1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/backing-dev.h>
50 #include <linux/compat.h>
51 #include <linux/debugfs.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/file.h>
55 #include <linux/freezer.h>
56 #include <linux/kernel.h>
57 #include <linux/kthread.h>
58 #include <linux/miscdevice.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/nospec.h>
62 #include <linux/pktcdvd.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/uaccess.h>
69
70 #include <scsi/scsi.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_ioctl.h>
73
74 #include <asm/unaligned.h>
75
76 #define DRIVER_NAME "pktcdvd"
77
78 #define MAX_SPEED 0xffff
79
80 static DEFINE_MUTEX(pktcdvd_mutex);
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pktdev_major;
84 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
87 static mempool_t psd_pool;
88 static struct bio_set pkt_bio_set;
89
90 /* /sys/class/pktcdvd */
91 static struct class class_pktcdvd;
92 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93
94 /* forward declaration */
95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96 static int pkt_remove_dev(dev_t pkt_dev);
97
get_zone(sector_t sector,struct pktcdvd_device * pd)98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99 {
100 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101 }
102
103 /**********************************************************
104 * sysfs interface for pktcdvd
105 * by (C) 2006 Thomas Maier <balagi@justmail.de>
106
107 /sys/class/pktcdvd/pktcdvd[0-7]/
108 stat/reset
109 stat/packets_started
110 stat/packets_finished
111 stat/kb_written
112 stat/kb_read
113 stat/kb_read_gather
114 write_queue/size
115 write_queue/congestion_off
116 write_queue/congestion_on
117 **********************************************************/
118
packets_started_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t packets_started_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121 {
122 struct pktcdvd_device *pd = dev_get_drvdata(dev);
123
124 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125 }
126 static DEVICE_ATTR_RO(packets_started);
127
packets_finished_show(struct device * dev,struct device_attribute * attr,char * buf)128 static ssize_t packets_finished_show(struct device *dev,
129 struct device_attribute *attr, char *buf)
130 {
131 struct pktcdvd_device *pd = dev_get_drvdata(dev);
132
133 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134 }
135 static DEVICE_ATTR_RO(packets_finished);
136
kb_written_show(struct device * dev,struct device_attribute * attr,char * buf)137 static ssize_t kb_written_show(struct device *dev,
138 struct device_attribute *attr, char *buf)
139 {
140 struct pktcdvd_device *pd = dev_get_drvdata(dev);
141
142 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143 }
144 static DEVICE_ATTR_RO(kb_written);
145
kb_read_show(struct device * dev,struct device_attribute * attr,char * buf)146 static ssize_t kb_read_show(struct device *dev,
147 struct device_attribute *attr, char *buf)
148 {
149 struct pktcdvd_device *pd = dev_get_drvdata(dev);
150
151 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152 }
153 static DEVICE_ATTR_RO(kb_read);
154
kb_read_gather_show(struct device * dev,struct device_attribute * attr,char * buf)155 static ssize_t kb_read_gather_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157 {
158 struct pktcdvd_device *pd = dev_get_drvdata(dev);
159
160 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161 }
162 static DEVICE_ATTR_RO(kb_read_gather);
163
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 const char *buf, size_t len)
166 {
167 struct pktcdvd_device *pd = dev_get_drvdata(dev);
168
169 if (len > 0) {
170 pd->stats.pkt_started = 0;
171 pd->stats.pkt_ended = 0;
172 pd->stats.secs_w = 0;
173 pd->stats.secs_rg = 0;
174 pd->stats.secs_r = 0;
175 }
176 return len;
177 }
178 static DEVICE_ATTR_WO(reset);
179
180 static struct attribute *pkt_stat_attrs[] = {
181 &dev_attr_packets_finished.attr,
182 &dev_attr_packets_started.attr,
183 &dev_attr_kb_read.attr,
184 &dev_attr_kb_written.attr,
185 &dev_attr_kb_read_gather.attr,
186 &dev_attr_reset.attr,
187 NULL,
188 };
189
190 static const struct attribute_group pkt_stat_group = {
191 .name = "stat",
192 .attrs = pkt_stat_attrs,
193 };
194
size_show(struct device * dev,struct device_attribute * attr,char * buf)195 static ssize_t size_show(struct device *dev,
196 struct device_attribute *attr, char *buf)
197 {
198 struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 int n;
200
201 spin_lock(&pd->lock);
202 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 spin_unlock(&pd->lock);
204 return n;
205 }
206 static DEVICE_ATTR_RO(size);
207
init_write_congestion_marks(int * lo,int * hi)208 static void init_write_congestion_marks(int* lo, int* hi)
209 {
210 if (*hi > 0) {
211 *hi = max(*hi, 500);
212 *hi = min(*hi, 1000000);
213 if (*lo <= 0)
214 *lo = *hi - 100;
215 else {
216 *lo = min(*lo, *hi - 100);
217 *lo = max(*lo, 100);
218 }
219 } else {
220 *hi = -1;
221 *lo = -1;
222 }
223 }
224
congestion_off_show(struct device * dev,struct device_attribute * attr,char * buf)225 static ssize_t congestion_off_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227 {
228 struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 int n;
230
231 spin_lock(&pd->lock);
232 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 spin_unlock(&pd->lock);
234 return n;
235 }
236
congestion_off_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)237 static ssize_t congestion_off_store(struct device *dev,
238 struct device_attribute *attr,
239 const char *buf, size_t len)
240 {
241 struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 int val, ret;
243
244 ret = kstrtoint(buf, 10, &val);
245 if (ret)
246 return ret;
247
248 spin_lock(&pd->lock);
249 pd->write_congestion_off = val;
250 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 spin_unlock(&pd->lock);
252 return len;
253 }
254 static DEVICE_ATTR_RW(congestion_off);
255
congestion_on_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t congestion_on_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 int n;
261
262 spin_lock(&pd->lock);
263 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 spin_unlock(&pd->lock);
265 return n;
266 }
267
congestion_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)268 static ssize_t congestion_on_store(struct device *dev,
269 struct device_attribute *attr,
270 const char *buf, size_t len)
271 {
272 struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 int val, ret;
274
275 ret = kstrtoint(buf, 10, &val);
276 if (ret)
277 return ret;
278
279 spin_lock(&pd->lock);
280 pd->write_congestion_on = val;
281 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
283 return len;
284 }
285 static DEVICE_ATTR_RW(congestion_on);
286
287 static struct attribute *pkt_wq_attrs[] = {
288 &dev_attr_congestion_on.attr,
289 &dev_attr_congestion_off.attr,
290 &dev_attr_size.attr,
291 NULL,
292 };
293
294 static const struct attribute_group pkt_wq_group = {
295 .name = "write_queue",
296 .attrs = pkt_wq_attrs,
297 };
298
299 static const struct attribute_group *pkt_groups[] = {
300 &pkt_stat_group,
301 &pkt_wq_group,
302 NULL,
303 };
304
pkt_sysfs_dev_new(struct pktcdvd_device * pd)305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 if (class_is_registered(&class_pktcdvd)) {
308 pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 MKDEV(0, 0), pd, pkt_groups,
310 "%s", pd->disk->disk_name);
311 if (IS_ERR(pd->dev))
312 pd->dev = NULL;
313 }
314 }
315
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317 {
318 if (class_is_registered(&class_pktcdvd))
319 device_unregister(pd->dev);
320 }
321
322
323 /********************************************************************
324 /sys/class/pktcdvd/
325 add map block device
326 remove unmap packet dev
327 device_map show mappings
328 *******************************************************************/
329
device_map_show(const struct class * c,const struct class_attribute * attr,char * data)330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 char *data)
332 {
333 int n = 0;
334 int idx;
335 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 for (idx = 0; idx < MAX_WRITERS; idx++) {
337 struct pktcdvd_device *pd = pkt_devs[idx];
338 if (!pd)
339 continue;
340 n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 pd->disk->disk_name,
342 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 MAJOR(pd->bdev_handle->bdev->bd_dev),
344 MINOR(pd->bdev_handle->bdev->bd_dev));
345 }
346 mutex_unlock(&ctl_mutex);
347 return n;
348 }
349 static CLASS_ATTR_RO(device_map);
350
add_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 const char *buf, size_t count)
353 {
354 unsigned int major, minor;
355
356 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 /* pkt_setup_dev() expects caller to hold reference to self */
358 if (!try_module_get(THIS_MODULE))
359 return -ENODEV;
360
361 pkt_setup_dev(MKDEV(major, minor), NULL);
362
363 module_put(THIS_MODULE);
364
365 return count;
366 }
367
368 return -EINVAL;
369 }
370 static CLASS_ATTR_WO(add);
371
remove_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 const char *buf, size_t count)
374 {
375 unsigned int major, minor;
376 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 pkt_remove_dev(MKDEV(major, minor));
378 return count;
379 }
380 return -EINVAL;
381 }
382 static CLASS_ATTR_WO(remove);
383
384 static struct attribute *class_pktcdvd_attrs[] = {
385 &class_attr_add.attr,
386 &class_attr_remove.attr,
387 &class_attr_device_map.attr,
388 NULL,
389 };
390 ATTRIBUTE_GROUPS(class_pktcdvd);
391
392 static struct class class_pktcdvd = {
393 .name = DRIVER_NAME,
394 .class_groups = class_pktcdvd_groups,
395 };
396
pkt_sysfs_init(void)397 static int pkt_sysfs_init(void)
398 {
399 /*
400 * create control files in sysfs
401 * /sys/class/pktcdvd/...
