t nentries,struct mlx5_ib_mr * mr,int flags)164 static int populate_mtt(__be64 *pas, size_t start, size_t nentries,
165 			struct mlx5_ib_mr *mr, int flags)
166 {
167 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
168 	bool downgrade = flags & MLX5_IB_UPD_XLT_DOWNGRADE;
169 	struct pci_p2pdma_map_state p2pdma_state = {};
170 	struct ib_device *dev = odp->umem.ibdev;
171 	size_t i;
172 
173 	if (flags & MLX5_IB_UPD_XLT_ZAP)
174 		return 0;
175 
176 	for (i = 0; i < nentries; i++) {
177 		unsigned long pfn = odp->map.pfn_list[start + i];
178 		dma_addr_t dma_addr;
179 
180 		pfn = odp->map.pfn_list[start + i];
181 		if (!(pfn & HMM_PFN_VALID))
182 			/* ODP initialization */
183 			continue;
184 
185 		dma_addr = hmm_dma_map_pfn(dev->dma_device, &odp->map,
186 					   start + i, &p2pdma_state);
187 		if (ib_dma_mapping_error(dev, dma_addr))
188 			return -EFAULT;
189 
190 		dma_addr |= MLX5_IB_MTT_READ;
191 		if ((pfn & HMM_PFN_WRITE) && !downgrade)
192 			dma_addr |= MLX5_IB_MTT_WRITE;
193 
194 		pas[i] = cpu_to_be64(dma_addr);
195 		odp->npages++;
196 	}
197 	return 0;
198 }
199 
mlx5_odp_populate_xlt(void * xlt,size_t idx,size_t nentries,struct mlx5_ib_mr * mr,int flags)200 int mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
201 			  struct mlx5_ib_mr *mr, int flags)
202 {
203 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
204 		populate_klm(xlt, idx, nentries, mr, flags);
205 		return 0;
206 	} else {
207 		return populate_mtt(xlt, idx, nentries, mr, flags);
208 	}
209 }
210 
211 /*
212  * This must be called after the mr has been removed from implicit_children.
213  * NOTE: The MR does not necessarily have to be
214  * empty here, parallel page faults could have raced with the free process and
215  * added pages to it.
216  */
free_implicit_child_mr_work(struct work_struct * work)217 static void free_implicit_child_mr_work(struct work_struct *work)
218 {
219 	struct mlx5_ib_mr *mr =
220 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
221 	struct mlx5_ib_mr *imr = mr->parent;
222 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
223 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
224 
225 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
226 
227 	mutex_lock(&odp_imr->umem_mutex);
228 	mlx5r_umr_update_xlt(mr->parent,
229 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
230 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
231 	mutex_unlock(&odp_imr->umem_mutex);
232 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
233 
234 	mlx5r_deref_odp_mkey(&imr->mmkey);
235 }
236 
destroy_unused_implicit_child_mr(struct mlx5_ib_mr * mr)237 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
238 {
239 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
240 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
241 	struct mlx5_ib_mr *imr = mr->parent;
242 
243 	/*
244 	 * If userspace is racing freeing the parent implicit ODP MR then we can
245 	 * loose the race with parent destruction. In this case
246 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
247 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
248 	 * we are under its umem_mutex.
249 	 */
250 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
251 		return;
252 
253 	xa_lock(&imr->implicit_children);
254 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
255 	    mr) {
256 		xa_unlock(&imr->implicit_children);
257 		mlx5r_deref_odp_mkey(&imr->mmkey);
258 		return;
259 	}
260 
261 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
262 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
263 			 mlx5_base_mkey(mr->mmkey.key));
264 	xa_unlock(&imr->implicit_children);
265 
266 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
267 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
268 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
269 }
270 
mlx5_ib_invalidate_range(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)271 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
272 				     const struct mmu_notifier_range *range,
273 				     unsigned long cur_seq)
274 {
275 	struct ib_umem_odp *umem_odp =
276 		container_of(mni, struct ib_umem_odp, notifier);
277 	struct mlx5_ib_mr *mr;
278 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
279 	u64 idx = 0, blk_start_idx = 0;
280 	u64 invalidations = 0;
281 	unsigned long start;
282 	unsigned long end;
283 	int in_block = 0;
284 	u64 addr;
285 
286 	if (!mmu_notifier_range_blockable(range))
287 		return false;
288 
289 	mutex_lock(&umem_odp->umem_mutex);
290 	mmu_interval_set_seq(mni, cur_seq);
291 	/*
292 	 * If npages is zero then umem_odp->private may not be setup yet. This
293 	 * does not complete until after the first page is mapped for DMA.
294 	 */
295 	if (!umem_odp->npages)
296 		goto out;
297 	mr = umem_odp->private;
298 	if (!mr)
299 		goto out;
300 
301 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
302 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
303 
304 	/*
305 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
306 	 * while we are doing the invalidation, no page fault will attempt to
307 	 * overwrite the same MTTs.  Concurent invalidations might race us,
308 	 * but they will write 0s as well, so no difference in the end result.
309 	 */
310 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
311 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
312 		/*
313 		 * Strive to write the MTTs in chunks, but avoid overwriting
314 		 * non-existing MTTs. The huristic here can be improved to
315 		 * estimate the cost of another UMR vs. the cost of bigger
316 		 * UMR.
317 		 */
318 		if (umem_odp->map.pfn_list[idx] & HMM_PFN_VALID) {
319 			if (!in_block) {
320 				blk_start_idx = idx;
321 				in_block = 1;
322 			}
323 		} else {
324 			u64 umr_offset = idx & umr_block_mask;
325 
326 			if (in_block && umr_offset == 0) {
327 				mlx5r_umr_update_xlt(mr, blk_start_idx,
328 						     idx - blk_start_idx, 0,
329 						     MLX5_IB_UPD_XLT_ZAP |
330 						     MLX5_IB_UPD_XLT_ATOMIC);
331 				in_block = 0;
332 				/* Count page invalidations */
333 				invalidations += idx - blk_start_idx + 1;
334 			}
335 		}
336 	}
337 	if (in_block) {
338 		mlx5r_umr_update_xlt(mr, blk_start_idx,
339 				     idx - blk_start_idx + 1, 0,
340 				     MLX5_IB_UPD_XLT_ZAP |
341 				     MLX5_IB_UPD_XLT_ATOMIC);
342 		/* Count page invalidations */
343 		invalidations += idx - blk_start_idx + 1;
344 	}
345 
346 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
347 
348 	/*
349 	 * We are now sure that the device will not access the
350 	 * memory. We can safely unmap it, and mark it as dirty if
351 	 * needed.
