xref: /linux/arch/x86/kernel/irq.c (revision acaa21a26f2ffa400aa77423403b357b871dbc28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common interrupt code for 32 and 64 bit
4  */
5 #include <linux/cpu.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/of.h>
9 #include <linux/seq_file.h>
10 #include <linux/smp.h>
11 #include <linux/ftrace.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/irq.h>
15 
16 #include <asm/irq_stack.h>
17 #include <asm/apic.h>
18 #include <asm/io_apic.h>
19 #include <asm/irq.h>
20 #include <asm/mce.h>
21 #include <asm/hw_irq.h>
22 #include <asm/desc.h>
23 #include <asm/traps.h>
24 #include <asm/thermal.h>
25 #include <asm/posted_intr.h>
26 #include <asm/irq_remapping.h>
27 
28 #if defined(CONFIG_X86_LOCAL_APIC) || defined(CONFIG_X86_THERMAL_VECTOR)
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/irq_vectors.h>
31 #endif
32 
33 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
34 EXPORT_PER_CPU_SYMBOL(irq_stat);
35 
36 DEFINE_PER_CPU_CACHE_HOT(u16, __softirq_pending);
37 EXPORT_PER_CPU_SYMBOL(__softirq_pending);
38 
39 DEFINE_PER_CPU_CACHE_HOT(struct irq_stack *, hardirq_stack_ptr);
40 
41 atomic_t irq_err_count;
42 
43 /*
44  * 'what should we do if we get a hw irq event on an illegal vector'.
45  * each architecture has to answer this themselves.
46  */
ack_bad_irq(unsigned int irq)47 void ack_bad_irq(unsigned int irq)
48 {
49 	if (printk_ratelimit())
50 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
51 
52 	/*
53 	 * Currently unexpected vectors happen only on SMP and APIC.
54 	 * We _must_ ack these because every local APIC has only N
55 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
56 	 * holds up an irq slot - in excessive cases (when multiple
57 	 * unexpected vectors occur) that might lock up the APIC
58 	 * completely.
59 	 * But only ack when the APIC is enabled -AK
60 	 */
61 	apic_eoi();
62 }
63 
64 #define irq_stats(x)		(&per_cpu(irq_stat, x))
65 /*
66  * /proc/interrupts printing for arch specific interrupts
67  */
arch_show_interrupts(struct seq_file * p,int prec)68 int arch_show_interrupts(struct seq_file *p, int prec)
69 {
70 	int j;
71 
72 	seq_printf(p, "%*s: ", prec, "NMI");
73 	for_each_online_cpu(j)
74 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
75 	seq_puts(p, "  Non-maskable interrupts\n");
76 #ifdef CONFIG_X86_LOCAL_APIC
77 	seq_printf(p, "%*s: ", prec, "LOC");
78 	for_each_online_cpu(j)
79 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
80 	seq_puts(p, "  Local timer interrupts\n");
81 
82 	seq_printf(p, "%*s: ", prec, "SPU");
83 	for_each_online_cpu(j)
84 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
85 	seq_puts(p, "  Spurious interrupts\n");
86 	seq_printf(p, "%*s: ", prec, "PMI");
87 	for_each_online_cpu(j)
88 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
89 	seq_puts(p, "  Performance monitoring interrupts\n");
90 	seq_printf(p, "%*s: ", prec, "IWI");
91 	for_each_online_cpu(j)
92 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
93 	seq_puts(p, "  IRQ work interrupts\n");
94 	seq_printf(p, "%*s: ", prec, "RTR");
95 	for_each_online_cpu(j)
96 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
97 	seq_puts(p, "  APIC ICR read retries\n");
98 	if (x86_platform_ipi_callback) {
99 		seq_printf(p, "%*s: ", prec, "PLT");
100 		for_each_online_cpu(j)
101 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
102 		seq_puts(p, "  Platform interrupts\n");