402 */
403 return class_register(&class_pktcdvd);
404 }
405
pkt_sysfs_cleanup(void)406 static void pkt_sysfs_cleanup(void)
407 {
408 class_unregister(&class_pktcdvd);
409 }
410
411 /********************************************************************
412 entries in debugfs
413
414 /sys/kernel/debug/pktcdvd[0-7]/
415 info
416
417 *******************************************************************/
418
pkt_count_states(struct pktcdvd_device * pd,int * states)419 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420 {
421 struct packet_data *pkt;
422 int i;
423
424 for (i = 0; i < PACKET_NUM_STATES; i++)
425 states[i] = 0;
426
427 spin_lock(&pd->cdrw.active_list_lock);
428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 states[pkt->state]++;
430 }
431 spin_unlock(&pd->cdrw.active_list_lock);
432 }
433
pkt_seq_show(struct seq_file * m,void * p)434 static int pkt_seq_show(struct seq_file *m, void *p)
435 {
436 struct pktcdvd_device *pd = m->private;
437 char *msg;
438 int states[PACKET_NUM_STATES];
439
440 seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441 pd->bdev_handle->bdev);
442
443 seq_printf(m, "\nSettings:\n");
444 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445
446 if (pd->settings.write_type == 0)
447 msg = "Packet";
448 else
449 msg = "Unknown";
450 seq_printf(m, "\twrite type:\t\t%s\n", msg);
451
452 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454
455 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456
457 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458 msg = "Mode 1";
459 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460 msg = "Mode 2";
461 else
462 msg = "Unknown";
463 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464
465 seq_printf(m, "\nStatistics:\n");
466 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471
472 seq_printf(m, "\nMisc:\n");
473 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479
480 seq_printf(m, "\nQueue state:\n");
481 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484
485 pkt_count_states(pd, states);
486 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487 states[0], states[1], states[2], states[3], states[4], states[5]);
488
489 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490 pd->write_congestion_off,
491 pd->write_congestion_on);
492 return 0;
493 }
494 DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495
pkt_debugfs_dev_new(struct pktcdvd_device * pd)496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497 {
498 if (!pkt_debugfs_root)
499 return;
500 pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501 if (!pd->dfs_d_root)
502 return;
503
504 pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
505 pd, &pkt_seq_fops);
506 }
507
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)508 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
509 {
510 if (!pkt_debugfs_root)
511 return;
512 debugfs_remove(pd->dfs_f_info);
513 debugfs_remove(pd->dfs_d_root);
514 pd->dfs_f_info = NULL;
515 pd->dfs_d_root = NULL;
516 }
517
pkt_debugfs_init(void)518 static void pkt_debugfs_init(void)
519 {
520 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
521 }
522
pkt_debugfs_cleanup(void)523 static void pkt_debugfs_cleanup(void)
524 {
525 debugfs_remove(pkt_debugfs_root);
526 pkt_debugfs_root = NULL;
527 }
528
529 /* ----------------------------------------------------------*/
530
531
pkt_bio_finished(struct pktcdvd_device * pd)532 static void pkt_bio_finished(struct pktcdvd_device *pd)
533 {
534 struct device *ddev = disk_to_dev(pd->disk);
535
536 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
537 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
538 dev_dbg(ddev, "queue empty\n");
539 atomic_set(&pd->iosched.attention, 1);
540 wake_up(&pd->wqueue);
541 }
542 }
543
544 /*
545 * Allocate a packet_data struct
546 */
pkt_alloc_packet_data(int frames)547 static struct packet_data *pkt_alloc_packet_data(int frames)
548 {
549 int i;
550 struct packet_data *pkt;
551
552 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
553 if (!pkt)
554 goto no_pkt;
555
556 pkt->frames = frames;
557 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
558 if (!pkt->w_bio)
559 goto no_bio;
560
561 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
562 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
563 if (!pkt->pages[i])
564 goto no_page;
565 }
566
567 spin_lock_init(&pkt->lock);
568 bio_list_init(&pkt->orig_bios);
569
570 for (i = 0; i < frames; i++) {
571 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
572 if (!pkt->r_bios[i])
573 goto no_rd_bio;
574 }
575
576 return pkt;
577
578 no_rd_bio:
579 for (i = 0; i < frames; i++)
580 kfree(pkt->r_bios[i]);
581 no_page:
582 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
583 if (pkt->pages[i])
584 __free_page(pkt->pages[i]);
585 kfree(pkt->w_bio);
586 no_bio:
587 kfree(pkt);
588 no_pkt:
589 return NULL;
590 }
591
592 /*
593 * Free a packet_data struct
594 */
pkt_free_packet_data(struct packet_data * pkt)595 static void pkt_free_packet_data(struct packet_data *pkt)
596 {
597 int i;
598
599 for (i = 0; i < pkt->frames; i++)
600 kfree(pkt->r_bios[i]);
601 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 __free_page(pkt->pages[i]);
603 kfree(pkt->w_bio);
604 kfree(pkt);
605 }
606
pkt_shrink_pktlist(struct pktcdvd_device * pd)607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609 struct packet_data *pkt, *next;
610
611 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612
613 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 pkt_free_packet_data(pkt);
615 }
616 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621 struct packet_data *pkt;
622
623 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624
625 while (nr_packets > 0) {
626 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 if (!pkt) {
628 pkt_shrink_pktlist(pd);
629 return 0;
630 }
631 pkt->id = nr_packets;
632 pkt->pd = pd;
633 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 nr_packets--;
635 }
636 return 1;
637 }
638
pkt_rbtree_next(struct pkt_rb_node * node)639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641 struct rb_node *n = rb_next(&node->rb_node);
642 if (!n)
643 return NULL;
644 return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649 rb_erase(&node->rb_node, &pd->bio_queue);
650 mempool_free(node, &pd->rb_pool);
651 pd->bio_queue_size--;
652 BUG_ON(pd->bio_queue_size < 0);
653 }
654
655 /*
656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657 */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660 struct rb_node *n = pd->bio_queue.rb_node;
661 struct rb_node *next;
662 struct pkt_rb_node *tmp;
663
664 if (!n) {
665 BUG_ON(pd->bio_queue_size > 0);
666 return NULL;
667 }
668
669 for (;;) {
670 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 if (s <= tmp->bio->bi_iter.bi_sector)
672 next = n->rb_left;
673 else
674 next = n->rb_right;
675 if (!next)
676 break;
677 n = next;
678 }
679
680 if (s > tmp->bio->bi_iter.bi_sector) {
681 tmp = pkt_rbtree_next(tmp);
682 if (!tmp)
683 return NULL;
684 }
685 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
686 return tmp;
687 }
688
689 /*
690 * Insert a node into the pd->bio_queue rb tree.
691 */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694 struct rb_node **p = &pd->bio_queue.rb_node;
695 struct rb_node *parent = NULL;
696 sector_t s = node->bio->bi_iter.bi_sector;
697 struct pkt_rb_node *tmp;
698
699 while (*p) {
700 parent = *p;
701 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 if (s < tmp->bio->bi_iter.bi_sector)
703 p = &(*p)->rb_left;
704 else
705 p = &(*p)->rb_right;
706 }
707 rb_link_node(&node->rb_node, parent, p);
708 rb_insert_color(&node->rb_node, &pd->bio_queue);
709 pd->bio_queue_size++;
710 }
711
712 /*
713 * Send a packet_command to the underlying block device and
714 * wait for completion.
715 */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)716 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
717 {
718 struct request_queue *q = bdev_get_queue(pd->bdev_handle->bdev);
719 struct scsi_cmnd *scmd;
720 struct request *rq;
721 int ret = 0;
722
723 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
724 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 if (IS_ERR(rq))
726 return PTR_ERR(rq);
727 scmd = blk_mq_rq_to_pdu(rq);
728
729 if (cgc->buflen) {
730 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
731 GFP_NOIO);
732 if (ret)
733 goto out;
734 }
735
736 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
737 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
738
739 rq->timeout = 60*HZ;
740 if (cgc->quiet)
741 rq->rq_flags |= RQF_QUIET;
742
743 blk_execute_rq(rq, false);
744 if (scmd->result)
745 ret = -EIO;
746 out:
747 blk_mq_free_request(rq);
748 return ret;
749 }
750
sense_key_string(__u8 index)751 static const char *sense_key_string(__u8 index)
752 {
753 static const char * const info[] = {
754 "No sense", "Recovered error", "Not ready",
755 "Medium error", "Hardware error", "Illegal request",
756 "Unit attention", "Data protect", "Blank check",
757 };
758
759 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
760 }
761
762 /*
763 * A generic sense dump / resolve mechanism should be implemented across
764 * all ATAPI + SCSI devices.
765 */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)766 static void pkt_dump_sense(struct pktcdvd_device *pd,
767 struct packet_command *cgc)
768 {
769 struct device *ddev = disk_to_dev(pd->disk);
770 struct scsi_sense_hdr *sshdr = cgc->sshdr;
771
772 if (sshdr)
773 dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
774 CDROM_PACKET_SIZE, cgc->cmd,
775 sshdr->sense_key, sshdr->asc, sshdr->ascq,
776 sense_key_string(sshdr->sense_key));
777 else
778 dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
779 }
780
781 /*
782 * flush the drive cache to media
783 */
pkt_flush_cache(struct pktcdvd_device * pd)784 static int pkt_flush_cache(struct pktcdvd_device *pd)
785 {
786 struct packet_command cgc;
787
788 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
789 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
790 cgc.quiet = 1;
791
792 /*
793 * the IMMED bit -- we default to not setting it, although that
794 * would allow a much faster close, this is safer
795 */
796 #if 0
797 cgc.cmd[1] = 1 << 1;
798 #endif
799 return pkt_generic_packet(pd, &cgc);
800 }
801
802 /*
803 * speed is given as the normal factor, e.g. 4 for 4x
804 */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)805 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
806 unsigned write_speed, unsigned read_speed)
807 {
808 struct packet_command cgc;
809 struct scsi_sense_hdr sshdr;
810 int ret;
811
812 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
813 cgc.sshdr = &sshdr;
814 cgc.cmd[0] = GPCMD_SET_SPEED;
815 put_unaligned_be16(read_speed, &cgc.cmd[2]);
816 put_unaligned_be16(write_speed, &cgc.cmd[4]);
817
818 ret = pkt_generic_packet(pd, &cgc);
819 if (ret)
820 pkt_dump_sense(pd, &cgc);
821
822 return ret;
823 }
824
825 /*
826 * Queue a bio for processing by the low-level CD device. Must be called
827 * from process context.
828 */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)829 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
830 {
831 spin_lock(&pd->iosched.lock);
832 if (bio_data_dir(bio) == READ)
833 bio_list_add(&pd->iosched.read_queue, bio);
834 else
835 bio_list_add(&pd->iosched.write_queue, bio);
836 spin_unlock(&pd->iosched.lock);
837
838 atomic_set(&pd->iosched.attention, 1);
839 wake_up(&pd->wqueue);
840 }
841
842 /*
843 * Process the queued read/write requests. This function handles special
844 * requirements for CDRW drives:
845 * - A cache flush command must be inserted before a read request if the
846 * previous request was a write.
847 * - Switching between reading and writing is slow, so don't do it more often
848 * than necessary.
849 * - Optimize for throughput at the expense of latency. This means that streaming
850 * writes will never be interrupted by a read, but if the drive has to seek
851 * before the next write, switch to reading instead if there are any pending
852 * read requests.
