1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36
37 #define MAX_AS_SLOTS 32
38
39 struct panthor_vm;
40
41 /**
42 * struct panthor_as_slot - Address space slot
43 */
44 struct panthor_as_slot {
45 /** @vm: VM bound to this slot. NULL is no VM is bound. */
46 struct panthor_vm *vm;
47 };
48
49 /**
50 * struct panthor_mmu - MMU related data
51 */
52 struct panthor_mmu {
53 /** @irq: The MMU irq. */
54 struct panthor_irq irq;
55
56 /**
57 * @as: Address space related fields.
58 *
59 * The GPU has a limited number of address spaces (AS) slots, forcing
60 * us to re-assign them to re-assign slots on-demand.
61 */
62 struct {
63 /** @as.slots_lock: Lock protecting access to all other AS fields. */
64 struct mutex slots_lock;
65
66 /** @as.alloc_mask: Bitmask encoding the allocated slots. */
67 unsigned long alloc_mask;
68
69 /** @as.faulty_mask: Bitmask encoding the faulty slots. */
70 unsigned long faulty_mask;
71
72 /** @as.slots: VMs currently bound to the AS slots. */
73 struct panthor_as_slot slots[MAX_AS_SLOTS];
74
75 /**
76 * @as.lru_list: List of least recently used VMs.
77 *
78 * We use this list to pick a VM to evict when all slots are
79 * used.
80 *
81 * There should be no more active VMs than there are AS slots,
82 * so this LRU is just here to keep VMs bound until there's
83 * a need to release a slot, thus avoid unnecessary TLB/cache
84 * flushes.
85 */
86 struct list_head lru_list;
87 } as;
88
89 /** @vm: VMs management fields */
90 struct {
91 /** @vm.lock: Lock protecting access to list. */
92 struct mutex lock;
93
94 /** @vm.list: List containing all VMs. */
95 struct list_head list;
96
97 /** @vm.reset_in_progress: True if a reset is in progress. */
98 bool reset_in_progress;
99
100 /** @vm.wq: Workqueue used for the VM_BIND queues. */
101 struct workqueue_struct *wq;
102 } vm;
103 };
104
105 /**
106 * struct panthor_vm_pool - VM pool object
107 */
108 struct panthor_vm_pool {
109 /** @xa: Array used for VM handle tracking. */
110 struct xarray xa;
111 };
112
113 /**
114 * struct panthor_vma - GPU mapping object
115 *
116 * This is used to track GEM mappings in GPU space.
117 */
118 struct panthor_vma {
119 /** @base: Inherits from drm_gpuva. */
120 struct drm_gpuva base;
121
122 /** @node: Used to implement deferred release of VMAs. */
123 struct list_head node;
124
125 /**
126 * @flags: Combination of drm_panthor_vm_bind_op_flags.
127 *
128 * Only map related flags are accepted.
129 */
130 u32 flags;
131 };
132
133 /**
134 * struct panthor_vm_op_ctx - VM operation context
135 *
136 * With VM operations potentially taking place in a dma-signaling path, we
137 * need to make sure everything that might require resource allocation is
138 * pre-allocated upfront. This is what this operation context is far.
139 *
140 * We also collect resources that have been freed, so we can release them
141 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
142 * request.
143 */
144 struct panthor_vm_op_ctx {
145 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */
146 struct {
147 /** @rsvd_page_tables.count: Number of pages reserved. */
148 u32 count;
149
150 /** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
151 u32 ptr;
152
153 /**
154 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
155 *
156 * After an VM operation, there might be free pages left in this array.
157 * They should be returned to the pt_cache as part of the op_ctx cleanup.
158 */
159 void **pages;
160 } rsvd_page_tables;
161
162 /**
163 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
164 *
165 * Partial unmap requests or map requests overlapping existing mappings will
166 * trigger a remap call, which need to register up to three panthor_vma objects
167 * (one for the new mapping, and two for the previous and next mappings).
168 */
169 struct panthor_vma *preallocated_vmas[3];
170
171 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */
172 u32 flags;
173
174 /** @va: Virtual range targeted by the VM operation. */
175 struct {
176 /** @va.addr: Start address. */
177 u64 addr;
178
179 /** @va.range: Range size. */
180 u64 range;
181 } va;
182
183 /**
184 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
185 *
186 * For unmap operations, this will contain all VMAs that were covered by the
187 * specified VA range.
188 *
189 * For map operations, this will contain all VMAs that previously mapped to
190 * the specified VA range.
191 *
192 * Those VMAs, and the resources they point to will be released as part of
193 * the op_ctx cleanup operation.