352 	 */
353 
354 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
355 
356 	if (unlikely(!umem_odp->npages && mr->parent))
357 		destroy_unused_implicit_child_mr(mr);
358 out:
359 	mutex_unlock(&umem_odp->umem_mutex);
360 	return true;
361 }
362 
363 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
364 	.invalidate = mlx5_ib_invalidate_range,
365 };
366 
internal_fill_odp_caps(struct mlx5_ib_dev * dev)367 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
368 {
369 	struct ib_odp_caps *caps = &dev->odp_caps;
370 
371 	memset(caps, 0, sizeof(*caps));
372 
373 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
374 		return;
375 
376 	caps->general_caps = IB_ODP_SUPPORT;
377 
378 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
379 		dev->odp_max_size = U64_MAX;
380 	else
381 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
382 
383 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
384 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
385 
386 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
387 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
388 
389 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
390 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
391 
392 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
393 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
394 
395 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
396 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
397 
398 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
399 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
400 
401 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
403 
404 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
406 
407 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
408 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
409 
410 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
411 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
412 
413 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
414 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
415 
416 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
417 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
418 
419 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
421 
422 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
424 
425 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
426 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
427 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
428 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
429 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
430 }
431 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)432 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
433 				      struct mlx5_pagefault *pfault,
434 				      int error)
435 {
436 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
437 		     pfault->wqe.wq_num : pfault->token;
438 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
439 	void *info;
440 	int err;
441 
442 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
443 
444 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
445 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
446 				    page_fault_info.mem_page_fault_info);
447 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
448 			 pfault->token & 0xffffffff);
449 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
450 			 (pfault->token >> 32) & 0xffff);
451 		MLX5_SET(mem_page_fault_info, info, error, !!error);
452 	} else {
453 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
454 				    page_fault_info.trans_page_fault_info);
455 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
456 			 pfault->type);
457 		MLX5_SET(trans_page_fault_info, info, fault_token,
458 			 pfault->token);
459 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
460 		MLX5_SET(trans_page_fault_info, info, error, !!error);
461 	}
462 
463 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
464 	if (err)
465 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
466 			    wq_num, err);
467 }
468 
implicit_get_child_mr(struct mlx5_ib_mr * imr,unsigned long idx)469 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
470 						unsigned long idx)
471 {
472 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
473 	struct ib_umem_odp *odp;
474 	struct mlx5_ib_mr *mr;
475 	struct mlx5_ib_mr *ret;
476 	int err;
477 
478 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
479 				      idx * MLX5_IMR_MTT_SIZE,
480 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
481 	if (IS_ERR(odp))
482 		return ERR_CAST(odp);
483 
484 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
485 				 MLX5_MKC_ACCESS_MODE_MTT,
486 				 MLX5_IMR_MTT_ENTRIES);
487 	if (IS_ERR(mr)) {
488 		ib_umem_odp_release(odp);
489 		return mr;
490 	}
491 
492 	mr->access_flags = imr->access_flags;
493 	mr->ibmr.pd = imr->ibmr.pd;
494 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
495 	mr->umem = &odp->umem;
496 	mr->ibmr.lkey = mr->mmkey.key;
497 	mr->ibmr.rkey = mr->mmkey.key;
498 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
499 	mr->parent = imr;
500 	odp->private = mr;
501 
502 	/*
503 	 * First refcount is owned by the xarray and second refconut
504 	 * is returned to the caller.
505 	 */
506 	refcount_set(&mr->mmkey.usecount, 2);
507 
508 	err = mlx5r_umr_update_xlt(mr, 0,
509 				   MLX5_IMR_MTT_ENTRIES,
510 				   PAGE_SHIFT,
511 				   MLX5_IB_UPD_XLT_ZAP |
512 				   MLX5_IB_UPD_XLT_ENABLE);
513 	if (err) {
514 		ret = ERR_PTR(err);
515 		goto out_mr;
516 	}
517 
518 	xa_lock(&imr->implicit_children);
519 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
520 			   GFP_KERNEL);
521 	if (unlikely(ret)) {
522 		if (xa_is_err(ret)) {
523 			ret = ERR_PTR(xa_err(ret));
524 			goto out_lock;
525 		}
526 		/*
527 		 * Another thread beat us to creating the child mr, use
528 		 * theirs.
529 		 */
530 		refcount_inc(&ret->mmkey.usecount);
531 		goto out_lock;
532 	}
533 
534 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
535 		ret = xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
536 			       &mr->mmkey, GFP_KERNEL);
537 		if (xa_is_err(ret)) {
538 			ret = ERR_PTR(xa_err(ret));
539 			__xa_erase(&imr->implicit_children, idx);
540 			goto out_lock;
541 		}
542 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
543 	}
544 	xa_unlock(&imr->implicit_children);
545 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
546 	return mr;
547 
548 out_lock:
549 	xa_unlock(&imr->implicit_children);
550 out_mr:
551 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
552 	return ret;
553 }
554 
555 /*
556  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
557  * and each implicit MR needs to assign a private null mkey to get the page
558  * faults on.
559  * The null mkey is created with the properties to enable getting the page
560  * fault for every time it is accessed and having all relevant access flags.
561  */
alloc_implicit_mr_null_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * imr,struct mlx5_ib_pd * pd)562 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
563 				       struct mlx5_ib_mr *imr,
564 				       struct mlx5_ib_pd *pd)
565 {
566 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
567 	void *mkc;
568 	u32 *in;
569 	int err;
570 
571 	in = kzalloc(inlen, GFP_KERNEL);
572 	if (!in)
573 		return -ENOMEM;
574 
575 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
576 	MLX5_SET(create_mkey_in, in, pg_access, 1);
577 
578 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
579 	MLX5_SET(mkc, mkc, a, 1);
580 	MLX5_SET(mkc, mkc, rw, 1);
581 	MLX5_SET(mkc, mkc, rr, 1);
582 	MLX5_SET(mkc, mkc, lw, 1);
583 	MLX5_SET(mkc, mkc, lr, 1);
584 	MLX5_SET(mkc, mkc, free, 0);
585 	MLX5_SET(mkc, mkc, umr_en, 0);
586 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
587 
588 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
589 	MLX5_SET(mkc, mkc, log_page_size, 61);
590 	MLX5_SET(mkc, mkc, length64, 1);
591 	MLX5_SET(mkc, mkc, pd, pd->pdn);
592 	MLX5_SET64(mkc, mkc, start_addr, 0);
593 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
594 
595 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
596 	if (err)
597 		goto free_in;
598 
599 	imr->null_mmkey.type = MLX5_MKEY_NULL;
600 
601 free_in:
602 	kfree(in);
603 	return err;
604 }
605 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)606 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
607 					     int access_flags)
608 {
609 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
610 	struct ib_umem_odp *umem_odp;
611 	struct mlx5_ib_mr *imr;
612 	int err;
613 
614 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
615 		return ERR_PTR(-EOPNOTSUPP);
616 
617 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
618 	if (IS_ERR(umem_odp))
619 		return ERR_CAST(umem_odp);
620 
621 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
622 				  mlx5_imr_ksm_entries);
623 	if (IS_ERR(imr)) {
624 		ib_umem_odp_release(umem_odp);
625 		return imr;
626 	}
627 
628 	imr->access_flags = access_flags;
629 	imr->ibmr.pd = &pd->ibpd;
630 	imr->ibmr.iova = 0;
631 	imr->umem = &umem_odp->umem;
632 	imr->ibmr.lkey = imr->mmkey.key;
633 	imr->ibmr.rkey = imr->mmkey.key;
634 	imr->ibmr.device = &dev->ib_dev;
635 	imr->is_odp_implicit = true;
636 	xa_init(&imr->implicit_children);
637 
638 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
639 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
640 		if (err)
641 			goto out_mr;
642 
643 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
644 		if (err)
645 			goto out_mr;
646 	}
647 
648 	err = mlx5r_umr_update_xlt(imr, 0,
649 				   mlx5_imr_ksm_entries,
650 				   MLX5_KSM_PAGE_SHIFT,
651 				   MLX5_IB_UPD_XLT_INDIRECT |
652 				   MLX5_IB_UPD_XLT_ZAP |
653 				   MLX5_IB_UPD_XLT_ENABLE);
654 	if (err)
655 		goto out_mr;
656 
657 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
658 	if (err)
659 		goto out_mr;
660 
661 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
662 	return imr;
663 out_mr:
664 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
665 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
666 	return ERR_PTR(err);
667 }
668 
mlx5_ib_free_odp_mr(struct mlx5_ib_mr * mr)669 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
670 {
671 	struct mlx5_ib_mr *mtt;
672 	unsigned long idx;
673 
674 	/*
675 	 * If this is an implicit MR it is already invalidated so we can just
676 	 * delete the children mkeys.