853 * - Set the read speed according to current usage pattern. When only reading
854 * from the device, it's best to use the highest possible read speed, but
855 * when switching often between reading and writing, it's better to have the
856 * same read and write speeds.
857 */
pkt_iosched_process_queue(struct pktcdvd_device * pd)858 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
859 {
860 struct device *ddev = disk_to_dev(pd->disk);
861
862 if (atomic_read(&pd->iosched.attention) == 0)
863 return;
864 atomic_set(&pd->iosched.attention, 0);
865
866 for (;;) {
867 struct bio *bio;
868 int reads_queued, writes_queued;
869
870 spin_lock(&pd->iosched.lock);
871 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
872 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
873 spin_unlock(&pd->iosched.lock);
874
875 if (!reads_queued && !writes_queued)
876 break;
877
878 if (pd->iosched.writing) {
879 int need_write_seek = 1;
880 spin_lock(&pd->iosched.lock);
881 bio = bio_list_peek(&pd->iosched.write_queue);
882 spin_unlock(&pd->iosched.lock);
883 if (bio && (bio->bi_iter.bi_sector ==
884 pd->iosched.last_write))
885 need_write_seek = 0;
886 if (need_write_seek && reads_queued) {
887 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
888 dev_dbg(ddev, "write, waiting\n");
889 break;
890 }
891 pkt_flush_cache(pd);
892 pd->iosched.writing = 0;
893 }
894 } else {
895 if (!reads_queued && writes_queued) {
896 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
897 dev_dbg(ddev, "read, waiting\n");
898 break;
899 }
900 pd->iosched.writing = 1;
901 }
902 }
903
904 spin_lock(&pd->iosched.lock);
905 if (pd->iosched.writing)
906 bio = bio_list_pop(&pd->iosched.write_queue);
907 else
908 bio = bio_list_pop(&pd->iosched.read_queue);
909 spin_unlock(&pd->iosched.lock);
910
911 if (!bio)
912 continue;
913
914 if (bio_data_dir(bio) == READ)
915 pd->iosched.successive_reads +=
916 bio->bi_iter.bi_size >> 10;
917 else {
918 pd->iosched.successive_reads = 0;
919 pd->iosched.last_write = bio_end_sector(bio);
920 }
921 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
922 if (pd->read_speed == pd->write_speed) {
923 pd->read_speed = MAX_SPEED;
924 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
925 }
926 } else {
927 if (pd->read_speed != pd->write_speed) {
928 pd->read_speed = pd->write_speed;
929 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
930 }
931 }
932
933 atomic_inc(&pd->cdrw.pending_bios);
934 submit_bio_noacct(bio);
935 }
936 }
937
938 /*
939 * Special care is needed if the underlying block device has a small
940 * max_phys_segments value.
941 */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)942 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
943 {
944 struct device *ddev = disk_to_dev(pd->disk);
945
946 if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
947 /*
948 * The cdrom device can handle one segment/frame
949 */
950 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
951 return 0;
952 }
953
954 if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
955 /*
956 * We can handle this case at the expense of some extra memory
957 * copies during write operations
958 */
959 set_bit(PACKET_MERGE_SEGS, &pd->flags);
960 return 0;
961 }
962
963 dev_err(ddev, "cdrom max_phys_segments too small\n");
964 return -EIO;
965 }
966
pkt_end_io_read(struct bio * bio)967 static void pkt_end_io_read(struct bio *bio)
968 {
969 struct packet_data *pkt = bio->bi_private;
970 struct pktcdvd_device *pd = pkt->pd;
971 BUG_ON(!pd);
972
973 dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
974 bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
975
976 if (bio->bi_status)
977 atomic_inc(&pkt->io_errors);
978 bio_uninit(bio);
979 if (atomic_dec_and_test(&pkt->io_wait)) {
980 atomic_inc(&pkt->run_sm);
981 wake_up(&pd->wqueue);
982 }
983 pkt_bio_finished(pd);
984 }
985
pkt_end_io_packet_write(struct bio * bio)986 static void pkt_end_io_packet_write(struct bio *bio)
987 {
988 struct packet_data *pkt = bio->bi_private;
989 struct pktcdvd_device *pd = pkt->pd;
990 BUG_ON(!pd);
991
992 dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
993
994 pd->stats.pkt_ended++;
995
996 bio_uninit(bio);
997 pkt_bio_finished(pd);
998 atomic_dec(&pkt->io_wait);
999 atomic_inc(&pkt->run_sm);
1000 wake_up(&pd->wqueue);
1001 }
1002
1003 /*
1004 * Schedule reads for the holes in a packet
1005 */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)1006 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1007 {
1008 struct device *ddev = disk_to_dev(pd->disk);
1009 int frames_read = 0;
1010 struct bio *bio;
1011 int f;
1012 char written[PACKET_MAX_SIZE];
1013
1014 BUG_ON(bio_list_empty(&pkt->orig_bios));
1015
1016 atomic_set(&pkt->io_wait, 0);
1017 atomic_set(&pkt->io_errors, 0);
1018
1019 /*
1020 * Figure out which frames we need to read before we can write.
1021 */
1022 memset(written, 0, sizeof(written));
1023 spin_lock(&pkt->lock);
1024 bio_list_for_each(bio, &pkt->orig_bios) {
1025 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1026 (CD_FRAMESIZE >> 9);
1027 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1028 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1029 BUG_ON(first_frame < 0);
1030 BUG_ON(first_frame + num_frames > pkt->frames);
1031 for (f = first_frame; f < first_frame + num_frames; f++)
1032 written[f] = 1;
1033 }
1034 spin_unlock(&pkt->lock);
1035
1036 if (pkt->cache_valid) {
1037 dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1038 goto out_account;
1039 }
1040
1041 /*
1042 * Schedule reads for missing parts of the packet.
1043 */
1044 for (f = 0; f < pkt->frames; f++) {
1045 int p, offset;
1046
1047 if (written[f])
1048 continue;
1049
1050 bio = pkt->r_bios[f];
1051 bio_init(bio, pd->bdev_handle->bdev, bio->bi_inline_vecs, 1,
1052 REQ_OP_READ);
1053 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1054 bio->bi_end_io = pkt_end_io_read;
1055 bio->bi_private = pkt;
1056
1057 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1058 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1059 dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1060 pkt->pages[p], offset);
1061 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1062 BUG();
1063
1064 atomic_inc(&pkt->io_wait);
1065 pkt_queue_bio(pd, bio);
1066 frames_read++;
1067 }
1068
1069 out_account:
1070 dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1071 pd->stats.pkt_started++;
1072 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1073 }
1074
1075 /*
1076 * Find a packet matching zone, or the least recently used packet if
1077 * there is no match.
1078 */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1079 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1080 {
1081 struct packet_data *pkt;
1082
1083 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1084 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1085 list_del_init(&pkt->list);
1086 if (pkt->sector != zone)
1087 pkt->cache_valid = 0;
1088 return pkt;
1089 }
1090 }
1091 BUG();
1092 return NULL;
1093 }
1094
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1095 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1096 {
1097 if (pkt->cache_valid) {
1098 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1099 } else {
1100 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1101 }
1102 }
1103
pkt_set_state(struct device * ddev,struct packet_data * pkt,enum packet_data_state state)1104 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1105 enum packet_data_state state)
1106 {
1107 static const char *state_name[] = {
1108 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1109 };
1110 enum packet_data_state old_state = pkt->state;
1111
1112 dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1113 pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1114
1115 pkt->state = state;
1116 }
1117
1118 /*
1119 * Scan the work queue to see if we can start a new packet.
1120 * returns non-zero if any work was done.
1121 */
pkt_handle_queue(struct pktcdvd_device * pd)1122 static int pkt_handle_queue(struct pktcdvd_device *pd)
1123 {
1124 struct device *ddev = disk_to_dev(pd->disk);
1125 struct packet_data *pkt, *p;
1126 struct bio *bio = NULL;
1127 sector_t zone = 0; /* Suppress gcc warning */
1128 struct pkt_rb_node *node, *first_node;
1129 struct rb_node *n;
1130
1131 atomic_set(&pd->scan_queue, 0);
1132
1133 if (list_empty(&pd->cdrw.pkt_free_list)) {
1134 dev_dbg(ddev, "no pkt\n");
1135 return 0;
1136 }
1137
1138 /*
1139 * Try to find a zone we are not already working on.
1140 */
1141 spin_lock(&pd->lock);
1142 first_node = pkt_rbtree_find(pd, pd->current_sector);
1143 if (!first_node) {
1144 n = rb_first(&pd->bio_queue);
1145 if (n)
1146 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1147 }
1148 node = first_node;
1149 while (node) {
1150 bio = node->bio;
1151 zone = get_zone(bio->bi_iter.bi_sector, pd);
1152 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1153 if (p->sector == zone) {
1154 bio = NULL;
1155 goto try_next_bio;
1156 }
1157 }
1158 break;
1159 try_next_bio:
1160 node = pkt_rbtree_next(node);
1161 if (!node) {
1162 n = rb_first(&pd->bio_queue);
1163 if (n)
1164 node = rb_entry(n, struct pkt_rb_node, rb_node);
1165 }
1166 if (node == first_node)
1167 node = NULL;
1168 }
1169 spin_unlock(&pd->lock);
1170 if (!bio) {
1171 dev_dbg(ddev, "no bio\n");
1172 return 0;
1173 }
1174
1175 pkt = pkt_get_packet_data(pd, zone);
1176
1177 pd->current_sector = zone + pd->settings.size;
1178 pkt->sector = zone;
1179 BUG_ON(pkt->frames != pd->settings.size >> 2);
1180 pkt->write_size = 0;
1181
1182 /*
1183 * Scan work queue for bios in the same zone and link them
1184 * to this packet.