194 */
195 struct list_head returned_vmas;
196
197 /** @map: Fields specific to a map operation. */
198 struct {
199 /** @map.vm_bo: Buffer object to map. */
200 struct drm_gpuvm_bo *vm_bo;
201
202 /** @map.bo_offset: Offset in the buffer object. */
203 u64 bo_offset;
204
205 /**
206 * @map.sgt: sg-table pointing to pages backing the GEM object.
207 *
208 * This is gathered at job creation time, such that we don't have
209 * to allocate in ::run_job().
210 */
211 struct sg_table *sgt;
212
213 /**
214 * @map.new_vma: The new VMA object that will be inserted to the VA tree.
215 */
216 struct panthor_vma *new_vma;
217 } map;
218 };
219
220 /**
221 * struct panthor_vm - VM object
222 *
223 * A VM is an object representing a GPU (or MCU) virtual address space.
224 * It embeds the MMU page table for this address space, a tree containing
225 * all the virtual mappings of GEM objects, and other things needed to manage
226 * the VM.
227 *
228 * Except for the MCU VM, which is managed by the kernel, all other VMs are
229 * created by userspace and mostly managed by userspace, using the
230 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
231 *
232 * A portion of the virtual address space is reserved for kernel objects,
233 * like heap chunks, and userspace gets to decide how much of the virtual
234 * address space is left to the kernel (half of the virtual address space
235 * by default).
236 */
237 struct panthor_vm {
238 /**
239 * @base: Inherit from drm_gpuvm.
240 *
241 * We delegate all the VA management to the common drm_gpuvm framework
242 * and only implement hooks to update the MMU page table.
243 */
244 struct drm_gpuvm base;
245
246 /**
247 * @sched: Scheduler used for asynchronous VM_BIND request.
248 *
249 * We use a 1:1 scheduler here.
250 */
251 struct drm_gpu_scheduler sched;
252
253 /**
254 * @entity: Scheduling entity representing the VM_BIND queue.
255 *
256 * There's currently one bind queue per VM. It doesn't make sense to
257 * allow more given the VM operations are serialized anyway.
258 */
259 struct drm_sched_entity entity;
260
261 /** @ptdev: Device. */
262 struct panthor_device *ptdev;
263
264 /** @memattr: Value to program to the AS_MEMATTR register. */
265 u64 memattr;
266
267 /** @pgtbl_ops: Page table operations. */
268 struct io_pgtable_ops *pgtbl_ops;
269
270 /** @root_page_table: Stores the root page table pointer. */
271 void *root_page_table;
272
273 /**
274 * @op_lock: Lock used to serialize operations on a VM.
275 *
276 * The serialization of jobs queued to the VM_BIND queue is already
277 * taken care of by drm_sched, but we need to serialize synchronous
278 * and asynchronous VM_BIND request. This is what this lock is for.
279 */
280 struct mutex op_lock;
281
282 /**
283 * @op_ctx: The context attached to the currently executing VM operation.
284 *
285 * NULL when no operation is in progress.
286 */
287 struct panthor_vm_op_ctx *op_ctx;
288
289 /**
290 * @mm: Memory management object representing the auto-VA/kernel-VA.
291 *
292 * Used to auto-allocate VA space for kernel-managed objects (tiler
293 * heaps, ...).
294 *
295 * For the MCU VM, this is managing the VA range that's used to map
296 * all shared interfaces.
297 *
298 * For user VMs, the range is specified by userspace, and must not
299 * exceed half of the VA space addressable.
300 */
301 struct drm_mm mm;
302
303 /** @mm_lock: Lock protecting the @mm field. */
304 struct mutex mm_lock;
305
306 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */
307 struct {
308 /** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
309 u64 start;
310
311 /** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
312 u64 end;
313 } kernel_auto_va;
314
315 /** @as: Address space related fields. */
316 struct {
317 /**
318 * @as.id: ID of the address space this VM is bound to.
319 *
320 * A value of -1 means the VM is inactive/not bound.
321 */
322 int id;
323
324 /** @as.active_cnt: Number of active users of this VM. */
325 refcount_t active_cnt;
326
327 /**
328 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
329 *
330 * Active VMs should not be inserted in the LRU list.
331 */
332 struct list_head lru_node;
333 } as;
334
335 /**
336 * @heaps: Tiler heap related fields.
337 */
338 struct {
339 /**
340 * @heaps.pool: The heap pool attached to this VM.
341 *
342 * Will stay NULL until someone creates a heap context on this VM.