103 	}
104 #endif
105 #ifdef CONFIG_SMP
106 	seq_printf(p, "%*s: ", prec, "RES");
107 	for_each_online_cpu(j)
108 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
109 	seq_puts(p, "  Rescheduling interrupts\n");
110 	seq_printf(p, "%*s: ", prec, "CAL");
111 	for_each_online_cpu(j)
112 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
113 	seq_puts(p, "  Function call interrupts\n");
114 	seq_printf(p, "%*s: ", prec, "TLB");
115 	for_each_online_cpu(j)
116 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
117 	seq_puts(p, "  TLB shootdowns\n");
118 #endif
119 #ifdef CONFIG_X86_THERMAL_VECTOR
120 	seq_printf(p, "%*s: ", prec, "TRM");
121 	for_each_online_cpu(j)
122 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
123 	seq_puts(p, "  Thermal event interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE_THRESHOLD
126 	seq_printf(p, "%*s: ", prec, "THR");
127 	for_each_online_cpu(j)
128 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
129 	seq_puts(p, "  Threshold APIC interrupts\n");
130 #endif
131 #ifdef CONFIG_X86_MCE_AMD
132 	seq_printf(p, "%*s: ", prec, "DFR");
133 	for_each_online_cpu(j)
134 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
135 	seq_puts(p, "  Deferred Error APIC interrupts\n");
136 #endif
137 #ifdef CONFIG_X86_MCE
138 	seq_printf(p, "%*s: ", prec, "MCE");
139 	for_each_online_cpu(j)
140 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
141 	seq_puts(p, "  Machine check exceptions\n");
142 	seq_printf(p, "%*s: ", prec, "MCP");
143 	for_each_online_cpu(j)
144 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
145 	seq_puts(p, "  Machine check polls\n");
146 #endif
147 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
148 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
149 		seq_printf(p, "%*s: ", prec, "HYP");
150 		for_each_online_cpu(j)
151 			seq_printf(p, "%10u ",
152 				   irq_stats(j)->irq_hv_callback_count);
153 		seq_puts(p, "  Hypervisor callback interrupts\n");
154 	}
155 #endif
156 #if IS_ENABLED(CONFIG_HYPERV)
157 	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
158 		seq_printf(p, "%*s: ", prec, "HRE");
159 		for_each_online_cpu(j)
160 			seq_printf(p, "%10u ",
161 				   irq_stats(j)->irq_hv_reenlightenment_count);
162 		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
163 	}
164 	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
165 		seq_printf(p, "%*s: ", prec, "HVS");
166 		for_each_online_cpu(j)
167 			seq_printf(p, "%10u ",
168 				   irq_stats(j)->hyperv_stimer0_count);
169 		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
170 	}
171 #endif
172 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
173 #if defined(CONFIG_X86_IO_APIC)
174 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
175 #endif
176 #if IS_ENABLED(CONFIG_KVM)
177 	seq_printf(p, "%*s: ", prec, "PIN");
178 	for_each_online_cpu(j)
179 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
180 	seq_puts(p, "  Posted-interrupt notification event\n");
181 
182 	seq_printf(p, "%*s: ", prec, "NPI");
183 	for_each_online_cpu(j)
184 		seq_printf(p, "%10u ",
185 			   irq_stats(j)->kvm_posted_intr_nested_ipis);
186 	seq_puts(p, "  Nested posted-interrupt event\n");
187 
188 	seq_printf(p, "%*s: ", prec, "PIW");
189 	for_each_online_cpu(j)
190 		seq_printf(p, "%10u ",
191 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
192 	seq_puts(p, "  Posted-interrupt wakeup event\n");
193 #endif
194 #ifdef CONFIG_X86_POSTED_MSI