1185 */
1186 spin_lock(&pd->lock);
1187 dev_dbg(ddev, "looking for zone %llx\n", zone);
1188 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1189 sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1190
1191 bio = node->bio;
1192 dev_dbg(ddev, "found zone=%llx\n", tmp);
1193 if (tmp != zone)
1194 break;
1195 pkt_rbtree_erase(pd, node);
1196 spin_lock(&pkt->lock);
1197 bio_list_add(&pkt->orig_bios, bio);
1198 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1199 spin_unlock(&pkt->lock);
1200 }
1201 /* check write congestion marks, and if bio_queue_size is
1202 * below, wake up any waiters
1203 */
1204 if (pd->congested &&
1205 pd->bio_queue_size <= pd->write_congestion_off) {
1206 pd->congested = false;
1207 wake_up_var(&pd->congested);
1208 }
1209 spin_unlock(&pd->lock);
1210
1211 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1212 pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1213 atomic_set(&pkt->run_sm, 1);
1214
1215 spin_lock(&pd->cdrw.active_list_lock);
1216 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1217 spin_unlock(&pd->cdrw.active_list_lock);
1218
1219 return 1;
1220 }
1221
1222 /**
1223 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1224 * another
1225 * @src: source bio list
1226 * @dst: destination bio list
1227 *
1228 * Stops when it reaches the end of either the @src list or @dst list - that is,
1229 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1230 * bios).
1231 */
bio_list_copy_data(struct bio * dst,struct bio * src)1232 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1233 {
1234 struct bvec_iter src_iter = src->bi_iter;
1235 struct bvec_iter dst_iter = dst->bi_iter;
1236
1237 while (1) {
1238 if (!src_iter.bi_size) {
1239 src = src->bi_next;
1240 if (!src)
1241 break;
1242
1243 src_iter = src->bi_iter;
1244 }
1245
1246 if (!dst_iter.bi_size) {
1247 dst = dst->bi_next;
1248 if (!dst)
1249 break;
1250
1251 dst_iter = dst->bi_iter;
1252 }
1253
1254 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1255 }
1256 }
1257
1258 /*
1259 * Assemble a bio to write one packet and queue the bio for processing
1260 * by the underlying block device.
1261 */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1262 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1263 {
1264 struct device *ddev = disk_to_dev(pd->disk);
1265 int f;
1266
1267 bio_init(pkt->w_bio, pd->bdev_handle->bdev, pkt->w_bio->bi_inline_vecs,
1268 pkt->frames, REQ_OP_WRITE);
1269 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1270 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1271 pkt->w_bio->bi_private = pkt;
1272
1273 /* XXX: locking? */
1274 for (f = 0; f < pkt->frames; f++) {
1275 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1276 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1277
1278 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1279 BUG();
1280 }
1281 dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1282
1283 /*
1284 * Fill-in bvec with data from orig_bios.
1285 */
1286 spin_lock(&pkt->lock);
1287 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1288
1289 pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1290 spin_unlock(&pkt->lock);
1291
1292 dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1293
1294 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1295 pkt->cache_valid = 1;
1296 else
1297 pkt->cache_valid = 0;
1298
1299 /* Start the write request */
1300 atomic_set(&pkt->io_wait, 1);
1301 pkt_queue_bio(pd, pkt->w_bio);
1302 }
1303
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1304 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1305 {
1306 struct bio *bio;
1307
1308 if (status)
1309 pkt->cache_valid = 0;
1310
1311 /* Finish all bios corresponding to this packet */
1312 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1313 bio->bi_status = status;
1314 bio_endio(bio);
1315 }
1316 }
1317
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1318 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1319 {
1320 struct device *ddev = disk_to_dev(pd->disk);
1321
1322 dev_dbg(ddev, "pkt %d\n", pkt->id);
1323
1324 for (;;) {
1325 switch (pkt->state) {
1326 case PACKET_WAITING_STATE:
1327 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1328 return;
1329
1330 pkt->sleep_time = 0;
1331 pkt_gather_data(pd, pkt);
1332 pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1333 break;
1334
1335 case PACKET_READ_WAIT_STATE:
1336 if (atomic_read(&pkt->io_wait) > 0)
1337 return;
1338
1339 if (atomic_read(&pkt->io_errors) > 0) {
1340 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1341 } else {
1342 pkt_start_write(pd, pkt);
1343 }
1344 break;
1345
1346 case PACKET_WRITE_WAIT_STATE:
1347 if (atomic_read(&pkt->io_wait) > 0)
1348 return;
1349
1350 if (!pkt->w_bio->bi_status) {
1351 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1352 } else {
1353 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1354 }
1355 break;
1356
1357 case PACKET_RECOVERY_STATE:
1358 dev_dbg(ddev, "No recovery possible\n");
1359 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1360 break;
1361
1362 case PACKET_FINISHED_STATE:
1363 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1364 return;
1365
1366 default:
1367 BUG();
1368 break;
1369 }
1370 }
1371 }
1372
pkt_handle_packets(struct pktcdvd_device * pd)1373 static void pkt_handle_packets(struct pktcdvd_device *pd)
1374 {
1375 struct device *ddev = disk_to_dev(pd->disk);
1376 struct packet_data *pkt, *next;
1377
1378 /*
1379 * Run state machine for active packets
1380 */
1381 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1382 if (atomic_read(&pkt->run_sm) > 0) {
1383 atomic_set(&pkt->run_sm, 0);
1384 pkt_run_state_machine(pd, pkt);
1385 }
1386 }
1387
1388 /*
1389 * Move no longer active packets to the free list
1390 */
1391 spin_lock(&pd->cdrw.active_list_lock);
1392 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1393 if (pkt->state == PACKET_FINISHED_STATE) {
1394 list_del(&pkt->list);
1395 pkt_put_packet_data(pd, pkt);
1396 pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1397 atomic_set(&pd->scan_queue, 1);
1398 }
1399 }
1400 spin_unlock(&pd->cdrw.active_list_lock);
1401 }
1402
1403 /*
1404 * kcdrwd is woken up when writes have been queued for one of our
1405 * registered devices
1406 */
kcdrwd(void * foobar)1407 static int kcdrwd(void *foobar)
1408 {
1409 struct pktcdvd_device *pd = foobar;
1410 struct device *ddev = disk_to_dev(pd->disk);
1411 struct packet_data *pkt;
1412 int states[PACKET_NUM_STATES];
1413 long min_sleep_time, residue;
1414
1415 set_user_nice(current, MIN_NICE);
1416 set_freezable();
1417
1418 for (;;) {
1419 DECLARE_WAITQUEUE(wait, current);
1420
1421 /*
1422 * Wait until there is something to do
1423 */
1424 add_wait_queue(&pd->wqueue, &wait);
1425 for (;;) {
1426 set_current_state(TASK_INTERRUPTIBLE);
1427
1428 /* Check if we need to run pkt_handle_queue */
1429 if (atomic_read(&pd->scan_queue) > 0)
1430 goto work_to_do;
1431
1432 /* Check if we need to run the state machine for some packet */
1433 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1434 if (atomic_read(&pkt->run_sm) > 0)
1435 goto work_to_do;
1436 }
1437
1438 /* Check if we need to process the iosched queues */
1439 if (atomic_read(&pd->iosched.attention) != 0)
1440 goto work_to_do;
1441
1442 /* Otherwise, go to sleep */
1443 pkt_count_states(pd, states);
1444 dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1445 states[0], states[1], states[2], states[3], states[4], states[5]);
1446
1447 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1448 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1449 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1450 min_sleep_time = pkt->sleep_time;
1451 }
1452
1453 dev_dbg(ddev, "sleeping\n");
1454 residue = schedule_timeout(min_sleep_time);
1455 dev_dbg(ddev, "wake up\n");
1456
1457 /* make swsusp happy with our thread */
1458 try_to_freeze();
1459
1460 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1461 if (!pkt->sleep_time)
1462 continue;
1463 pkt->sleep_time -= min_sleep_time - residue;
1464 if (pkt->sleep_time <= 0) {
1465 pkt->sleep_time = 0;
1466 atomic_inc(&pkt->run_sm);
1467 }
1468 }
1469
1470 if (kthread_should_stop())
1471 break;
1472 }
1473 work_to_do:
1474 set_current_state(TASK_RUNNING);
1475 remove_wait_queue(&pd->wqueue, &wait);
1476
1477 if (kthread_should_stop())
1478 break;
1479
1480 /*
1481 * if pkt_handle_queue returns true, we can queue
1482 * another request.