343 */
344 struct panthor_heap_pool *pool;
345
346 /** @heaps.lock: Lock used to protect access to @pool. */
347 struct mutex lock;
348 } heaps;
349
350 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */
351 struct list_head node;
352
353 /** @for_mcu: True if this is the MCU VM. */
354 bool for_mcu;
355
356 /**
357 * @destroyed: True if the VM was destroyed.
358 *
359 * No further bind requests should be queued to a destroyed VM.
360 */
361 bool destroyed;
362
363 /**
364 * @unusable: True if the VM has turned unusable because something
365 * bad happened during an asynchronous request.
366 *
367 * We don't try to recover from such failures, because this implies
368 * informing userspace about the specific operation that failed, and
369 * hoping the userspace driver can replay things from there. This all
370 * sounds very complicated for little gain.
371 *
372 * Instead, we should just flag the VM as unusable, and fail any
373 * further request targeting this VM.
374 *
375 * We also provide a way to query a VM state, so userspace can destroy
376 * it and create a new one.
377 *
378 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
379 * situation, where the logical device needs to be re-created.
380 */
381 bool unusable;
382
383 /**
384 * @unhandled_fault: Unhandled fault happened.
385 *
386 * This should be reported to the scheduler, and the queue/group be
387 * flagged as faulty as a result.
388 */
389 bool unhandled_fault;
390 };
391
392 /**
393 * struct panthor_vm_bind_job - VM bind job
394 */
395 struct panthor_vm_bind_job {
396 /** @base: Inherit from drm_sched_job. */
397 struct drm_sched_job base;
398
399 /** @refcount: Reference count. */
400 struct kref refcount;
401
402 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
403 struct work_struct cleanup_op_ctx_work;
404
405 /** @vm: VM targeted by the VM operation. */
406 struct panthor_vm *vm;
407
408 /** @ctx: Operation context. */
409 struct panthor_vm_op_ctx ctx;
410 };
411
412 /*
413 * @pt_cache: Cache used to allocate MMU page tables.
414 *
415 * The pre-allocation pattern forces us to over-allocate to plan for
416 * the worst case scenario, and return the pages we didn't use.
417 *
418 * Having a kmem_cache allows us to speed allocations.
419 */
420 static struct kmem_cache *pt_cache;
421
422 /**
423 * alloc_pt() - Custom page table allocator
424 * @cookie: Cookie passed at page table allocation time.
425 * @size: Size of the page table. This size should be fixed,
426 * and determined at creation time based on the granule size.
427 * @gfp: GFP flags.
428 *
429 * We want a custom allocator so we can use a cache for page table
430 * allocations and amortize the cost of the over-reservation that's
431 * done to allow asynchronous VM operations.
432 *
433 * Return: non-NULL on success, NULL if the allocation failed for any
434 * reason.
435 */
alloc_pt(void * cookie,size_t size,gfp_t gfp)436 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
437 {
438 struct panthor_vm *vm = cookie;
439 void *page;
440
441 /* Allocation of the root page table happening during init. */
442 if (unlikely(!vm->root_page_table)) {
443 struct page *p;
444
445 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
446 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
447 gfp | __GFP_ZERO, get_order(size));
448 page = p ? page_address(p) : NULL;
449 vm->root_page_table = page;
450 return page;
451 }
452
453 /* We're not supposed to have anything bigger than 4k here, because we picked a
454 * 4k granule size at init time.
455 */
456 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
457 return NULL;
458
459 /* We must have some op_ctx attached to the VM and it must have at least one
460 * free page.
461 */
462 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
463 drm_WARN_ON(&vm->ptdev->base,
464 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
465 return NULL;
466
467 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
468 memset(page, 0, SZ_4K);
469
470 /* Page table entries don't use virtual addresses, which trips out
471 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
472 * are mixed with other fields, and I fear kmemleak won't detect that
473 * either.
474 *
475 * Let's just ignore memory passed to the page-table driver for now.
476 */
477 kmemleak_ignore(page);
478 return page;
479 }
480
481 /**
482 * free_pt() - Custom page table free function
483 * @cookie: Cookie passed at page table allocation time.
484 * @data: Page table to free.
485 * @size: Size of the page table. This size should be fixed,
486 * and determined at creation time based on the granule size.
487 */
free_pt(void * cookie,void * data,size_t size)488 static void free_pt(void *cookie, void *data, size_t size)
489 {
490 struct panthor_vm *vm = cookie;
491
492 if (unlikely(vm->root_page_table == data)) {
493 free_pages((unsigned long)data, get_order(size));
494 vm->root_page_table = NULL;
495 return;
496 }
497
498 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
499 return;
500
501 /* Return the page to the pt_cache. */
502 kmem_cache_free(pt_cache, data);
503 }
504
wait_ready(struct panthor_device * ptdev,u32 as_nr)505 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
506 {
507 int ret;
508 u32 val;
509
510 /* Wait for the MMU status to indicate there is no active command, in
511 * case one is pending.