677 	 */
678 	xa_for_each(&mr->implicit_children, idx, mtt) {
679 		xa_erase(&mr->implicit_children, idx);
680 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
681 	}
682 
683 	if (mr->null_mmkey.key) {
684 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
685 			 mlx5_base_mkey(mr->null_mmkey.key));
686 
687 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
688 				       mr->null_mmkey.key);
689 	}
690 }
691 
692 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
693 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
694 #define MLX5_PF_FLAGS_ENABLE BIT(3)
pagefault_real_mr(struct mlx5_ib_mr * mr,struct ib_umem_odp * odp,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)695 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
696 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
697 			     u32 flags)
698 {
699 	int page_shift, ret, np;
700 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
701 	u64 access_mask = 0;
702 	u64 start_idx;
703 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
704 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
705 
706 	if (flags & MLX5_PF_FLAGS_ENABLE)
707 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
708 
709 	if (flags & MLX5_PF_FLAGS_DOWNGRADE)
710 		xlt_flags |= MLX5_IB_UPD_XLT_DOWNGRADE;
711 
712 	page_shift = odp->page_shift;
713 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
714 
715 	if (odp->umem.writable && !downgrade)
716 		access_mask |= HMM_PFN_WRITE;
717 
718 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
719 	if (np < 0)
720 		return np;
721 
722 	/*
723 	 * No need to check whether the MTTs really belong to this MR, since
724 	 * ib_umem_odp_map_dma_and_lock already checks this.
725 	 */
726 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
727 	mutex_unlock(&odp->umem_mutex);
728 
729 	if (ret < 0) {
730 		if (ret != -EAGAIN)
731 			mlx5_ib_err(mr_to_mdev(mr),
732 				    "Failed to update mkey page tables\n");
733 		goto out;
734 	}
735 
736 	if (bytes_mapped) {
737 		u32 new_mappings = (np << page_shift) -
738 			(user_va - round_down(user_va, 1 << page_shift));
739 
740 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
741 	}
742 
743 	return np << (page_shift - PAGE_SHIFT);
744 
745 out:
746 	return ret;
747 }
748 
pagefault_implicit_mr(struct mlx5_ib_mr * imr,struct ib_umem_odp * odp_imr,u64 user_va,size_t bcnt,u32 * bytes_mapped,u32 flags)749 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
750 				 struct ib_umem_odp *odp_imr, u64 user_va,
751 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
752 {
753 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
754 	unsigned long upd_start_idx = end_idx + 1;
755 	unsigned long upd_len = 0;
756 	unsigned long npages = 0;
757 	int err;
758 	int ret;
759 
760 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
761 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
762 		return -EFAULT;
763 
764 	/* Fault each child mr that intersects with our interval. */
765 	while (bcnt) {
766 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
767 		struct ib_umem_odp *umem_odp;
768 		struct mlx5_ib_mr *mtt;
769 		u64 len;
770 
771 		xa_lock(&imr->implicit_children);
772 		mtt = xa_load(&imr->implicit_children, idx);
773 		if (unlikely(!mtt)) {
774 			xa_unlock(&imr->implicit_children);
775 			mtt = implicit_get_child_mr(imr, idx);
776 			if (IS_ERR(mtt)) {
777 				ret = PTR_ERR(mtt);
778 				goto out;
779 			}
780 			upd_start_idx = min(upd_start_idx, idx);
781 			upd_len = idx - upd_start_idx + 1;
782 		} else {
783 			refcount_inc(&mtt->mmkey.usecount);
784 			xa_unlock(&imr->implicit_children);
785 		}
786 
787 		umem_odp = to_ib_umem_odp(mtt->umem);
788 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
789 		      user_va;
790 
791 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
792 					bytes_mapped, flags);
793 
794 		mlx5r_deref_odp_mkey(&mtt->mmkey);
795 
796 		if (ret < 0)
797 			goto out;
798 		user_va += len;
799 		bcnt -= len;
800 		npages += ret;
801 	}
802 
803 	ret = npages;
804 
805 	/*
806 	 * Any time the implicit_children are changed we must perform an
807 	 * update of the xlt before exiting to ensure the HW and the
808 	 * implicit_children remains synchronized.
809 	 */
810 out:
811 	if (likely(!upd_len))
812 		return ret;
813 
814 	/*
815 	 * Notice this is not strictly ordered right, the KSM is updated after
816 	 * the implicit_children is updated, so a parallel page fault could
817 	 * see a MR that is not yet visible in the KSM.  This is similar to a
818 	 * parallel page fault seeing a MR that is being concurrently removed
819 	 * from the KSM. Both of these improbable situations are resolved
820 	 * safely by resuming the HW and then taking another page fault. The
821 	 * next pagefault handler will see the new information.
822 	 */
823 	mutex_lock(&odp_imr->umem_mutex);
824 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
825 				   MLX5_IB_UPD_XLT_INDIRECT |
826 					  MLX5_IB_UPD_XLT_ATOMIC);
827 	mutex_unlock(&odp_imr->umem_mutex);
828 	if (err) {
829 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
830 		return err;
831 	}
832 	return ret;
833 }
834 
pagefault_dmabuf_mr(struct mlx5_ib_mr * mr,size_t bcnt,u32 * bytes_mapped,u32 flags)835 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
836 			       u32 *bytes_mapped, u32 flags)
837 {
838 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
839 	int access_mode = mr->data_direct ? MLX5_MKC_ACCESS_MODE_KSM :
840 					    MLX5_MKC_ACCESS_MODE_MTT;
841 	unsigned int old_page_shift = mr->page_shift;
842 	unsigned int page_shift;
843 	unsigned long page_size;
844 	u32 xlt_flags = 0;
845 	int err;
846 
847 	if (flags & MLX5_PF_FLAGS_ENABLE)
848 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
849 
850 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
851 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
852 	if (err) {
853 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
854 		return err;
855 	}
856 
857 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf, access_mode);
858 	if (!page_size) {
859 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
860 		err = -EINVAL;
861 	} else {
862 		page_shift = order_base_2(page_size);
863 		if (page_shift != mr->page_shift && mr->dmabuf_faulted) {
864 			err = mlx5r_umr_dmabuf_update_pgsz(mr, xlt_flags,
865 							   page_shift);
866 		} else {
867 			mr->page_shift = page_shift;
868 			if (mr->data_direct)
869 				err = mlx5r_umr_update_data_direct_ksm_pas(
870 					mr, xlt_flags);
871 			else
872 				err = mlx5r_umr_update_mr_pas(mr,
873 							      xlt_flags);
874 		}
875 	}
876 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
877 
878 	if (err) {
879 		mr->page_shift = old_page_shift;
880 		return err;
881 	}
882 
883 	mr->dmabuf_faulted = 1;
884 
885 	if (bytes_mapped)
886 		*bytes_mapped += bcnt;
887 
888 	return ib_umem_num_pages(mr->umem);
889 }
890 
891 /*
892  * Returns:
893  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
894  *           not accessible, or the MR is no longer valid.