1483 */
1484 while (pkt_handle_queue(pd))
1485 ;
1486
1487 /*
1488 * Handle packet state machine
1489 */
1490 pkt_handle_packets(pd);
1491
1492 /*
1493 * Handle iosched queues
1494 */
1495 pkt_iosched_process_queue(pd);
1496 }
1497
1498 return 0;
1499 }
1500
pkt_print_settings(struct pktcdvd_device * pd)1501 static void pkt_print_settings(struct pktcdvd_device *pd)
1502 {
1503 dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1504 pd->settings.fp ? "Fixed" : "Variable",
1505 pd->settings.size >> 2,
1506 pd->settings.block_mode == 8 ? '1' : '2');
1507 }
1508
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1509 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1510 {
1511 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1512
1513 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1514 cgc->cmd[2] = page_code | (page_control << 6);
1515 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1516 cgc->data_direction = CGC_DATA_READ;
1517 return pkt_generic_packet(pd, cgc);
1518 }
1519
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1520 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1521 {
1522 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1523 memset(cgc->buffer, 0, 2);
1524 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1525 cgc->cmd[1] = 0x10; /* PF */
1526 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1527 cgc->data_direction = CGC_DATA_WRITE;
1528 return pkt_generic_packet(pd, cgc);
1529 }
1530
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1531 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1532 {
1533 struct packet_command cgc;
1534 int ret;
1535
1536 /* set up command and get the disc info */
1537 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1538 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1539 cgc.cmd[8] = cgc.buflen = 2;
1540 cgc.quiet = 1;
1541
1542 ret = pkt_generic_packet(pd, &cgc);
1543 if (ret)
1544 return ret;
1545
1546 /* not all drives have the same disc_info length, so requeue
1547 * packet with the length the drive tells us it can supply
1548 */
1549 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1550 sizeof(di->disc_information_length);
1551
1552 if (cgc.buflen > sizeof(disc_information))
1553 cgc.buflen = sizeof(disc_information);
1554
1555 cgc.cmd[8] = cgc.buflen;
1556 return pkt_generic_packet(pd, &cgc);
1557 }
1558
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1559 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1560 {
1561 struct packet_command cgc;
1562 int ret;
1563
1564 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1565 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1566 cgc.cmd[1] = type & 3;
1567 put_unaligned_be16(track, &cgc.cmd[4]);
1568 cgc.cmd[8] = 8;
1569 cgc.quiet = 1;
1570
1571 ret = pkt_generic_packet(pd, &cgc);
1572 if (ret)
1573 return ret;
1574
1575 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1576 sizeof(ti->track_information_length);
1577
1578 if (cgc.buflen > sizeof(track_information))
1579 cgc.buflen = sizeof(track_information);
1580
1581 cgc.cmd[8] = cgc.buflen;
1582 return pkt_generic_packet(pd, &cgc);
1583 }
1584
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1585 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1586 long *last_written)
1587 {
1588 disc_information di;
1589 track_information ti;
1590 __u32 last_track;
1591 int ret;
1592
1593 ret = pkt_get_disc_info(pd, &di);
1594 if (ret)
1595 return ret;
1596
1597 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1598 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1599 if (ret)
1600 return ret;
1601
1602 /* if this track is blank, try the previous. */
1603 if (ti.blank) {
1604 last_track--;
1605 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1606 if (ret)
1607 return ret;
1608 }
1609
1610 /* if last recorded field is valid, return it. */
1611 if (ti.lra_v) {
1612 *last_written = be32_to_cpu(ti.last_rec_address);
1613 } else {
1614 /* make it up instead */
1615 *last_written = be32_to_cpu(ti.track_start) +
1616 be32_to_cpu(ti.track_size);
1617 if (ti.free_blocks)
1618 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1619 }
1620 return 0;
1621 }
1622
1623 /*
1624 * write mode select package based on pd->settings
1625 */
pkt_set_write_settings(struct pktcdvd_device * pd)1626 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1627 {
1628 struct device *ddev = disk_to_dev(pd->disk);
1629 struct packet_command cgc;
1630 struct scsi_sense_hdr sshdr;
1631 write_param_page *wp;
1632 char buffer[128];
1633 int ret, size;
1634
1635 /* doesn't apply to DVD+RW or DVD-RAM */
1636 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1637 return 0;
1638
1639 memset(buffer, 0, sizeof(buffer));
1640 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1641 cgc.sshdr = &sshdr;
1642 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1643 if (ret) {
1644 pkt_dump_sense(pd, &cgc);
1645 return ret;
1646 }
1647
1648 size = 2 + get_unaligned_be16(&buffer[0]);
1649 pd->mode_offset = get_unaligned_be16(&buffer[6]);
1650 if (size > sizeof(buffer))
1651 size = sizeof(buffer);
1652
1653 /*
1654 * now get it all
1655 */
1656 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1657 cgc.sshdr = &sshdr;
1658 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1659 if (ret) {
1660 pkt_dump_sense(pd, &cgc);
1661 return ret;
1662 }
1663
1664 /*
1665 * write page is offset header + block descriptor length
1666 */
1667 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1668
1669 wp->fp = pd->settings.fp;
1670 wp->track_mode = pd->settings.track_mode;
1671 wp->write_type = pd->settings.write_type;
1672 wp->data_block_type = pd->settings.block_mode;
1673
1674 wp->multi_session = 0;
1675
1676 #ifdef PACKET_USE_LS
1677 wp->link_size = 7;
1678 wp->ls_v = 1;
1679 #endif
1680
1681 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1682 wp->session_format = 0;
1683 wp->subhdr2 = 0x20;
1684 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1685 wp->session_format = 0x20;
1686 wp->subhdr2 = 8;
1687 #if 0
1688 wp->mcn[0] = 0x80;
1689 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1690 #endif
1691 } else {
1692 /*
1693 * paranoia
1694 */
1695 dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1696 return 1;
1697 }
1698 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1699
1700 cgc.buflen = cgc.cmd[8] = size;
1701 ret = pkt_mode_select(pd, &cgc);
1702 if (ret) {
1703 pkt_dump_sense(pd, &cgc);
1704 return ret;
1705 }
1706
1707 pkt_print_settings(pd);
1708 return 0;
1709 }
1710
1711 /*
1712 * 1 -- we can write to this track, 0 -- we can't
1713 */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1714 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1715 {
1716 struct device *ddev = disk_to_dev(pd->disk);
1717
1718 switch (pd->mmc3_profile) {
1719 case 0x1a: /* DVD+RW */
1720 case 0x12: /* DVD-RAM */
1721 /* The track is always writable on DVD+RW/DVD-RAM */
1722 return 1;
1723 default:
1724 break;
1725 }
1726
1727 if (!ti->packet || !ti->fp)
1728 return 0;
1729
1730 /*
1731 * "good" settings as per Mt Fuji.
1732 */
1733 if (ti->rt == 0 && ti->blank == 0)
1734 return 1;
1735
1736 if (ti->rt == 0 && ti->blank == 1)
1737 return 1;
1738
1739 if (ti->rt == 1 && ti->blank == 0)
1740 return 1;
1741
1742 dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1743 return 0;
1744 }
1745
1746 /*
1747 * 1 -- we can write to this disc, 0 -- we can't
1748 */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1749 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1750 {
1751 struct device *ddev = disk_to_dev(pd->disk);
1752
1753 switch (pd->mmc3_profile) {
1754 case 0x0a: /* CD-RW */
1755 case 0xffff: /* MMC3 not supported */
1756 break;
1757 case 0x1a: /* DVD+RW */
1758 case 0x13: /* DVD-RW */
1759 case 0x12: /* DVD-RAM */
1760 return 1;
1761 default:
1762 dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1763 return 0;
1764 }
1765
1766 /*
1767 * for disc type 0xff we should probably reserve a new track.
1768 * but i'm not sure, should we leave this to user apps? probably.
1769 */
1770 if (di->disc_type == 0xff) {
1771 dev_notice(ddev, "unknown disc - no track?\n");
1772 return 0;
1773 }
1774
1775 if (di->disc_type != 0x20 && di->disc_type != 0) {
1776 dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1777 return 0;
1778 }
1779
1780 if (di->erasable == 0) {
1781 dev_err(ddev, "disc not erasable\n");
1782 return 0;
1783 }
1784
1785 if (di->border_status == PACKET_SESSION_RESERVED) {
1786 dev_err(ddev, "can't write to last track (reserved)\n");
1787 return 0;
1788 }
1789
1790 return 1;
1791 }
1792
pkt_probe_settings(struct pktcdvd_device * pd)1793 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1794 {
1795 struct device *ddev = disk_to_dev(pd->disk);
1796 struct packet_command cgc;
1797 unsigned char buf[12];
1798 disc_information di;
1799 track_information ti;
1800 int ret, track;
1801
1802 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1803 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1804 cgc.cmd[8] = 8;
1805 ret = pkt_generic_packet(pd, &cgc);
1806 pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1807
1808 memset(&di, 0, sizeof(disc_information));
1809 memset(&ti, 0, sizeof(track_information));
1810
1811 ret = pkt_get_disc_info(pd, &di);
1812 if (ret) {
1813 dev_err(ddev, "failed get_disc\n");
1814 return ret;
1815 }
1816
1817 if (!pkt_writable_disc(pd, &di))
1818 return -EROFS;
1819
1820 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1821
1822 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1823 ret = pkt_get_track_info(pd, track, 1, &ti);
1824 if (ret) {
1825 dev_err(ddev, "failed get_track\n");
1826 return ret;
1827 }
1828
1829 if (!pkt_writable_track(pd, &ti)) {
1830 dev_err(ddev, "can't write to this track\n");
1831 return -EROFS;
1832 }
1833
1834 /*
1835 * we keep packet size in 512 byte units, makes it easier to
1836 * deal with request calculations.
1837 */
1838 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1839 if (pd->settings.size == 0) {
1840 dev_notice(ddev, "detected zero packet size!\n");
1841 return -ENXIO;
1842 }
1843 if (pd->settings.size > PACKET_MAX_SECTORS) {
1844 dev_err(ddev, "packet size is too big\n");
1845 return -EROFS;
1846 }
1847 pd->settings.fp = ti.fp;
1848 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1849
1850 if (ti.nwa_v) {
1851 pd->nwa = be32_to_cpu(ti.next_writable);
1852 set_bit(PACKET_NWA_VALID, &pd->flags);
1853 }
1854
1855 /*
1856 * in theory we could use lra on -RW media as well and just zero
1857 * blocks that haven't been written yet, but in practice that
1858 * is just a no-go. we'll use that for -R, naturally.
1859 */
1860 if (ti.lra_v) {
1861 pd->lra = be32_to_cpu(ti.last_rec_address);
1862 set_bit(PACKET_LRA_VALID, &pd->flags);
1863 } else {
1864 pd->lra = 0xffffffff;
1865 set_bit(PACKET_LRA_VALID, &pd->flags);
1866 }
1867
1868 /*
1869 * fine for now
1870 */
1871 pd->settings.link_loss = 7;
1872 pd->settings.write_type = 0; /* packet */
1873 pd->settings.track_mode = ti.track_mode;
1874
1875 /*
1876 * mode1 or mode2 disc
1877 */
1878 switch (ti.data_mode) {
1879 case PACKET_MODE1:
1880 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1881 break;
1882 case PACKET_MODE2:
1883 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1884 break;
1885 default:
1886 dev_err(ddev, "unknown data mode\n");
1887 return -EROFS;
1888 }
1889 return 0;
1890 }
1891
1892 /*
1893 * enable/disable write caching on drive
1894 */
pkt_write_caching(struct pktcdvd_device * pd)1895 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1896 {
1897 struct device *ddev = disk_to_dev(pd->disk);
1898 struct packet_command cgc;
1899 struct scsi_sense_hdr sshdr;
1900 unsigned char buf[64];
1901 bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1902 int ret;
1903
1904 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1905 cgc.sshdr = &sshdr;
1906 cgc.buflen = pd->mode_offset + 12;
1907
1908 /*
1909 * caching mode page might not be there, so quiet this command
1910 */
1911 cgc.quiet = 1;
1912
1913 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1914 if (ret)
1915 return ret;
1916
1917 /*
1918 * use drive write caching -- we need deferred error handling to be
1919 * able to successfully recover with this option (drive will return good
1920 * status as soon as the cdb is validated).