512 */
513 ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val,
514 !(val & AS_STATUS_AS_ACTIVE),
515 10, 100000);
516
517 if (ret) {
518 panthor_device_schedule_reset(ptdev);
519 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
520 }
521
522 return ret;
523 }
524
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)525 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
526 {
527 int status;
528
529 /* write AS_COMMAND when MMU is ready to accept another command */
530 status = wait_ready(ptdev, as_nr);
531 if (!status)
532 gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
533
534 return status;
535 }
536
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)537 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
538 u64 region_start, u64 size)
539 {
540 u8 region_width;
541 u64 region;
542 u64 region_end = region_start + size;
543
544 if (!size)
545 return;
546
547 /*
548 * The locked region is a naturally aligned power of 2 block encoded as
549 * log2 minus(1).
550 * Calculate the desired start/end and look for the highest bit which
551 * differs. The smallest naturally aligned block must include this bit
552 * change, the desired region starts with this bit (and subsequent bits)
553 * zeroed and ends with the bit (and subsequent bits) set to one.
554 */
555 region_width = max(fls64(region_start ^ (region_end - 1)),
556 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
557
558 /*
559 * Mask off the low bits of region_start (which would be ignored by
560 * the hardware anyway)
561 */
562 region_start &= GENMASK_ULL(63, region_width);
563
564 region = region_width | region_start;
565
566 /* Lock the region that needs to be updated */
567 gpu_write64(ptdev, AS_LOCKADDR(as_nr), region);
568 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 u64 iova, u64 size, u32 op)
573 {
574 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575
576 if (as_nr < 0)
577 return 0;
578
579 /*
580 * If the AS number is greater than zero, then we can be sure
581 * the device is up and running, so we don't need to explicitly
582 * power it up
583 */
584
585 if (op != AS_COMMAND_UNLOCK)
586 lock_region(ptdev, as_nr, iova, size);
587
588 /* Run the MMU operation */
589 write_cmd(ptdev, as_nr, op);
590
591 /* Wait for the flush to complete */
592 return wait_ready(ptdev, as_nr);
593 }
594
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 u64 iova, u64 size, u32 op)
597 {
598 struct panthor_device *ptdev = vm->ptdev;
599 int ret;
600
601 mutex_lock(&ptdev->mmu->as.slots_lock);
602 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 mutex_unlock(&ptdev->mmu->as.slots_lock);
604
605 return ret;
606 }
607
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 int ret;
612
613 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 if (ret)
615 return ret;
616
617 gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab);
618 gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr);
619 gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg);
620
621 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
622 }
623
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)624 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
625 {
626 int ret;
627
628 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
629 if (ret)
630 return ret;
631
632 gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0);
633 gpu_write64(ptdev, AS_MEMATTR(as_nr), 0);
634 gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
635
636 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
637 }
638
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)639 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
640 {
641 /* Bits 16 to 31 mean REQ_COMPLETE. */
642 return value & GENMASK(15, 0);
643 }
644
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)645 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
646 {
647 return BIT(as);
648 }
649
650 /**
651 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
652 * @vm: VM to check.
653 *
654 * Return: true if the VM has unhandled faults, false otherwise.
655 */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)656 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
657 {
658 return vm->unhandled_fault;
659 }
660
661 /**
662 * panthor_vm_is_unusable() - Check if the VM is still usable
663 * @vm: VM to check.
664 *
665 * Return: true if the VM is unusable, false otherwise.
666 */
panthor_vm_is_unusable(struct panthor_vm * vm)667 bool panthor_vm_is_unusable(struct panthor_vm *vm)
668 {
669 return vm->unusable;
670 }
671
panthor_vm_release_as_locked(struct panthor_vm * vm)672 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
673 {
674 struct panthor_device *ptdev = vm->ptdev;
675
676 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
677
678 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
679 return;
680
681 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
682 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
683 refcount_set(&vm->as.active_cnt, 0);
684 list_del_init(&vm->as.lru_node);
685 vm->as.id = -1;
686 }
687
688 /**
689 * panthor_vm_active() - Flag a VM as active
690 * @vm: VM to flag as active.
691 *
692 * Assigns an address space to a VM so it can be used by the GPU/MCU.
693 *
694 * Return: 0 on success, a negative error code otherwise.