895  *  -EAGAIN/-ENOMEM: The operation should be retried
896  *
897  *  -EINVAL/others: General internal malfunction
898  *  >0: Number of pages mapped
899  */
pagefault_mr(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped,u32 flags,bool permissive_fault)900 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
901 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
902 {
903 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
904 
905 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
906 		return -EFAULT;
907 
908 	if (mr->umem->is_dmabuf)
909 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
910 
911 	if (!odp->is_implicit_odp) {
912 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
913 		u64 user_va;
914 
915 		if (check_add_overflow(offset, (u64)odp->umem.address,
916 				       &user_va))
917 			return -EFAULT;
918 
919 		if (permissive_fault) {
920 			if (user_va < ib_umem_start(odp))
921 				user_va = ib_umem_start(odp);
922 			if ((user_va + bcnt) > ib_umem_end(odp))
923 				bcnt = ib_umem_end(odp) - user_va;
924 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
925 				    ib_umem_end(odp) - user_va < bcnt))
926 			return -EFAULT;
927 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
928 					 flags);
929 	}
930 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
931 				     flags);
932 }
933 
mlx5_ib_init_odp_mr(struct mlx5_ib_mr * mr)934 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
935 {
936 	int ret;
937 
938 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
939 				mr->umem->length, NULL,
940 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
941 	return ret >= 0 ? 0 : ret;
942 }
943 
mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr * mr)944 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
945 {
946 	int ret;
947 
948 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
949 				  MLX5_PF_FLAGS_ENABLE);
950 
951 	return ret >= 0 ? 0 : ret;
952 }
953 
954 struct pf_frame {
955 	struct pf_frame *next;
956 	u32 key;
957 	u64 io_virt;
958 	size_t bcnt;
959 	int depth;
960 };
961 
mkey_is_eq(struct mlx5_ib_mkey * mmkey,u32 key)962 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
963 {
964 	if (!mmkey)
965 		return false;
966 	if (mmkey->type == MLX5_MKEY_MW ||
967 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
968 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
969 	return mmkey->key == key;
970 }
971 
find_odp_mkey(struct mlx5_ib_dev * dev,u32 key)972 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
973 {
974 	struct mlx5_ib_mkey *mmkey;
975 
976 	xa_lock(&dev->odp_mkeys);
977 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
978 	if (!mmkey) {
979 		mmkey = ERR_PTR(-ENOENT);
980 		goto out;
981 	}
982 	if (!mkey_is_eq(mmkey, key)) {
983 		mmkey = ERR_PTR(-EFAULT);
984 		goto out;
985 	}
986 	refcount_inc(&mmkey->usecount);
987 out:
988 	xa_unlock(&dev->odp_mkeys);
989 
990 	return mmkey;
991 }
992 
993 /*
994  * Handle a single data segment in a page-fault WQE or RDMA region.
995  *
996  * Returns zero on success. The caller may continue to the next data segment.
997  * Can return the following error codes:
998  * -EAGAIN to designate a temporary error. The caller will abort handling the
999  *  page fault and resolve it.
1000  * -EFAULT when there's an error mapping the requested pages. The caller will
1001  *  abort the page fault handling.
1002  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,struct ib_pd * pd,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)1003 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
1004 					 struct ib_pd *pd, u32 key,
1005 					 u64 io_virt, size_t bcnt,
1006 					 u32 *bytes_committed,
1007 					 u32 *bytes_mapped)
1008 {
1009 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
1010 	struct pf_frame *head = NULL, *frame;
1011 	struct mlx5_ib_mkey *mmkey;
1012 	struct mlx5_ib_mr *mr;
1013 	struct mlx5_klm *pklm;
1014 	u32 *out = NULL;
1015 	size_t offset;
1016 
1017 	io_virt += *bytes_committed;
1018 	bcnt -= *bytes_committed;
1019 next_mr:
1020 	mmkey = find_odp_mkey(dev, key);
1021 	if (IS_ERR(mmkey)) {
1022 		ret = PTR_ERR(mmkey);
1023 		if (ret == -ENOENT) {
1024 			mlx5_ib_dbg(
1025 				dev,
1026 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
1027 				key);
1028 			if (bytes_mapped)
1029 				*bytes_mapped += bcnt;
1030 			/*
1031 			 * The user could specify a SGL with multiple lkeys and
1032 			 * only some of them are ODP. Treat the non-ODP ones as
1033 			 * fully faulted.
1034 			 */
1035 			ret = 0;
1036 		}
1037 		goto end;
1038 	}
1039 
1040 	switch (mmkey->type) {
1041 	case MLX5_MKEY_MR:
1042 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1043 
1044 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1045 				  (io_virt & PAGE_MASK)) >>
1046 				 PAGE_SHIFT;
1047 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1048 		if (ret < 0)
1049 			goto end;
1050 
1051 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1052 
1053 		if (ret < pages_in_range) {
1054 			ret = -EFAULT;
1055 			goto end;
1056 		}
1057 
1058 		ret = 0;
1059 		break;
1060 
1061 	case MLX5_MKEY_MW:
1062 	case MLX5_MKEY_INDIRECT_DEVX:
1063 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1064 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1065 			ret = -EFAULT;
1066 			goto end;
1067 		}
1068 
1069 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1070 			sizeof(*pklm) * (mmkey->ndescs - 2);
1071 
1072 		if (outlen > cur_outlen) {
1073 			kfree(out);
1074 			out = kzalloc(outlen, GFP_KERNEL);
1075 			if (!out) {
1076 				ret = -ENOMEM;
1077 				goto end;
1078 			}
1079 			cur_outlen = outlen;
1080 		}
1081 
1082 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1083 						       bsf0_klm0_pas_mtt0_1);
1084 
1085 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1086 		if (ret)
1087 			goto end;
1088 
1089 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1090 					      memory_key_mkey_entry.start_addr);
1091 
1092 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1093 			if (offset >= be32_to_cpu(pklm->bcount)) {
1094 				offset -= be32_to_cpu(pklm->bcount);
1095 				continue;
1096 			}
1097 
1098 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1099 			if (!frame) {
1100 				ret = -ENOMEM;
1101 				goto end;
1102 			}
1103 
1104 			frame->key = be32_to_cpu(pklm->key);
1105 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1106 			frame->bcnt = min_t(size_t, bcnt,
1107 					    be32_to_cpu(pklm->bcount) - offset);
1108 			frame->depth = depth + 1;
1109 			frame->next = head;
1110 			head = frame;
1111 
1112 			bcnt -= frame->bcnt;
1113 			offset = 0;
1114 		}
1115 		break;
1116 
1117 	default:
1118 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1119 		ret = -EFAULT;
1120 		goto end;
1121 	}
1122 
1123 	if (head) {
1124 		frame = head;
1125 		head = frame->next;
1126 
1127 		key = frame->key;
1128 		io_virt = frame->io_virt;
1129 		bcnt = frame->bcnt;
1130 		depth = frame->depth;
1131 		kfree(frame);
1132 
1133 		mlx5r_deref_odp_mkey(mmkey);
1134 		goto next_mr;
1135 	}
1136 
1137 end:
1138 	if (!IS_ERR(mmkey))
1139 		mlx5r_deref_odp_mkey(mmkey);
1140 	while (head) {
1141 		frame = head;
1142 		head = frame->next;
1143 		kfree(frame);
1144 	}
1145 	kfree(out);
1146 
1147 	*bytes_committed = 0;
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Parse a series of data segments for page fault handling.