1921 */
1922 buf[pd->mode_offset + 10] |= (set << 2);
1923
1924 cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1925 ret = pkt_mode_select(pd, &cgc);
1926 if (ret) {
1927 dev_err(ddev, "write caching control failed\n");
1928 pkt_dump_sense(pd, &cgc);
1929 } else if (!ret && set)
1930 dev_notice(ddev, "enabled write caching\n");
1931 return ret;
1932 }
1933
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1934 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1935 {
1936 struct packet_command cgc;
1937
1938 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1939 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1940 cgc.cmd[4] = lockflag ? 1 : 0;
1941 return pkt_generic_packet(pd, &cgc);
1942 }
1943
1944 /*
1945 * Returns drive maximum write speed
1946 */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1947 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1948 unsigned *write_speed)
1949 {
1950 struct packet_command cgc;
1951 struct scsi_sense_hdr sshdr;
1952 unsigned char buf[256+18];
1953 unsigned char *cap_buf;
1954 int ret, offset;
1955
1956 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1957 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1958 cgc.sshdr = &sshdr;
1959
1960 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1961 if (ret) {
1962 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1963 sizeof(struct mode_page_header);
1964 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1965 if (ret) {
1966 pkt_dump_sense(pd, &cgc);
1967 return ret;
1968 }
1969 }
1970
1971 offset = 20; /* Obsoleted field, used by older drives */
1972 if (cap_buf[1] >= 28)
1973 offset = 28; /* Current write speed selected */
1974 if (cap_buf[1] >= 30) {
1975 /* If the drive reports at least one "Logical Unit Write
1976 * Speed Performance Descriptor Block", use the information
1977 * in the first block. (contains the highest speed)
1978 */
1979 int num_spdb = get_unaligned_be16(&cap_buf[30]);
1980 if (num_spdb > 0)
1981 offset = 34;
1982 }
1983
1984 *write_speed = get_unaligned_be16(&cap_buf[offset]);
1985 return 0;
1986 }
1987
1988 /* These tables from cdrecord - I don't have orange book */
1989 /* standard speed CD-RW (1-4x) */
1990 static char clv_to_speed[16] = {
1991 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1992 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1993 };
1994 /* high speed CD-RW (-10x) */
1995 static char hs_clv_to_speed[16] = {
1996 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1997 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1998 };
1999 /* ultra high speed CD-RW */
2000 static char us_clv_to_speed[16] = {
2001 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2002 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2003 };
2004
2005 /*
2006 * reads the maximum media speed from ATIP
2007 */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)2008 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2009 unsigned *speed)
2010 {
2011 struct device *ddev = disk_to_dev(pd->disk);
2012 struct packet_command cgc;
2013 struct scsi_sense_hdr sshdr;
2014 unsigned char buf[64];
2015 unsigned int size, st, sp;
2016 int ret;
2017
2018 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2019 cgc.sshdr = &sshdr;
2020 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2021 cgc.cmd[1] = 2;
2022 cgc.cmd[2] = 4; /* READ ATIP */
2023 cgc.cmd[8] = 2;
2024 ret = pkt_generic_packet(pd, &cgc);
2025 if (ret) {
2026 pkt_dump_sense(pd, &cgc);
2027 return ret;
2028 }
2029 size = 2 + get_unaligned_be16(&buf[0]);
2030 if (size > sizeof(buf))
2031 size = sizeof(buf);
2032
2033 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2034 cgc.sshdr = &sshdr;
2035 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2036 cgc.cmd[1] = 2;
2037 cgc.cmd[2] = 4;
2038 cgc.cmd[8] = size;
2039 ret = pkt_generic_packet(pd, &cgc);
2040 if (ret) {
2041 pkt_dump_sense(pd, &cgc);
2042 return ret;
2043 }
2044
2045 if (!(buf[6] & 0x40)) {
2046 dev_notice(ddev, "disc type is not CD-RW\n");
2047 return 1;
2048 }
2049 if (!(buf[6] & 0x4)) {
2050 dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2051 return 1;
2052 }
2053
2054 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2055
2056 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2057
2058 /* Info from cdrecord */
2059 switch (st) {
2060 case 0: /* standard speed */
2061 *speed = clv_to_speed[sp];
2062 break;
2063 case 1: /* high speed */
2064 *speed = hs_clv_to_speed[sp];
2065 break;
2066 case 2: /* ultra high speed */
2067 *speed = us_clv_to_speed[sp];
2068 break;
2069 default:
2070 dev_notice(ddev, "unknown disc sub-type %d\n", st);
2071 return 1;
2072 }
2073 if (*speed) {
2074 dev_info(ddev, "maximum media speed: %d\n", *speed);
2075 return 0;
2076 } else {
2077 dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2078 return 1;
2079 }
2080 }
2081
pkt_perform_opc(struct pktcdvd_device * pd)2082 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2083 {
2084 struct device *ddev = disk_to_dev(pd->disk);
2085 struct packet_command cgc;
2086 struct scsi_sense_hdr sshdr;
2087 int ret;
2088
2089 dev_dbg(ddev, "Performing OPC\n");
2090
2091 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2092 cgc.sshdr = &sshdr;
2093 cgc.timeout = 60*HZ;
2094 cgc.cmd[0] = GPCMD_SEND_OPC;
2095 cgc.cmd[1] = 1;
2096 ret = pkt_generic_packet(pd, &cgc);
2097 if (ret)
2098 pkt_dump_sense(pd, &cgc);
2099 return ret;
2100 }
2101
pkt_open_write(struct pktcdvd_device * pd)2102 static int pkt_open_write(struct pktcdvd_device *pd)
2103 {
2104 struct device *ddev = disk_to_dev(pd->disk);
2105 int ret;
2106 unsigned int write_speed, media_write_speed, read_speed;
2107
2108 ret = pkt_probe_settings(pd);
2109 if (ret) {
2110 dev_dbg(ddev, "failed probe\n");
2111 return ret;
2112 }
2113
2114 ret = pkt_set_write_settings(pd);
2115 if (ret) {
2116 dev_notice(ddev, "failed saving write settings\n");
2117 return -EIO;
2118 }
2119
2120 pkt_write_caching(pd);
2121
2122 ret = pkt_get_max_speed(pd, &write_speed);
2123 if (ret)
2124 write_speed = 16 * 177;
2125 switch (pd->mmc3_profile) {
2126 case 0x13: /* DVD-RW */
2127 case 0x1a: /* DVD+RW */
2128 case 0x12: /* DVD-RAM */
2129 dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2130 break;
2131 default:
2132 ret = pkt_media_speed(pd, &media_write_speed);
2133 if (ret)
2134 media_write_speed = 16;
2135 write_speed = min(write_speed, media_write_speed * 177);
2136 dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2137 break;
2138 }
2139 read_speed = write_speed;
2140
2141 ret = pkt_set_speed(pd, write_speed, read_speed);
2142 if (ret) {
2143 dev_notice(ddev, "couldn't set write speed\n");
2144 return -EIO;
2145 }
2146 pd->write_speed = write_speed;
2147 pd->read_speed = read_speed;
2148
2149 ret = pkt_perform_opc(pd);
2150 if (ret)
2151 dev_notice(ddev, "Optimum Power Calibration failed\n");
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * called at open time.
2158 */
pkt_open_dev(struct pktcdvd_device * pd,bool write)2159 static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2160 {
2161 struct device *ddev = disk_to_dev(pd->disk);
2162 int ret;
2163 long lba;
2164 struct request_queue *q;
2165 struct bdev_handle *bdev_handle;
2166
2167 /*
2168 * We need to re-open the cdrom device without O_NONBLOCK to be able
2169 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2170 * so open should not fail.
2171 */
2172 bdev_handle = bdev_open_by_dev(pd->bdev_handle->bdev->bd_dev,
2173 BLK_OPEN_READ, pd, NULL);
2174 if (IS_ERR(bdev_handle)) {
2175 ret = PTR_ERR(bdev_handle);
2176 goto out;
2177 }
2178 pd->open_bdev_handle = bdev_handle;
2179
2180 ret = pkt_get_last_written(pd, &lba);
2181 if (ret) {
2182 dev_err(ddev, "pkt_get_last_written failed\n");
2183 goto out_putdev;
2184 }
2185
2186 set_capacity(pd->disk, lba << 2);
2187 set_capacity_and_notify(pd->bdev_handle->bdev->bd_disk, lba << 2);
2188
2189 q = bdev_get_queue(pd->bdev_handle->bdev);
2190 if (write) {
2191 ret = pkt_open_write(pd);
2192 if (ret)
2193 goto out_putdev;
2194 /*
2195 * Some CDRW drives can not handle writes larger than one packet,
2196 * even if the size is a multiple of the packet size.
2197 */
2198 blk_queue_max_hw_sectors(q, pd->settings.size);
2199 set_bit(PACKET_WRITABLE, &pd->flags);
2200 } else {
2201 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2202 clear_bit(PACKET_WRITABLE, &pd->flags);
2203 }
2204
2205 ret = pkt_set_segment_merging(pd, q);
2206 if (ret)
2207 goto out_putdev;
2208
2209 if (write) {
2210 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2211 dev_err(ddev, "not enough memory for buffers\n");
2212 ret = -ENOMEM;
2213 goto out_putdev;
2214 }
2215 dev_info(ddev, "%lukB available on disc\n", lba << 1);
2216 }
2217
2218 return 0;
2219
2220 out_putdev:
2221 bdev_release(bdev_handle);
2222 out:
2223 return ret;
2224 }
2225
2226 /*
2227 * called when the device is closed. makes sure that the device flushes
2228 * the internal cache before we close.