195 	seq_printf(p, "%*s: ", prec, "PMN");
196 	for_each_online_cpu(j)
197 		seq_printf(p, "%10u ",
198 			   irq_stats(j)->posted_msi_notification_count);
199 	seq_puts(p, "  Posted MSI notification event\n");
200 #endif
201 	return 0;
202 }
203 
204 /*
205  * /proc/stat helpers
206  */
arch_irq_stat_cpu(unsigned int cpu)207 u64 arch_irq_stat_cpu(unsigned int cpu)
208 {
209 	u64 sum = irq_stats(cpu)->__nmi_count;
210 
211 #ifdef CONFIG_X86_LOCAL_APIC
212 	sum += irq_stats(cpu)->apic_timer_irqs;
213 	sum += irq_stats(cpu)->irq_spurious_count;
214 	sum += irq_stats(cpu)->apic_perf_irqs;
215 	sum += irq_stats(cpu)->apic_irq_work_irqs;
216 	sum += irq_stats(cpu)->icr_read_retry_count;
217 	if (x86_platform_ipi_callback)
218 		sum += irq_stats(cpu)->x86_platform_ipis;
219 #endif
220 #ifdef CONFIG_SMP
221 	sum += irq_stats(cpu)->irq_resched_count;
222 	sum += irq_stats(cpu)->irq_call_count;
223 #endif
224 #ifdef CONFIG_X86_THERMAL_VECTOR
225 	sum += irq_stats(cpu)->irq_thermal_count;
226 #endif
227 #ifdef CONFIG_X86_MCE_THRESHOLD
228 	sum += irq_stats(cpu)->irq_threshold_count;
229 #endif
230 #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
231 	sum += irq_stats(cpu)->irq_hv_callback_count;
232 #endif
233 #if IS_ENABLED(CONFIG_HYPERV)
234 	sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
235 	sum += irq_stats(cpu)->hyperv_stimer0_count;
236 #endif
237 #ifdef CONFIG_X86_MCE
238 	sum += per_cpu(mce_exception_count, cpu);
239 	sum += per_cpu(mce_poll_count, cpu);
240 #endif
241 	return sum;
242 }
243 
arch_irq_stat(void)244 u64 arch_irq_stat(void)
245 {
246 	u64 sum = atomic_read(&irq_err_count);
247 	return sum;
248 }
249 
handle_irq(struct irq_desc * desc,struct pt_regs * regs)250 static __always_inline void handle_irq(struct irq_desc *desc,
251 				       struct pt_regs *regs)
252 {
253 	if (IS_ENABLED(CONFIG_X86_64))
254 		generic_handle_irq_desc(desc);
255 	else
256 		__handle_irq(desc, regs);
257 }
258 
reevaluate_vector(int vector)259 static struct irq_desc *reevaluate_vector(int vector)
260 {
261 	struct irq_desc *desc = __this_cpu_read(vector_irq[vector]);
262 
263 	if (!IS_ERR_OR_NULL(desc))
264 		return desc;
265 
266 	if (desc == VECTOR_UNUSED)
267 		pr_emerg_ratelimited("No irq handler for %d.%u\n", smp_processor_id(), vector);
268 	else
269 		__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
270 	return NULL;
271 }
272 
call_irq_handler(int vector,struct pt_regs * regs)273 static __always_inline bool call_irq_handler(int vector, struct pt_regs *regs)
274 {
275 	struct irq_desc *desc = __this_cpu_read(vector_irq[vector]);
276 
277 	if (likely(!IS_ERR_OR_NULL(desc))) {
278 		handle_irq(desc, regs);
279 		return true;
280 	}
281 
282 	/*
283 	 * Reevaluate with vector_lock held to prevent a race against
284 	 * request_irq() setting up the vector:
285 	 *
286 	 * CPU0				CPU1
287 	 *				interrupt is raised in APIC IRR
288 	 *				but not handled
289 	 * free_irq()
290 	 *   per_cpu(vector_irq, CPU1)[vector] = VECTOR_SHUTDOWN;
291 	 *
292 	 * request_irq()		common_interrupt()
293 	 *				  d = this_cpu_read(vector_irq[vector]);
294 	 *
295 	 * per_cpu(vector_irq, CPU1)[vector] = desc;
296 	 *
297 	 *				  if (d == VECTOR_SHUTDOWN)
298 	 *				    this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
299 	 *
300 	 * This requires that the same vector on the same target CPU is
301 	 * handed out or that a spurious interrupt hits that CPU/vector.