695 */
panthor_vm_active(struct panthor_vm * vm)696 int panthor_vm_active(struct panthor_vm *vm)
697 {
698 struct panthor_device *ptdev = vm->ptdev;
699 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
700 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
701 int ret = 0, as, cookie;
702 u64 transtab, transcfg;
703
704 if (!drm_dev_enter(&ptdev->base, &cookie))
705 return -ENODEV;
706
707 if (refcount_inc_not_zero(&vm->as.active_cnt))
708 goto out_dev_exit;
709
710 mutex_lock(&ptdev->mmu->as.slots_lock);
711
712 if (refcount_inc_not_zero(&vm->as.active_cnt))
713 goto out_unlock;
714
715 as = vm->as.id;
716 if (as >= 0) {
717 /* Unhandled pagefault on this AS, the MMU was disabled. We need to
718 * re-enable the MMU after clearing+unmasking the AS interrupts.
719 */
720 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
721 goto out_enable_as;
722
723 goto out_make_active;
724 }
725
726 /* Check for a free AS */
727 if (vm->for_mcu) {
728 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
729 as = 0;
730 } else {
731 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
732 }
733
734 if (!(BIT(as) & ptdev->gpu_info.as_present)) {
735 struct panthor_vm *lru_vm;
736
737 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
738 struct panthor_vm,
739 as.lru_node);
740 if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
741 ret = -EBUSY;
742 goto out_unlock;
743 }
744
745 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
746 as = lru_vm->as.id;
747 panthor_vm_release_as_locked(lru_vm);
748 }
749
750 /* Assign the free or reclaimed AS to the FD */
751 vm->as.id = as;
752 set_bit(as, &ptdev->mmu->as.alloc_mask);
753 ptdev->mmu->as.slots[as].vm = vm;
754
755 out_enable_as:
756 transtab = cfg->arm_lpae_s1_cfg.ttbr;
757 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
758 AS_TRANSCFG_PTW_RA |
759 AS_TRANSCFG_ADRMODE_AARCH64_4K |
760 AS_TRANSCFG_INA_BITS(55 - va_bits);
761 if (ptdev->coherent)
762 transcfg |= AS_TRANSCFG_PTW_SH_OS;
763
764 /* If the VM is re-activated, we clear the fault. */
765 vm->unhandled_fault = false;
766
767 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
768 * before enabling the AS.
769 */
770 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
771 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
772 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
773 ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
774 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
775 }
776
777 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
778
779 out_make_active:
780 if (!ret) {
781 refcount_set(&vm->as.active_cnt, 1);
782 list_del_init(&vm->as.lru_node);
783 }
784
785 out_unlock:
786 mutex_unlock(&ptdev->mmu->as.slots_lock);
787
788 out_dev_exit:
789 drm_dev_exit(cookie);
790 return ret;
791 }
792
793 /**
794 * panthor_vm_idle() - Flag a VM idle
795 * @vm: VM to flag as idle.
796 *
797 * When we know the GPU is done with the VM (no more jobs to process),
798 * we can relinquish the AS slot attached to this VM, if any.
799 *
800 * We don't release the slot immediately, but instead place the VM in
801 * the LRU list, so it can be evicted if another VM needs an AS slot.
802 * This way, VMs keep attached to the AS they were given until we run
803 * out of free slot, limiting the number of MMU operations (TLB flush
804 * and other AS updates).
805 */
panthor_vm_idle(struct panthor_vm * vm)806 void panthor_vm_idle(struct panthor_vm *vm)
807 {
808 struct panthor_device *ptdev = vm->ptdev;
809
810 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
811 return;
812
813 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
814 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
815
816 refcount_set(&vm->as.active_cnt, 0);
817 mutex_unlock(&ptdev->mmu->as.slots_lock);
818 }
819
panthor_vm_page_size(struct panthor_vm * vm)820 u32 panthor_vm_page_size(struct panthor_vm *vm)
821 {
822 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
823 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
824
825 return 1u << pg_shift;
826 }
827
panthor_vm_stop(struct panthor_vm * vm)828 static void panthor_vm_stop(struct panthor_vm *vm)
829 {
830 drm_sched_stop(&vm->sched, NULL);
831 }
832
panthor_vm_start(struct panthor_vm * vm)833 static void panthor_vm_start(struct panthor_vm *vm)
834 {
835 drm_sched_start(&vm->sched, 0);
836 }
837
838 /**
839 * panthor_vm_as() - Get the AS slot attached to a VM
840 * @vm: VM to get the AS slot of.
841 *
842 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
843 */
panthor_vm_as(struct panthor_vm * vm)844 int panthor_vm_as(struct panthor_vm *vm)
845 {
846 return vm->as.id;
847 }
848
get_pgsize(u64 addr,size_t size,size_t * count)849 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
850 {
851 /*
852 * io-pgtable only operates on multiple pages within a single table
853 * entry, so we need to split at boundaries of the table size, i.e.