2229 */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2230 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2231 {
2232 struct device *ddev = disk_to_dev(pd->disk);
2233
2234 if (flush && pkt_flush_cache(pd))
2235 dev_notice(ddev, "not flushing cache\n");
2236
2237 pkt_lock_door(pd, 0);
2238
2239 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2240 bdev_release(pd->open_bdev_handle);
2241 pd->open_bdev_handle = NULL;
2242
2243 pkt_shrink_pktlist(pd);
2244 }
2245
pkt_find_dev_from_minor(unsigned int dev_minor)2246 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2247 {
2248 if (dev_minor >= MAX_WRITERS)
2249 return NULL;
2250
2251 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2252 return pkt_devs[dev_minor];
2253 }
2254
pkt_open(struct gendisk * disk,blk_mode_t mode)2255 static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2256 {
2257 struct pktcdvd_device *pd = NULL;
2258 int ret;
2259
2260 mutex_lock(&pktcdvd_mutex);
2261 mutex_lock(&ctl_mutex);
2262 pd = pkt_find_dev_from_minor(disk->first_minor);
2263 if (!pd) {
2264 ret = -ENODEV;
2265 goto out;
2266 }
2267 BUG_ON(pd->refcnt < 0);
2268
2269 pd->refcnt++;
2270 if (pd->refcnt > 1) {
2271 if ((mode & BLK_OPEN_WRITE) &&
2272 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2273 ret = -EBUSY;
2274 goto out_dec;
2275 }
2276 } else {
2277 ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2278 if (ret)
2279 goto out_dec;
2280 /*
2281 * needed here as well, since ext2 (among others) may change
2282 * the blocksize at mount time
2283 */
2284 set_blocksize(disk->part0, CD_FRAMESIZE);
2285 }
2286 mutex_unlock(&ctl_mutex);
2287 mutex_unlock(&pktcdvd_mutex);
2288 return 0;
2289
2290 out_dec:
2291 pd->refcnt--;
2292 out:
2293 mutex_unlock(&ctl_mutex);
2294 mutex_unlock(&pktcdvd_mutex);
2295 return ret;
2296 }
2297
pkt_release(struct gendisk * disk)2298 static void pkt_release(struct gendisk *disk)
2299 {
2300 struct pktcdvd_device *pd = disk->private_data;
2301
2302 mutex_lock(&pktcdvd_mutex);
2303 mutex_lock(&ctl_mutex);
2304 pd->refcnt--;
2305 BUG_ON(pd->refcnt < 0);
2306 if (pd->refcnt == 0) {
2307 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2308 pkt_release_dev(pd, flush);
2309 }
2310 mutex_unlock(&ctl_mutex);
2311 mutex_unlock(&pktcdvd_mutex);
2312 }
2313
2314
pkt_end_io_read_cloned(struct bio * bio)2315 static void pkt_end_io_read_cloned(struct bio *bio)
2316 {
2317 struct packet_stacked_data *psd = bio->bi_private;
2318 struct pktcdvd_device *pd = psd->pd;
2319
2320 psd->bio->bi_status = bio->bi_status;
2321 bio_put(bio);
2322 bio_endio(psd->bio);
2323 mempool_free(psd, &psd_pool);
2324 pkt_bio_finished(pd);
2325 }
2326
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2327 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2328 {
2329 struct bio *cloned_bio = bio_alloc_clone(pd->bdev_handle->bdev, bio,
2330 GFP_NOIO, &pkt_bio_set);
2331 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2332
2333 psd->pd = pd;
2334 psd->bio = bio;
2335 cloned_bio->bi_private = psd;
2336 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2337 pd->stats.secs_r += bio_sectors(bio);
2338 pkt_queue_bio(pd, cloned_bio);
2339 }
2340
pkt_make_request_write(struct request_queue * q,struct bio * bio)2341 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2342 {
2343 struct pktcdvd_device *pd = q->queuedata;
2344 sector_t zone;
2345 struct packet_data *pkt;
2346 int was_empty, blocked_bio;
2347 struct pkt_rb_node *node;
2348
2349 zone = get_zone(bio->bi_iter.bi_sector, pd);
2350
2351 /*
2352 * If we find a matching packet in state WAITING or READ_WAIT, we can
2353 * just append this bio to that packet.
2354 */
2355 spin_lock(&pd->cdrw.active_list_lock);
2356 blocked_bio = 0;
2357 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2358 if (pkt->sector == zone) {
2359 spin_lock(&pkt->lock);
2360 if ((pkt->state == PACKET_WAITING_STATE) ||
2361 (pkt->state == PACKET_READ_WAIT_STATE)) {
2362 bio_list_add(&pkt->orig_bios, bio);
2363 pkt->write_size +=
2364 bio->bi_iter.bi_size / CD_FRAMESIZE;
2365 if ((pkt->write_size >= pkt->frames) &&
2366 (pkt->state == PACKET_WAITING_STATE)) {
2367 atomic_inc(&pkt->run_sm);
2368 wake_up(&pd->wqueue);
2369 }
2370 spin_unlock(&pkt->lock);
2371 spin_unlock(&pd->cdrw.active_list_lock);
2372 return;
2373 } else {
2374 blocked_bio = 1;
2375 }
2376 spin_unlock(&pkt->lock);
2377 }
2378 }
2379 spin_unlock(&pd->cdrw.active_list_lock);
2380
2381 /*
2382 * Test if there is enough room left in the bio work queue
2383 * (queue size >= congestion on mark).
2384 * If not, wait till the work queue size is below the congestion off mark.
2385 */
2386 spin_lock(&pd->lock);
2387 if (pd->write_congestion_on > 0
2388 && pd->bio_queue_size >= pd->write_congestion_on) {
2389 struct wait_bit_queue_entry wqe;
2390
2391 init_wait_var_entry(&wqe, &pd->congested, 0);
2392 for (;;) {
2393 prepare_to_wait_event(__var_waitqueue(&pd->congested),
2394 &wqe.wq_entry,
2395 TASK_UNINTERRUPTIBLE);
2396 if (pd->bio_queue_size <= pd->write_congestion_off)
2397 break;
2398 pd->congested = true;
2399 spin_unlock(&pd->lock);
2400 schedule();
2401 spin_lock(&pd->lock);
2402 }
2403 }
2404 spin_unlock(&pd->lock);
2405
2406 /*
2407 * No matching packet found. Store the bio in the work queue.
2408 */
2409 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2410 node->bio = bio;
2411 spin_lock(&pd->lock);
2412 BUG_ON(pd->bio_queue_size < 0);
2413 was_empty = (pd->bio_queue_size == 0);
2414 pkt_rbtree_insert(pd, node);
2415 spin_unlock(&pd->lock);
2416
2417 /*
2418 * Wake up the worker thread.
2419 */
2420 atomic_set(&pd->scan_queue, 1);
2421 if (was_empty) {
2422 /* This wake_up is required for correct operation */
2423 wake_up(&pd->wqueue);
2424 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2425 /*
2426 * This wake up is not required for correct operation,
2427 * but improves performance in some cases.
2428 */
2429 wake_up(&pd->wqueue);
2430 }
2431 }
2432
pkt_submit_bio(struct bio * bio)2433 static void pkt_submit_bio(struct bio *bio)
2434 {
2435 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2436 struct device *ddev = disk_to_dev(pd->disk);
2437 struct bio *split;
2438
2439 bio = bio_split_to_limits(bio);
2440 if (!bio)
2441 return;
2442
2443 dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2444 bio->bi_iter.bi_sector, bio_end_sector(bio));
2445
2446 /*
2447 * Clone READ bios so we can have our own bi_end_io callback.
2448 */
2449 if (bio_data_dir(bio) == READ) {
2450 pkt_make_request_read(pd, bio);
2451 return;
2452 }
2453
2454 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2455 dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2456 goto end_io;
2457 }
2458
2459 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2460 dev_err(ddev, "wrong bio size\n");
2461 goto end_io;
2462 }
2463
2464 do {
2465 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2466 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2467
2468 if (last_zone != zone) {
2469 BUG_ON(last_zone != zone + pd->settings.size);
2470
2471 split = bio_split(bio, last_zone -
2472 bio->bi_iter.bi_sector,
2473 GFP_NOIO, &pkt_bio_set);
2474 bio_chain(split, bio);
2475 } else {
2476 split = bio;
2477 }
2478
2479 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2480 } while (split != bio);
2481
2482 return;
2483 end_io:
2484 bio_io_error(bio);
2485 }
2486
pkt_init_queue(struct pktcdvd_device * pd)2487 static void pkt_init_queue(struct pktcdvd_device *pd)
2488 {
2489 struct request_queue *q = pd->disk->queue;
2490
2491 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2492 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2493 q->queuedata = pd;
2494 }
2495
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2496 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2497 {
2498 struct device *ddev = disk_to_dev(pd->disk);
2499 int i;
2500 struct bdev_handle *bdev_handle;
2501 struct scsi_device *sdev;
2502
2503 if (pd->pkt_dev == dev) {
2504 dev_err(ddev, "recursive setup not allowed\n");
2505 return -EBUSY;
2506 }
2507 for (i = 0; i < MAX_WRITERS; i++) {
2508 struct pktcdvd_device *pd2 = pkt_devs[i];
2509 if (!pd2)
2510 continue;
2511 if (pd2->bdev_handle->bdev->bd_dev == dev) {
2512 dev_err(ddev, "%pg already setup\n",
2513 pd2->bdev_handle->bdev);
2514 return -EBUSY;
2515 }
2516 if (pd2->pkt_dev == dev) {
2517 dev_err(ddev, "can't chain pktcdvd devices\n");
2518 return -EBUSY;
2519 }
2520 }
2521
2522 bdev_handle = bdev_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2523 NULL, NULL);
2524 if (IS_ERR(bdev_handle))
2525 return PTR_ERR(bdev_handle);
2526 sdev = scsi_device_from_queue(bdev_handle->bdev->bd_disk->queue);
2527 if (!sdev) {
2528 bdev_release(bdev_handle);
2529 return -EINVAL;
2530 }
2531 put_device(&sdev->sdev_gendev);
2532
2533 /* This is safe, since we have a reference from open(). */
2534 __module_get(THIS_MODULE);
2535
2536 pd->bdev_handle = bdev_handle;
2537 set_blocksize(bdev_handle->bdev, CD_FRAMESIZE);
2538
2539 pkt_init_queue(pd);
2540
2541 atomic_set(&pd->cdrw.pending_bios, 0);
2542 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2543 if (IS_ERR(pd->cdrw.thread)) {
2544 dev_err(ddev, "can't start kernel thread\n");
2545 goto out_mem;
2546 }
2547
2548 proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2549 dev_notice(ddev, "writer mapped to %pg\n", bdev_handle->bdev);
2550 return 0;
2551
2552 out_mem:
2553 bdev_release(bdev_handle);
2554 /* This is safe: open() is still holding a reference. */
2555 module_put(THIS_MODULE);
2556 return -ENOMEM;
2557 }
2558
pkt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)2559 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2560 unsigned int cmd, unsigned long arg)
2561 {
2562 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2563 struct device *ddev = disk_to_dev(pd->disk);
2564 int ret;
2565
2566 dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2567
2568 mutex_lock(&pktcdvd_mutex);
2569 switch (cmd) {
2570 case CDROMEJECT:
2571 /*
2572 * The door gets locked when the device is opened, so we
2573 * have to unlock it or else the eject command fails.