302 	 */
303 	lock_vector_lock();
304 	desc = reevaluate_vector(vector);
305 	unlock_vector_lock();
306 
307 	if (!desc)
308 		return false;
309 
310 	handle_irq(desc, regs);
311 	return true;
312 }
313 
314 /*
315  * common_interrupt() handles all normal device IRQ's (the special SMP
316  * cross-CPU interrupts have their own entry points).
317  */
DEFINE_IDTENTRY_IRQ(common_interrupt)318 DEFINE_IDTENTRY_IRQ(common_interrupt)
319 {
320 	struct pt_regs *old_regs = set_irq_regs(regs);
321 
322 	/* entry code tells RCU that we're not quiescent.  Check it. */
323 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
324 
325 	if (unlikely(!call_irq_handler(vector, regs)))
326 		apic_eoi();
327 
328 	set_irq_regs(old_regs);
329 }
330 
331 #ifdef CONFIG_X86_LOCAL_APIC
332 /* Function pointer for generic interrupt vector handling */
333 void (*x86_platform_ipi_callback)(void) = NULL;
334 /*
335  * Handler for X86_PLATFORM_IPI_VECTOR.
336  */
DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)337 DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
338 {
339 	struct pt_regs *old_regs = set_irq_regs(regs);
340 
341 	apic_eoi();
342 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
343 	inc_irq_stat(x86_platform_ipis);
344 	if (x86_platform_ipi_callback)
345 		x86_platform_ipi_callback();
346 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
347 	set_irq_regs(old_regs);
348 }
349 #endif
350 
351 #if IS_ENABLED(CONFIG_KVM)
dummy_handler(void)352 static void dummy_handler(void) {}
353 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
354 
kvm_set_posted_intr_wakeup_handler(void (* handler)(void))355 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
356 {
357 	if (handler)
358 		kvm_posted_intr_wakeup_handler = handler;
359 	else {
360 		kvm_posted_intr_wakeup_handler = dummy_handler;
361 		synchronize_rcu();
362 	}
363 }
364 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
365 
366 /*
367  * Handler for POSTED_INTERRUPT_VECTOR.
368  */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)369 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
370 {
371 	apic_eoi();
372 	inc_irq_stat(kvm_posted_intr_ipis);
373 }
374 
375 /*
376  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
377  */
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)378 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
379 {
380 	apic_eoi();
381 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
382 	kvm_posted_intr_wakeup_handler();
383 }
384 
385 /*
386  * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
387  */
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)388 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
389 {
390 	apic_eoi();
391 	inc_irq_stat(kvm_posted_intr_nested_ipis);
392 }
393 #endif
394 
395 #ifdef CONFIG_X86_POSTED_MSI
396 
397 /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
398 DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
399 
intel_posted_msi_init(void)400 void intel_posted_msi_init(void)
401 {
402 	u32 destination;
403 	u32 apic_id;
404 
405 	this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
406 
407 	/*
408 	 * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
409 	 * VT-d spec. CH 9.11
410 	 */
411 	apic_id = this_cpu_read(x86_cpu_to_apicid);
412 	destination = x2apic_enabled() ? apic_id : apic_id << 8;
413 	this_cpu_write(posted_msi_pi_desc.ndst, destination);
414 }
415 
handle_pending_pir(unsigned long * pir,struct pt_regs * regs)416 static __always_inline bool handle_pending_pir(unsigned long *pir, struct pt_regs *regs)
417 {
418 	unsigned long pir_copy[NR_PIR_WORDS];
419 	int vec = FIRST_EXTERNAL_VECTOR;
420 
421 	if (!pi_harvest_pir(pir, pir_copy))
422 		return false;
423 
424 	for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
425 		call_irq_handler(vec, regs);
426 
427 	return true;
428 }
429 
430 /*
431  * Performance data shows that 3 is good enough to harvest 90+% of the benefit
432  * on high IRQ rate workload.