854 * the next block size up. The distance from address A to the next
855 * boundary of block size B is logically B - A % B, but in unsigned
856 * two's complement where B is a power of two we get the equivalence
857 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
858 */
859 size_t blk_offset = -addr % SZ_2M;
860
861 if (blk_offset || size < SZ_2M) {
862 *count = min_not_zero(blk_offset, size) / SZ_4K;
863 return SZ_4K;
864 }
865 blk_offset = -addr % SZ_1G ?: SZ_1G;
866 *count = min(blk_offset, size) / SZ_2M;
867 return SZ_2M;
868 }
869
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)870 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
871 {
872 struct panthor_device *ptdev = vm->ptdev;
873 int ret = 0, cookie;
874
875 if (vm->as.id < 0)
876 return 0;
877
878 /* If the device is unplugged, we just silently skip the flush. */
879 if (!drm_dev_enter(&ptdev->base, &cookie))
880 return 0;
881
882 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
883
884 drm_dev_exit(cookie);
885 return ret;
886 }
887
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)888 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
889 {
890 struct panthor_device *ptdev = vm->ptdev;
891 struct io_pgtable_ops *ops = vm->pgtbl_ops;
892 u64 offset = 0;
893
894 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
895
896 while (offset < size) {
897 size_t unmapped_sz = 0, pgcount;
898 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
899
900 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
901
902 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
903 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
904 iova + offset + unmapped_sz,
905 iova + offset + pgsize * pgcount,
906 iova, iova + size);
907 panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
908 return -EINVAL;
909 }
910 offset += unmapped_sz;
911 }
912
913 return panthor_vm_flush_range(vm, iova, size);
914 }
915
916 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)917 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
918 struct sg_table *sgt, u64 offset, u64 size)
919 {
920 struct panthor_device *ptdev = vm->ptdev;
921 unsigned int count;
922 struct scatterlist *sgl;
923 struct io_pgtable_ops *ops = vm->pgtbl_ops;
924 u64 start_iova = iova;
925 int ret;
926
927 if (!size)
928 return 0;
929
930 for_each_sgtable_dma_sg(sgt, sgl, count) {
931 dma_addr_t paddr = sg_dma_address(sgl);
932 size_t len = sg_dma_len(sgl);
933
934 if (len <= offset) {
935 offset -= len;
936 continue;
937 }
938
939 paddr += offset;
940 len -= offset;
941 len = min_t(size_t, len, size);
942 size -= len;
943
944 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
945 vm->as.id, iova, &paddr, len);
946
947 while (len) {
948 size_t pgcount, mapped = 0;
949 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
950
951 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
952 GFP_KERNEL, &mapped);
953 iova += mapped;
954 paddr += mapped;
955 len -= mapped;
956
957 if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
958 ret = -ENOMEM;
959
960 if (ret) {
961 /* If something failed, unmap what we've already mapped before
962 * returning. The unmap call is not supposed to fail.
963 */
964 drm_WARN_ON(&ptdev->base,
965 panthor_vm_unmap_pages(vm, start_iova,
966 iova - start_iova));
967 return ret;
968 }
969 }
970
971 if (!size)
972 break;
973
974 offset = 0;
975 }
976
977 return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
978 }
979
flags_to_prot(u32 flags)980 static int flags_to_prot(u32 flags)
981 {
982 int prot = 0;
983
984 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
985 prot |= IOMMU_NOEXEC;
986
987 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
988 prot |= IOMMU_CACHE;
989
990 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
991 prot |= IOMMU_READ;
992 else
993 prot |= IOMMU_READ | IOMMU_WRITE;
994
995 return prot;
996 }
997
998 /**
999 * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1000 * @vm: VM to allocate a region on.
1001 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1002 * wants the VA to be automatically allocated from the auto-VA range.
1003 * @size: size of the VA range.
1004 * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1005 *
1006 * Some GPU objects, like heap chunks, are fully managed by the kernel and
1007 * need to be mapped to the userspace VM, in the region reserved for kernel
1008 * objects.
1009 *
1010 * This function takes care of allocating a region in the kernel auto-VA space.
1011 *
1012 * Return: 0 on success, an error code otherwise.