2574 */
2575 if (pd->refcnt == 1)
2576 pkt_lock_door(pd, 0);
2577 fallthrough;
2578 /*
2579 * forward selected CDROM ioctls to CD-ROM, for UDF
2580 */
2581 case CDROMMULTISESSION:
2582 case CDROMREADTOCENTRY:
2583 case CDROM_LAST_WRITTEN:
2584 case CDROM_SEND_PACKET:
2585 case SCSI_IOCTL_SEND_COMMAND:
2586 if (!bdev->bd_disk->fops->ioctl)
2587 ret = -ENOTTY;
2588 else
2589 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2590 break;
2591 default:
2592 dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2593 ret = -ENOTTY;
2594 }
2595 mutex_unlock(&pktcdvd_mutex);
2596
2597 return ret;
2598 }
2599
pkt_check_events(struct gendisk * disk,unsigned int clearing)2600 static unsigned int pkt_check_events(struct gendisk *disk,
2601 unsigned int clearing)
2602 {
2603 struct pktcdvd_device *pd = disk->private_data;
2604 struct gendisk *attached_disk;
2605
2606 if (!pd)
2607 return 0;
2608 if (!pd->bdev_handle)
2609 return 0;
2610 attached_disk = pd->bdev_handle->bdev->bd_disk;
2611 if (!attached_disk || !attached_disk->fops->check_events)
2612 return 0;
2613 return attached_disk->fops->check_events(attached_disk, clearing);
2614 }
2615
pkt_devnode(struct gendisk * disk,umode_t * mode)2616 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2617 {
2618 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2619 }
2620
2621 static const struct block_device_operations pktcdvd_ops = {
2622 .owner = THIS_MODULE,
2623 .submit_bio = pkt_submit_bio,
2624 .open = pkt_open,
2625 .release = pkt_release,
2626 .ioctl = pkt_ioctl,
2627 .compat_ioctl = blkdev_compat_ptr_ioctl,
2628 .check_events = pkt_check_events,
2629 .devnode = pkt_devnode,
2630 };
2631
2632 /*
2633 * Set up mapping from pktcdvd device to CD-ROM device.
2634 */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2635 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2636 {
2637 int idx;
2638 int ret = -ENOMEM;
2639 struct pktcdvd_device *pd;
2640 struct gendisk *disk;
2641
2642 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2643
2644 for (idx = 0; idx < MAX_WRITERS; idx++)
2645 if (!pkt_devs[idx])
2646 break;
2647 if (idx == MAX_WRITERS) {
2648 pr_err("max %d writers supported\n", MAX_WRITERS);
2649 ret = -EBUSY;
2650 goto out_mutex;
2651 }
2652
2653 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2654 if (!pd)
2655 goto out_mutex;
2656
2657 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2658 sizeof(struct pkt_rb_node));
2659 if (ret)
2660 goto out_mem;
2661
2662 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2663 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2664 spin_lock_init(&pd->cdrw.active_list_lock);
2665
2666 spin_lock_init(&pd->lock);
2667 spin_lock_init(&pd->iosched.lock);
2668 bio_list_init(&pd->iosched.read_queue);
2669 bio_list_init(&pd->iosched.write_queue);
2670 init_waitqueue_head(&pd->wqueue);
2671 pd->bio_queue = RB_ROOT;
2672
2673 pd->write_congestion_on = write_congestion_on;
2674 pd->write_congestion_off = write_congestion_off;
2675
2676 ret = -ENOMEM;
2677 disk = blk_alloc_disk(NUMA_NO_NODE);
2678 if (!disk)
2679 goto out_mem;
2680 pd->disk = disk;
2681 disk->major = pktdev_major;
2682 disk->first_minor = idx;
2683 disk->minors = 1;
2684 disk->fops = &pktcdvd_ops;
2685 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2686 snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2687 disk->private_data = pd;
2688
2689 pd->pkt_dev = MKDEV(pktdev_major, idx);
2690 ret = pkt_new_dev(pd, dev);
2691 if (ret)
2692 goto out_mem2;
2693
2694 /* inherit events of the host device */
2695 disk->events = pd->bdev_handle->bdev->bd_disk->events;
2696
2697 ret = add_disk(disk);
2698 if (ret)
2699 goto out_mem2;
2700
2701 pkt_sysfs_dev_new(pd);
2702 pkt_debugfs_dev_new(pd);
2703
2704 pkt_devs[idx] = pd;
2705 if (pkt_dev)
2706 *pkt_dev = pd->pkt_dev;
2707
2708 mutex_unlock(&ctl_mutex);
2709 return 0;
2710
2711 out_mem2:
2712 put_disk(disk);
2713 out_mem:
2714 mempool_exit(&pd->rb_pool);
2715 kfree(pd);
2716 out_mutex:
2717 mutex_unlock(&ctl_mutex);
2718 pr_err("setup of pktcdvd device failed\n");
2719 return ret;
2720 }
2721
2722 /*
2723 * Tear down mapping from pktcdvd device to CD-ROM device.
2724 */
pkt_remove_dev(dev_t pkt_dev)2725 static int pkt_remove_dev(dev_t pkt_dev)
2726 {
2727 struct pktcdvd_device *pd;
2728 struct device *ddev;
2729 int idx;
2730 int ret = 0;
2731
2732 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2733
2734 for (idx = 0; idx < MAX_WRITERS; idx++) {
2735 pd = pkt_devs[idx];
2736 if (pd && (pd->pkt_dev == pkt_dev))
2737 break;
2738 }
2739 if (idx == MAX_WRITERS) {
2740 pr_debug("dev not setup\n");
2741 ret = -ENXIO;
2742 goto out;
2743 }
2744
2745 if (pd->refcnt > 0) {
2746 ret = -EBUSY;
2747 goto out;
2748 }
2749
2750 ddev = disk_to_dev(pd->disk);
2751
2752 if (!IS_ERR(pd->cdrw.thread))
2753 kthread_stop(pd->cdrw.thread);
2754
2755 pkt_devs[idx] = NULL;
2756
2757 pkt_debugfs_dev_remove(pd);
2758 pkt_sysfs_dev_remove(pd);
2759
2760 bdev_release(pd->bdev_handle);
2761
2762 remove_proc_entry(pd->disk->disk_name, pkt_proc);
2763 dev_notice(ddev, "writer unmapped\n");
2764
2765 del_gendisk(pd->disk);
2766 put_disk(pd->disk);
2767
2768 mempool_exit(&pd->rb_pool);
2769 kfree(pd);
2770
2771 /* This is safe: open() is still holding a reference. */
2772 module_put(THIS_MODULE);
2773
2774 out:
2775 mutex_unlock(&ctl_mutex);
2776 return ret;
2777 }
2778
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2779 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2780 {
2781 struct pktcdvd_device *pd;
2782
2783 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2784
2785 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2786 if (pd) {
2787 ctrl_cmd->dev = new_encode_dev(pd->bdev_handle->bdev->bd_dev);
2788 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2789 } else {
2790 ctrl_cmd->dev = 0;
2791 ctrl_cmd->pkt_dev = 0;
2792 }
2793 ctrl_cmd->num_devices = MAX_WRITERS;
2794
2795 mutex_unlock(&ctl_mutex);
2796 }
2797
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2798 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2799 {
2800 void __user *argp = (void __user *)arg;
2801 struct pkt_ctrl_command ctrl_cmd;
2802 int ret = 0;
2803 dev_t pkt_dev = 0;
2804
2805 if (cmd != PACKET_CTRL_CMD)
2806 return -ENOTTY;
2807
2808 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2809 return -EFAULT;
2810
2811 switch (ctrl_cmd.command) {
2812 case PKT_CTRL_CMD_SETUP:
2813 if (!capable(CAP_SYS_ADMIN))
2814 return -EPERM;
2815 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2816 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2817 break;
2818 case PKT_CTRL_CMD_TEARDOWN:
2819 if (!capable(CAP_SYS_ADMIN))
2820 return -EPERM;
2821 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2822 break;
2823 case PKT_CTRL_CMD_STATUS:
2824 pkt_get_status(&ctrl_cmd);
2825 break;
2826 default:
2827 return -ENOTTY;
2828 }
2829
2830 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2831 return -EFAULT;
2832 return ret;
2833 }
2834
2835 #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2836 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2837 {
2838 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2839 }
2840 #endif
2841
2842 static const struct file_operations pkt_ctl_fops = {
2843 .open = nonseekable_open,
2844 .unlocked_ioctl = pkt_ctl_ioctl,
2845 #ifdef CONFIG_COMPAT
2846 .compat_ioctl = pkt_ctl_compat_ioctl,
2847 #endif
2848 .owner = THIS_MODULE,
2849 .llseek = no_llseek,
2850 };
2851
2852 static struct miscdevice pkt_misc = {
2853 .minor = MISC_DYNAMIC_MINOR,
2854 .name = DRIVER_NAME,
2855 .nodename = "pktcdvd/control",
2856 .fops = &pkt_ctl_fops
2857 };
2858
pkt_init(void)2859 static int __init pkt_init(void)
2860 {
2861 int ret;
2862
2863 mutex_init(&ctl_mutex);
2864
2865 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2866 sizeof(struct packet_stacked_data));
2867 if (ret)
2868 return ret;
2869 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2870 if (ret) {
2871 mempool_exit(&psd_pool);
2872 return ret;
2873 }
2874
2875 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2876 if (ret < 0) {
2877 pr_err("unable to register block device\n");
2878 goto out2;
2879 }
2880 if (!pktdev_major)
2881 pktdev_major = ret;
2882
2883 ret = pkt_sysfs_init();
2884 if (ret)
2885 goto out;
2886
2887 pkt_debugfs_init();
2888
2889 ret = misc_register(&pkt_misc);
2890 if (ret) {
2891 pr_err("unable to register misc device\n");
2892 goto out_misc;
2893 }
2894
2895 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2896
2897 return 0;
2898
2899 out_misc:
2900 pkt_debugfs_cleanup();
2901 pkt_sysfs_cleanup();
2902 out:
2903 unregister_blkdev(pktdev_major, DRIVER_NAME);
2904 out2:
2905 mempool_exit(&psd_pool);
2906 bioset_exit(&pkt_bio_set);
2907 return ret;
2908 }
2909
pkt_exit(void)2910 static void __exit pkt_exit(void)
2911 {
2912 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2913 misc_deregister(&pkt_misc);
2914
2915 pkt_debugfs_cleanup();
2916 pkt_sysfs_cleanup();
2917
2918 unregister_blkdev(pktdev_major, DRIVER_NAME);
2919 mempool_exit(&psd_pool);
2920 bioset_exit(&pkt_bio_set);
2921 }
2922
2923 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2924 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2925 MODULE_LICENSE("GPL");
2926
2927 module_init(pkt_init);
2928 module_exit(pkt_exit);
2929