1153  *
1154  * @dev:  Pointer to mlx5 IB device
1155  * @pfault: contains page fault information.
1156  * @wqe: points at the first data segment in the WQE.
1157  * @wqe_end: points after the end of the WQE.
1158  * @bytes_mapped: receives the number of bytes that the function was able to
1159  *                map. This allows the caller to decide intelligently whether
1160  *                enough memory was mapped to resolve the page fault
1161  *                successfully (e.g. enough for the next MTU, or the entire
1162  *                WQE).
1163  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1164  *                   the committed bytes).
1165  * @receive_queue: receive WQE end of sg list
1166  *
1167  * Returns zero for success or a negative error code.
1168  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,bool receive_queue)1169 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1170 				   struct mlx5_pagefault *pfault,
1171 				   void *wqe,
1172 				   void *wqe_end, u32 *bytes_mapped,
1173 				   u32 *total_wqe_bytes, bool receive_queue)
1174 {
1175 	int ret = 0;
1176 	u64 io_virt;
1177 	__be32 key;
1178 	u32 byte_count;
1179 	size_t bcnt;
1180 	int inline_segment;
1181 
1182 	if (bytes_mapped)
1183 		*bytes_mapped = 0;
1184 	if (total_wqe_bytes)
1185 		*total_wqe_bytes = 0;
1186 
1187 	while (wqe < wqe_end) {
1188 		struct mlx5_wqe_data_seg *dseg = wqe;
1189 
1190 		io_virt = be64_to_cpu(dseg->addr);
1191 		key = dseg->lkey;
1192 		byte_count = be32_to_cpu(dseg->byte_count);
1193 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1194 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1195 
1196 		if (inline_segment) {
1197 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1198 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1199 				     16);
1200 		} else {
1201 			wqe += sizeof(*dseg);
1202 		}
1203 
1204 		/* receive WQE end of sg list. */
1205 		if (receive_queue && bcnt == 0 &&
1206 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1207 		    io_virt == 0)
1208 			break;
1209 
1210 		if (!inline_segment && total_wqe_bytes) {
1211 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1212 					pfault->bytes_committed);
1213 		}
1214 
1215 		/* A zero length data segment designates a length of 2GB. */
1216 		if (bcnt == 0)
1217 			bcnt = 1U << 31;
1218 
1219 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1220 			pfault->bytes_committed -=
1221 				min_t(size_t, bcnt,
1222 				      pfault->bytes_committed);
1223 			continue;
1224 		}
1225 
1226 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1227 						    io_virt, bcnt,
1228 						    &pfault->bytes_committed,
1229 						    bytes_mapped);
1230 		if (ret < 0)
1231 			break;
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 /*
1238  * Parse initiator WQE. Advances the wqe pointer to point at the
1239  * scatter-gather list, and set wqe_end to the end of the WQE.
1240  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)1241 static int mlx5_ib_mr_initiator_pfault_handler(
1242 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1243 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1244 {
1245 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1246 	u16 wqe_index = pfault->wqe.wqe_index;
1247 	struct mlx5_base_av *av;
1248 	unsigned ds, opcode;
1249 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1250 
1251 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1252 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1253 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1254 			    ds, wqe_length);
1255 		return -EFAULT;
1256 	}
1257 
1258 	if (ds == 0) {
1259 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1260 			    wqe_index, qpn);
1261 		return -EFAULT;
1262 	}
1263 
1264 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1265 	*wqe += sizeof(*ctrl);
1266 
1267 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1268 		 MLX5_WQE_CTRL_OPCODE_MASK;
1269 
1270 	if (qp->type == IB_QPT_XRC_INI)
1271 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1272 
1273 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1274 		av = *wqe;
1275 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1276 			*wqe += sizeof(struct mlx5_av);
1277 		else
1278 			*wqe += sizeof(struct mlx5_base_av);
1279 	}
1280 
1281 	switch (opcode) {
1282 	case MLX5_OPCODE_RDMA_WRITE:
1283 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1284 	case MLX5_OPCODE_RDMA_READ:
1285 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1286 		break;
1287 	case MLX5_OPCODE_ATOMIC_CS:
1288 	case MLX5_OPCODE_ATOMIC_FA:
1289 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1290 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1291 		break;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Parse responder WQE and set wqe_end to the end of the WQE.
1299  */
mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev * dev,struct mlx5_ib_srq * srq,void ** wqe,void ** wqe_end,int wqe_length)1300 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1301 						   struct mlx5_ib_srq *srq,
1302 						   void **wqe, void **wqe_end,
1303 						   int wqe_length)
1304 {
1305 	int wqe_size = 1 << srq->msrq.wqe_shift;
1306 
1307 	if (wqe_size > wqe_length) {
1308 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1309 		return -EFAULT;
1310 	}
1311 
1312 	*wqe_end = *wqe + wqe_size;
1313 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1314 
1315 	return 0;
1316 }
1317 
mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev * dev,struct mlx5_ib_qp * qp,void * wqe,void ** wqe_end,int wqe_length)1318 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1319 						  struct mlx5_ib_qp *qp,
1320 						  void *wqe, void **wqe_end,
1321 						  int wqe_length)
1322 {
1323 	struct mlx5_ib_wq *wq = &qp->rq;
1324 	int wqe_size = 1 << wq->wqe_shift;
1325 
1326 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1327 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1328 		return -EFAULT;
1329 	}
1330 
1331 	if (wqe_size > wqe_length) {
1332 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1333 		return -EFAULT;
1334 	}
1335 
1336 	*wqe_end = wqe + wqe_size;
1337 
1338 	return 0;
1339 }
1340 
odp_get_rsc(struct mlx5_ib_dev * dev,u32 wq_num,int pf_type)1341 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1342 						       u32 wq_num, int pf_type)
1343 {
1344 	struct mlx5_core_rsc_common *common = NULL;
1345 	struct mlx5_core_srq *srq;
1346 
1347 	switch (pf_type) {
1348 	case MLX5_WQE_PF_TYPE_RMP:
1349 		srq = mlx5_cmd_get_srq(dev, wq_num);
1350 		if (srq)
1351 			common = &srq->common;
1352 		break;
1353 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1354 	case MLX5_WQE_PF_TYPE_RESP:
1355 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1356 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1357 		break;
1358 	default:
1359 		break;
1360 	}
1361 
1362 	return common;
1363 }
1364 
res_to_qp(struct mlx5_core_rsc_common * res)1365 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1366 {
1367 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1368 
1369 	return to_mibqp(mqp);