1013 */
1014 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1015 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1016 struct drm_mm_node *va_node)
1017 {
1018 ssize_t vm_pgsz = panthor_vm_page_size(vm);
1019 int ret;
1020
1021 if (!size || !IS_ALIGNED(size, vm_pgsz))
1022 return -EINVAL;
1023
1024 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1025 return -EINVAL;
1026
1027 mutex_lock(&vm->mm_lock);
1028 if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1029 va_node->start = va;
1030 va_node->size = size;
1031 ret = drm_mm_reserve_node(&vm->mm, va_node);
1032 } else {
1033 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1034 size >= SZ_2M ? SZ_2M : SZ_4K,
1035 0, vm->kernel_auto_va.start,
1036 vm->kernel_auto_va.end,
1037 DRM_MM_INSERT_BEST);
1038 }
1039 mutex_unlock(&vm->mm_lock);
1040
1041 return ret;
1042 }
1043
1044 /**
1045 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1046 * @vm: VM to free the region on.
1047 * @va_node: Memory node representing the region to free.
1048 */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1049 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1050 {
1051 mutex_lock(&vm->mm_lock);
1052 drm_mm_remove_node(va_node);
1053 mutex_unlock(&vm->mm_lock);
1054 }
1055
panthor_vm_bo_put(struct drm_gpuvm_bo * vm_bo)1056 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1057 {
1058 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1059 struct drm_gpuvm *vm = vm_bo->vm;
1060 bool unpin;
1061
1062 /* We must retain the GEM before calling drm_gpuvm_bo_put(),
1063 * otherwise the mutex might be destroyed while we hold it.
1064 * Same goes for the VM, since we take the VM resv lock.
1065 */
1066 drm_gem_object_get(&bo->base.base);
1067 drm_gpuvm_get(vm);
1068
1069 /* We take the resv lock to protect against concurrent accesses to the
1070 * gpuvm evicted/extobj lists that are modified in
1071 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1072 * releases sthe last vm_bo reference.
1073 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1074 * GEM vm_bo list.
1075 */
1076 dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1077 mutex_lock(&bo->gpuva_list_lock);
1078 unpin = drm_gpuvm_bo_put(vm_bo);
1079 mutex_unlock(&bo->gpuva_list_lock);
1080 dma_resv_unlock(drm_gpuvm_resv(vm));
1081
1082 /* If the vm_bo object was destroyed, release the pin reference that
1083 * was hold by this object.
1084 */
1085 if (unpin && !drm_gem_is_imported(&bo->base.base))
1086 drm_gem_shmem_unpin(&bo->base);
1087
1088 drm_gpuvm_put(vm);
1089 drm_gem_object_put(&bo->base.base);
1090 }
1091
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1092 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1093 struct panthor_vm *vm)
1094 {
1095 struct panthor_vma *vma, *tmp_vma;
1096
1097 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1098 op_ctx->rsvd_page_tables.ptr;
1099
1100 if (remaining_pt_count) {
1101 kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1102 op_ctx->rsvd_page_tables.pages +
1103 op_ctx->rsvd_page_tables.ptr);
1104 }
1105
1106 kfree(op_ctx->rsvd_page_tables.pages);
1107
1108 if (op_ctx->map.vm_bo)
1109 panthor_vm_bo_put(op_ctx->map.vm_bo);
1110
1111 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1112 kfree(op_ctx->preallocated_vmas[i]);
1113
1114 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1115 list_del(&vma->node);
1116 panthor_vm_bo_put(vma->base.vm_bo);
1117 kfree(vma);
1118 }
1119 }
1120
1121 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1122 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1123 {
1124 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1125 struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1126
1127 if (vma) {
1128 op_ctx->preallocated_vmas[i] = NULL;
1129 return vma;
1130 }
1131 }
1132
1133 return NULL;
1134 }
1135
1136 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1137 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1138 {
1139 u32 vma_count;
1140
1141 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1142 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1143 /* One VMA for the new mapping, and two more VMAs for the remap case
1144 * which might contain both a prev and next VA.
1145 */
1146 vma_count = 3;
1147 break;
1148
1149 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1150 /* Partial unmaps might trigger a remap with either a prev or a next VA,
1151 * but not both.