433  */
434 #define MAX_POSTED_MSI_COALESCING_LOOP 3
435 
436 /*
437  * For MSIs that are delivered as posted interrupts, the CPU notifications
438  * can be coalesced if the MSIs arrive in high frequency bursts.
439  */
DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)440 DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
441 {
442 	struct pt_regs *old_regs = set_irq_regs(regs);
443 	struct pi_desc *pid;
444 	int i = 0;
445 
446 	pid = this_cpu_ptr(&posted_msi_pi_desc);
447 
448 	inc_irq_stat(posted_msi_notification_count);
449 	irq_enter();
450 
451 	/*
452 	 * Max coalescing count includes the extra round of handle_pending_pir
453 	 * after clearing the outstanding notification bit. Hence, at most
454 	 * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
455 	 */
456 	while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
457 		if (!handle_pending_pir(pid->pir, regs))
458 			break;
459 	}
460 
461 	/*
462 	 * Clear outstanding notification bit to allow new IRQ notifications,
463 	 * do this last to maximize the window of interrupt coalescing.
464 	 */
465 	pi_clear_on(pid);
466 
467 	/*
468 	 * There could be a race of PI notification and the clearing of ON bit,
469 	 * process PIR bits one last time such that handling the new interrupts
470 	 * are not delayed until the next IRQ.
471 	 */
472 	handle_pending_pir(pid->pir, regs);
473 
474 	apic_eoi();
475 	irq_exit();
476 	set_irq_regs(old_regs);
477 }
478 #endif /* X86_POSTED_MSI */
479 
480 #ifdef CONFIG_HOTPLUG_CPU
481 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
fixup_irqs(void)482 void fixup_irqs(void)
483 {
484 	unsigned int vector;
485 	struct irq_desc *desc;
486 	struct irq_data *data;
487 	struct irq_chip *chip;
488 
489 	irq_migrate_all_off_this_cpu();
490 
491 	/*
492 	 * We can remove mdelay() and then send spurious interrupts to
493 	 * new cpu targets for all the irqs that were handled previously by
494 	 * this cpu. While it works, I have seen spurious interrupt messages
495 	 * (nothing wrong but still...).
496 	 *
497 	 * So for now, retain mdelay(1) and check the IRR and then send those
498 	 * interrupts to new targets as this cpu is already offlined...
499 	 */
500 	mdelay(1);
501 
502 	/*
503 	 * We can walk the vector array of this cpu without holding
504 	 * vector_lock because the cpu is already marked !online, so
505 	 * nothing else will touch it.
506 	 */
507 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
508 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
509 			continue;
510 
511 		if (is_vector_pending(vector)) {
512 			desc = __this_cpu_read(vector_irq[vector]);
513 
514 			raw_spin_lock(&desc->lock);
515 			data = irq_desc_get_irq_data(desc);
516 			chip = irq_data_get_irq_chip(data);
517 			if (chip->irq_retrigger) {
518 				chip->irq_retrigger(data);
519 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
520 			}
521 			raw_spin_unlock(&desc->lock);
522 		}
523 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
524 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
525 	}
526 }
527 #endif
528 
529 #ifdef CONFIG_X86_THERMAL_VECTOR
smp_thermal_vector(void)530 static void smp_thermal_vector(void)
531 {
532 	if (x86_thermal_enabled())
533 		intel_thermal_interrupt();
534 	else
535 		pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
536 		       smp_processor_id());
537 }
538 
DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)539 DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
540 {
541 	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
542 	inc_irq_stat(irq_thermal_count);
543 	smp_thermal_vector();
544 	trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
545 	apic_eoi();
546 }
547 #endif
548