1370 }
1371 
res_to_srq(struct mlx5_core_rsc_common * res)1372 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1373 {
1374 	struct mlx5_core_srq *msrq =
1375 		container_of(res, struct mlx5_core_srq, common);
1376 
1377 	return to_mibsrq(msrq);
1378 }
1379 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1380 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1381 					  struct mlx5_pagefault *pfault)
1382 {
1383 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1384 	u16 wqe_index = pfault->wqe.wqe_index;
1385 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1386 	u32 bytes_mapped, total_wqe_bytes;
1387 	struct mlx5_core_rsc_common *res;
1388 	int resume_with_error = 1;
1389 	struct mlx5_ib_qp *qp;
1390 	size_t bytes_copied;
1391 	int ret = 0;
1392 
1393 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1394 	if (!res) {
1395 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1396 		return;
1397 	}
1398 
1399 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1400 	    res->res != MLX5_RES_XSRQ) {
1401 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1402 			    pfault->type);
1403 		goto resolve_page_fault;
1404 	}
1405 
1406 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1407 	if (!wqe_start) {
1408 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1409 		goto resolve_page_fault;
1410 	}
1411 
1412 	wqe = wqe_start;
1413 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1414 	if (qp && sq) {
1415 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1416 					  &bytes_copied);
1417 		if (ret)
1418 			goto read_user;
1419 		ret = mlx5_ib_mr_initiator_pfault_handler(
1420 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1421 	} else if (qp && !sq) {
1422 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1423 					  &bytes_copied);
1424 		if (ret)
1425 			goto read_user;
1426 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1427 			dev, qp, wqe, &wqe_end, bytes_copied);
1428 	} else if (!qp) {
1429 		struct mlx5_ib_srq *srq = res_to_srq(res);
1430 
1431 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1432 					   &bytes_copied);
1433 		if (ret)
1434 			goto read_user;
1435 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1436 			dev, srq, &wqe, &wqe_end, bytes_copied);
1437 	}
1438 
1439 	if (ret < 0 || wqe >= wqe_end)
1440 		goto resolve_page_fault;
1441 
1442 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1443 				      &total_wqe_bytes, !sq);
1444 	if (ret == -EAGAIN)
1445 		goto out;
1446 
1447 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1448 		goto resolve_page_fault;
1449 
1450 out:
1451 	ret = 0;
1452 	resume_with_error = 0;
1453 
1454 read_user:
1455 	if (ret)
1456 		mlx5_ib_err(
1457 			dev,
1458 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1459 			ret, wqe_index, pfault->token);
1460 
1461 resolve_page_fault:
1462 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1463 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1464 		    pfault->wqe.wq_num, resume_with_error,
1465 		    pfault->type);
1466 	mlx5_core_res_put(res);
1467 	free_page((unsigned long)wqe_start);
1468 }
1469 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1470 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1471 					   struct mlx5_pagefault *pfault)
1472 {
1473 	u64 address;
1474 	u32 length;
1475 	u32 prefetch_len = pfault->bytes_committed;
1476 	int prefetch_activated = 0;
1477 	u32 rkey = pfault->rdma.r_key;
1478 	int ret;
1479 
1480 	/* The RDMA responder handler handles the page fault in two parts.
1481 	 * First it brings the necessary pages for the current packet
1482 	 * (and uses the pfault context), and then (after resuming the QP)
1483 	 * prefetches more pages. The second operation cannot use the pfault
1484 	 * context and therefore uses the dummy_pfault context allocated on
1485 	 * the stack */
1486 	pfault->rdma.rdma_va += pfault->bytes_committed;
1487 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1488 					 pfault->rdma.rdma_op_len);
1489 	pfault->bytes_committed = 0;
1490 
1491 	address = pfault->rdma.rdma_va;
1492 	length  = pfault->rdma.rdma_op_len;
1493 
1494 	/* For some operations, the hardware cannot tell the exact message
1495 	 * length, and in those cases it reports zero. Use prefetch
1496 	 * logic. */
1497 	if (length == 0) {
1498 		prefetch_activated = 1;
1499 		length = pfault->rdma.packet_size;
1500 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1501 	}
1502 
1503 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1504 					    &pfault->bytes_committed, NULL);
1505 	if (ret == -EAGAIN) {
1506 		/* We're racing with an invalidation, don't prefetch */
1507 		prefetch_activated = 0;
1508 	} else if (ret < 0) {
1509 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1510 		if (ret != -ENOENT)
1511 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1512 				    ret, pfault->token, pfault->type);
1513 		return;
1514 	}
1515 
1516 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1517 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1518 		    pfault->token, pfault->type,
1519 		    prefetch_activated);
1520 
1521 	/* At this point, there might be a new pagefault already arriving in
1522 	 * the eq, switch to the dummy pagefault for the rest of the
1523 	 * processing. We're still OK with the objects being alive as the
1524 	 * work-queue is being fenced. */
1525 
1526 	if (prefetch_activated) {
1527 		u32 bytes_committed = 0;
1528 
1529 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1530 						    prefetch_len,
1531 						    &bytes_committed, NULL);
1532 		if (ret < 0 && ret != -EAGAIN) {
1533 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1534 				    ret, pfault->token, address, prefetch_len);
1535 		}
1536 	}
1537 }
1538 
1539 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1540 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1541 					     struct mlx5_pagefault *pfault)
1542 {
1543 	u64 prefetch_va =
1544 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1545 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1546 			       pfault->memory.fault_byte_count +
1547 			       pfault->memory.prefetch_after_byte_count;
1548 	struct mlx5_ib_mkey *mmkey;
1549 	struct mlx5_ib_mr *mr, *child_mr;
1550 	int ret = 0;
1551 
1552 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1553 	if (IS_ERR(mmkey))
1554 		goto err;
1555 
1556 	switch (mmkey->type) {
1557 	case MLX5_MKEY_IMPLICIT_CHILD:
1558 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1559 		mr = child_mr->parent;
1560 		break;
1561 	case MLX5_MKEY_NULL:
1562 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1563 		break;
1564 	default:
1565 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1566 		break;
1567 	}
1568 
1569 	/* If prefetch fails, handle only demanded page fault */
1570 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1571 	if (ret < 0) {
1572 		ret = pagefault_mr(mr, pfault->memory.va,
1573 				   pfault->memory.fault_byte_count, NULL, 0,
1574 				   true);
1575 		if (ret < 0)
1576 			goto err;
1577 	}
1578 
1579 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1580 	mlx5r_deref_odp_mkey(mmkey);
1581 
1582 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1583 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1584 
1585 	mlx5_ib_dbg(
1586 		dev,
1587 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1588 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1589 			"" :
1590 			"without resume cmd",
1591 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1592 		pfault->memory.fault_byte_count);
1593 
1594 	return;
1595 
1596 err:
1597 	if (!IS_ERR(mmkey))
1598 		mlx5r_deref_odp_mkey(mmkey);
1599 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1600 	mlx5_ib_dbg(
1601 		dev,
1602 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1603 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1604 		pfault->memory.fault_byte_count, ret);
1605 }
1606 
mlx5_ib_pfault(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1607 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1608 {
1609 	u8 event_subtype = pfault->event_subtype;
1610 
1611 	switch (event_subtype) {
1612 	case MLX5_PFAULT_SUBTYPE_WQE:
1613 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1614 		break;
1615 	case MLX5_PFAULT_SUBTYPE_RDMA:
1616 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1617 		break;
1618 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1619 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1620 		break;
1621 	default:
1622 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1623 			    event_subtype);
1624 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1625 	}
1626 }
1627 
mlx5_ib_eqe_pf_action(struct work_struct * work)1628 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1629 {
1630 	struct mlx5_pagefault *pfault = container_of(work,
1631 						     struct mlx5_pagefault,
1632 						     work);
1633 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1634 
1635 	mlx5_ib_pfault(eq->dev, pfault);
1636 	mempool_free(pfault, eq->pool);
1637 }
1638 
1639 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq * eq)1640 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1641 {
1642 	struct mlx5_eqe_page_fault *pf_eqe;
1643 	struct mlx5_pagefault *pfault;
1644 	struct mlx5_eqe *eqe;
1645 	int cc = 0;
1646 
1647 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1648 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1649 		if (!pfault) {
1650 			schedule_work(&eq->work);
1651 			break;
1652 		}
1653 
1654 		pf_eqe = &eqe->data.page_fault;
1655 		pfault->event_subtype = eqe->sub_type;
1656 
1657 		switch (eqe->sub_type) {
1658 		case MLX5_PFAULT_SUBTYPE_RDMA:
1659 			/* RDMA based event */
1660 			pfault->bytes_committed =
1661 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1662 			pfault->type =
1663 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1664 			pfault->token =
1665 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1666 				MLX5_24BIT_MASK;
1667 			pfault->rdma.r_key =
1668 				be32_to_cpu(pf_eqe->rdma.r_key);
1669 			pfault->rdma.packet_size =
1670 				be16_to_cpu(pf_eqe->rdma.packet_length);
1671 			pfault->rdma.rdma_op_len =
1672 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1673 			pfault->rdma.rdma_va =
1674 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1675 			mlx5_ib_dbg(
1676 				eq->dev,
1677 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1678 				eqe->sub_type, pfault->bytes_committed,
1679 				pfault->type, pfault->token,
1680 				pfault->rdma.r_key);
1681 			mlx5_ib_dbg(eq->dev,
1682 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1683 				    pfault->rdma.rdma_op_len,
1684 				    pfault->rdma.rdma_va);
1685 			break;
1686 
1687 		case MLX5_PFAULT_SUBTYPE_WQE:
1688 			/* WQE based event */
1689 			pfault->bytes_committed =
1690 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1691 			pfault->type =
1692 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1693 			pfault->token =
1694 				be32_to_cpu(pf_eqe->wqe.token);
1695 			pfault->wqe.wq_num =
1696 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1697 				MLX5_24BIT_MASK;
1698 			pfault->wqe.wqe_index =
1699 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1700 			pfault->wqe.packet_size =
1701 				be16_to_cpu(pf_eqe->wqe.packet_length);
1702 			mlx5_ib_dbg(
1703 				eq->dev,
1704 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1705 				eqe->sub_type, pfault->bytes_committed,
1706 				pfault->type, pfault->token, pfault->wqe.wq_num,
1707 				pfault->wqe.wqe_index);
1708 			break;
1709 
1710 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1711 			/* Memory based event */
1712 			pfault->bytes_committed = 0;
1713 			pfault->token =
1714 				be32_to_cpu(pf_eqe->memory.token31_0) |
1715 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1716 				 << 32);
1717 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1718 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1719 			pfault->memory.fault_byte_count = (be32_to_cpu(
1720 				pf_eqe->memory.demand_fault_pages) >> 12) *
1721 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1722 			pfault->memory.prefetch_before_byte_count =
1723 				be16_to_cpu(
1724 					pf_eqe->memory.pre_demand_fault_pages) *
1725 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1726 			pfault->memory.prefetch_after_byte_count =
1727 				be16_to_cpu(
1728 					pf_eqe->memory.post_demand_fault_pages) *
1729 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1730 			pfault->memory.flags = pf_eqe->memory.flags;
1731 			mlx5_ib_dbg(
1732 				eq->dev,
1733 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1734 				eqe->sub_type, pfault->token,
1735 				pfault->memory.mkey,
1736 				pfault->memory.fault_byte_count,
1737 				pfault->memory.va, pfault->memory.flags);
1738 			mlx5_ib_dbg(
1739 				eq->dev,
1740 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1741 				pfault->memory.prefetch_before_byte_count,
1742 				pfault->memory.prefetch_after_byte_count);
1743 			break;
1744 
1745 		default:
1746 			mlx5_ib_warn(eq->dev,
1747 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1748 				     eqe->sub_type);
1749 			/* Unsupported page faults should still be
1750 			 * resolved by the page fault handler
1751 			 */
1752 		}
1753 
1754 		pfault->eq = eq;
1755 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1756 		queue_work(eq->wq, &pfault->work);
1757 
1758 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1759 	}
1760 
1761 	mlx5_eq_update_ci(eq->core, cc, 1);
1762 }
1763 
mlx5_ib_eq_pf_int(struct notifier_block * nb,unsigned long type,void * data)1764 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1765 			     void *data)
1766 {
1767 	struct mlx5_ib_pf_eq *eq =
1768 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1769 	unsigned long flags;
1770 
1771 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1772 		mlx5_ib_eq_pf_process(eq);
1773 		spin_unlock_irqrestore(&eq->lock, flags);
1774 	} else {
1775 		schedule_work(&eq->work);
1776 	}
1777 
1778 	return IRQ_HANDLED;
1779 }
1780 
1781 /* mempool_refill() was proposed but unfortunately wasn't accepted
1782  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1783  * Cheap workaround.
1784  */
mempool_refill(mempool_t * pool)1785 static void mempool_refill(mempool_t *pool)
1786 {
1787 	while (pool->curr_nr < pool->min_nr)
1788 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1789 }
1790 
mlx5_ib_eq_pf_action(struct work_struct * work)1791 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1792 {
1793 	struct mlx5_ib_pf_eq *eq =
1794 		container_of(work, struct mlx5_ib_pf_eq, work);
1795 
1796 	mempool_refill(eq->pool);
1797 
1798 	spin_lock_irq(&eq->lock);
1799 	mlx5_ib_eq_pf_process(eq);
1800 	spin_unlock_irq(&eq->lock);
1801 }
1802 
1803 enum {
1804 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1805 	MLX5_IB_NUM_PF_DRAIN	= 64,
1806 };
1807 
mlx5r_odp_create_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1808 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1809 {
1810 	struct mlx5_eq_param param = {};
1811 	int err = 0;
1812 
1813 	mutex_lock(&dev->odp_eq_mutex);
1814 	if (eq->core)
1815 		goto unlock;
1816 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1817 	spin_lock_init(&eq->lock);
1818 	eq->dev = dev;
1819 
1820 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1821 					       sizeof(struct mlx5_pagefault));
1822 	if (!eq->pool) {
1823 		err = -ENOMEM;
1824 		goto unlock;
1825 	}
1826 
1827 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1828 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1829 				 MLX5_NUM_CMD_EQE);
1830 	if (!eq->wq) {
1831 		err = -ENOMEM;
1832 		goto err_mempool;
1833 	}
1834 
1835 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1836 	param = (struct mlx5_eq_param) {
1837 		.nent = MLX5_IB_NUM_PF_EQE,
1838 	};
1839 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1840 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1841 	if (IS_ERR(eq->core)) {
1842 		err = PTR_ERR(eq->core);
1843 		goto err_wq;
1844 	}
1845 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1846 	if (err) {
1847 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1848 		goto err_eq;
1849 	}
1850 
1851 	mutex_unlock(&dev->odp_eq_mutex);
1852 	return 0;
1853 err_eq:
1854 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1855 err_wq:
1856 	eq->core = NULL;
1857 	destroy_workqueue(eq->wq);
1858 err_mempool:
1859 	mempool_destroy(eq->pool);
1860 unlock:
1861 	mutex_unlock(&dev->odp_eq_mutex);
1862 	return err;
1863 }
1864 
1865 static int
mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev * dev,struct mlx5_ib_pf_eq * eq)1866 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1867 {
1868 	int err;
1869 
1870 	if (!eq->core)
1871 		return 0;
1872 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1873 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1874 	cancel_work_sync(&eq->work);
1875 	destroy_workqueue(eq->wq);
1876 	mempool_destroy(eq->pool);
1877 
1878 	return err;
1879 }
1880 
mlx5_odp_init_mkey_cache(struct mlx5_ib_dev * dev)1881 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1882 {
1883 	struct mlx5r_cache_rb_key rb_key = {
1884 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1885 		.ndescs = mlx5_imr_ksm_entries,
1886 		.ph = MLX5_IB_NO_PH,
1887 	};
1888 	struct mlx5_cache_ent *ent;
1889 
1890 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1891 		return 0;
1892 
1893 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1894 	if (IS_ERR(ent))
1895 		return PTR_ERR(ent);
1896 
1897 	return 0;
1898 }
1899 
1900 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1901 	.advise_mr = mlx5_ib_advise_mr,
1902 };
1903 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1904 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1905 {
1906 	internal_fill_odp_caps(dev);
1907 
1908 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1909 		return 0;
1910 
1911 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1912 
1913 	mutex_init(&dev->odp_eq_mutex);
1914 	return 0;
1915 }
1916 
mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev * dev)1917 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1918 {
1919 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1920 		return;
1921 
1922 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1923 }
1924 
mlx5_ib_odp_init(void)1925 int mlx5_ib_odp_init(void)
1926 {
1927 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1928 				       MLX5_IMR_MTT_BITS);
1929 
1930 	return 0;
1931 }
1932 
1933 struct prefetch_mr_work {
1934 	struct work_struct work;
1935 	u32 pf_flags;
1936 	u32 num_sge;
1937 	struct {
1938 		u64 io_virt;
1939 		struct mlx5_ib_mr *mr;
1940 		size_t length;
1941 	} frags[];
1942 };
1943 
destroy_prefetch_work(struct prefetch_mr_work * work)1944 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1945 {
1946 	u32 i;
1947 
1948 	for (i = 0; i < work->num_sge; ++i)
1949 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1950 
1951 	kvfree(work);
1952 }
1953 
1954 static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 lkey)1955 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1956 		    u32 lkey)
1957 {
1958 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1959 	struct mlx5_ib_mr *mr = NULL;
1960 	struct mlx5_ib_mkey *mmkey;
1961 
1962 	xa_lock(&dev->odp_mkeys);
1963 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1964 	if (!mmkey || mmkey->key != lkey) {
1965 		mr = ERR_PTR(-ENOENT);
1966 		goto end;
1967 	}
1968 	if (mmkey->type != MLX5_MKEY_MR) {
1969 		mr = ERR_PTR(-EINVAL);
1970 		goto end;
1971 	}
1972 
1973 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1974 
1975 	if (mr->ibmr.pd != pd) {
1976 		mr = ERR_PTR(-EPERM);
1977 		goto end;
1978 	}
1979 
1980 	/* prefetch with write-access must be supported by the MR */
1981 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1982 	    !mr->umem->writable) {
1983 		mr = ERR_PTR(-EPERM);
1984 		goto end;
1985 	}
1986 
1987 	refcount_inc(&mmkey->usecount);
1988 end:
1989 	xa_unlock(&dev->odp_mkeys);
1990 	return mr;
1991 }
1992 
mlx5_ib_prefetch_mr_work(struct work_struct * w)1993 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1994 {
1995 	struct prefetch_mr_work *work =
1996 		container_of(w, struct prefetch_mr_work, work);
1997 	u32 bytes_mapped = 0;
1998 	int ret;
1999 	u32 i;
2000 
2001 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
2002 	WARN_ON(!work->num_sge);
2003 	for (i = 0; i < work->num_sge; ++i) {
2004 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
2005 				   work->frags[i].length, &bytes_mapped,
2006 				   work->pf_flags, false);
2007 		if (ret <= 0)
2008 			continue;
2009 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
2010 	}
2011 
2012 	destroy_prefetch_work(work);
2013 }
2014 
init_prefetch_work(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct prefetch_mr_work * work,struct ib_sge * sg_list,u32 num_sge)2015 static int init_prefetch_work(struct ib_pd *pd,
2016 			       enum ib_uverbs_advise_mr_advice advice,
2017 			       u32 pf_flags, struct prefetch_mr_work *work,
2018 			       struct ib_sge *sg_list, u32 num_sge)
2019 {
2020 	u32 i;
2021 
2022 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
2023 	work->pf_flags = pf_flags;
2024 
2025 	for (i = 0; i < num_sge; ++i) {
2026 		struct mlx5_ib_mr *mr;
2027 
2028 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2029 		if (IS_ERR(mr)) {
2030 			work->num_sge = i;
2031 			return PTR_ERR(mr);
2032 		}
2033 		work->frags[i].io_virt = sg_list[i].addr;
2034 		work->frags[i].length = sg_list[i].length;
2035 		work->frags[i].mr = mr;
2036 	}
2037 	work->num_sge = num_sge;
2038 	return 0;
2039 }
2040 
mlx5_ib_prefetch_sg_list(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 pf_flags,struct ib_sge * sg_list,u32 num_sge)2041 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2042 				    enum ib_uverbs_advise_mr_advice advice,
2043 				    u32 pf_flags, struct ib_sge *sg_list,
2044 				    u32 num_sge)
2045 {
2046 	u32 bytes_mapped = 0;
2047 	int ret = 0;
2048 	u32 i;
2049 
2050 	for (i = 0; i < num_sge; ++i) {
2051 		struct mlx5_ib_mr *mr;
2052 
2053 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2054 		if (IS_ERR(mr))
2055 			return PTR_ERR(mr);
2056 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2057 				   &bytes_mapped, pf_flags, false);
2058 		if (ret < 0) {
2059 			mlx5r_deref_odp_mkey(&mr->mmkey);
2060 			return ret;
2061 		}
2062 		mlx5_update_odp_stats(mr, prefetch, ret);
2063 		mlx5r_deref_odp_mkey(&mr->mmkey);
2064 	}
2065 
2066 	return 0;
2067 }
2068 
mlx5_ib_advise_mr_prefetch(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2069 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2070 			       enum ib_uverbs_advise_mr_advice advice,
2071 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2072 {
2073 	u32 pf_flags = 0;
2074 	struct prefetch_mr_work *work;
2075 	int rc;
2076 
2077 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2078 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2079 
2080 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2081 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2082 
2083 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2084 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2085 						num_sge);
2086 
2087 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2088 	if (!work)
2089 		return -ENOMEM;
2090 
2091 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2092 	if (rc) {
2093 		destroy_prefetch_work(work);
2094 		return rc;
2095 	}
2096 	queue_work(system_unbound_wq, &work->work);
2097 	return 0;
2098 }
2099