1152 */
1153 vma_count = 1;
1154 break;
1155
1156 default:
1157 return 0;
1158 }
1159
1160 for (u32 i = 0; i < vma_count; i++) {
1161 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1162
1163 if (!vma)
1164 return -ENOMEM;
1165
1166 op_ctx->preallocated_vmas[i] = vma;
1167 }
1168
1169 return 0;
1170 }
1171
1172 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1173 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1174 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1175 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1176 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1177
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1178 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1179 struct panthor_vm *vm,
1180 struct panthor_gem_object *bo,
1181 u64 offset,
1182 u64 size, u64 va,
1183 u32 flags)
1184 {
1185 struct drm_gpuvm_bo *preallocated_vm_bo;
1186 struct sg_table *sgt = NULL;
1187 u64 pt_count;
1188 int ret;
1189
1190 if (!bo)
1191 return -EINVAL;
1192
1193 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1194 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1195 return -EINVAL;
1196
1197 /* Make sure the VA and size are aligned and in-bounds. */
1198 if (size > bo->base.base.size || offset > bo->base.base.size - size)
1199 return -EINVAL;
1200
1201 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1202 if (bo->exclusive_vm_root_gem &&
1203 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1204 return -EINVAL;
1205
1206 memset(op_ctx, 0, sizeof(*op_ctx));
1207 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1208 op_ctx->flags = flags;
1209 op_ctx->va.range = size;
1210 op_ctx->va.addr = va;
1211
1212 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1213 if (ret)
1214 goto err_cleanup;
1215
1216 if (!drm_gem_is_imported(&bo->base.base)) {
1217 /* Pre-reserve the BO pages, so the map operation doesn't have to
1218 * allocate.
1219 */
1220 ret = drm_gem_shmem_pin(&bo->base);
1221 if (ret)
1222 goto err_cleanup;
1223 }
1224
1225 sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1226 if (IS_ERR(sgt)) {
1227 if (!drm_gem_is_imported(&bo->base.base))
1228 drm_gem_shmem_unpin(&bo->base);
1229
1230 ret = PTR_ERR(sgt);
1231 goto err_cleanup;
1232 }
1233
1234 op_ctx->map.sgt = sgt;
1235
1236 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1237 if (!preallocated_vm_bo) {
1238 if (!drm_gem_is_imported(&bo->base.base))
1239 drm_gem_shmem_unpin(&bo->base);
1240
1241 ret = -ENOMEM;
1242 goto err_cleanup;
1243 }
1244
1245 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1246 * pre-allocated BO if the <BO,VM> association exists. Given we
1247 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1248 * be called immediately, and we have to hold the VM resv lock when
1249 * calling this function.
1250 */
1251 dma_resv_lock(panthor_vm_resv(vm), NULL);
1252 mutex_lock(&bo->gpuva_list_lock);
1253 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1254 mutex_unlock(&bo->gpuva_list_lock);
1255 dma_resv_unlock(panthor_vm_resv(vm));
1256
1257 /* If the a vm_bo for this <VM,BO> combination exists, it already
1258 * retains a pin ref, and we can release the one we took earlier.
1259 *
1260 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1261 * which will be released in panthor_vm_bo_put().
1262 */
1263 if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1264 !drm_gem_is_imported(&bo->base.base))
1265 drm_gem_shmem_unpin(&bo->base);
1266
1267 op_ctx->map.bo_offset = offset;
1268
1269 /* L1, L2 and L3 page tables.
1270 * We could optimize L3 allocation by iterating over the sgt and merging
1271 * 2M contiguous blocks, but it's simpler to over-provision and return
1272 * the pages if they're not used.
1273 */
1274 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1275 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1276 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1277
1278 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1279 sizeof(*op_ctx->rsvd_page_tables.pages),
1280 GFP_KERNEL);
1281 if (!op_ctx->rsvd_page_tables.pages) {
1282 ret = -ENOMEM;
1283 goto err_cleanup;
1284 }
1285
1286 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1287 op_ctx->rsvd_page_tables.pages);
1288 op_ctx->rsvd_page_tables.count = ret;
1289 if (ret != pt_count) {
1290 ret = -ENOMEM;
1291 goto err_cleanup;
1292 }
1293
1294 /* Insert BO into the extobj list last, when we know nothing can fail. */
1295 dma_resv_lock(panthor_vm_resv(vm), NULL);
1296 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1297 dma_resv_unlock(panthor_vm_resv(vm));
1298
1299 return 0;
1300
1301 err_cleanup:
1302 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1303 return ret;
1304 }
1305
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1306 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1307 struct panthor_vm *vm,
1308 u64 va, u64 size)
1309 {
1310 u32 pt_count = 0;
1311 int ret;
1312
1313 memset(op_ctx, 0, sizeof(*op_ctx));
1314 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1315 op_ctx->va.range = size;
1316 op_ctx->va.addr = va;
1317 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1318
1319 /* Pre-allocate L3 page tables to account for the split-2M-block
1320 * situation on unmap.
1321 */
1322 if (va != ALIGN(va, SZ_2M))
1323 pt_count++;
1324
1325 if (va + size != ALIGN(va + size, SZ_2M) &&
1326 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1327 pt_count++;
1328
1329 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1330 if (ret)
1331 goto err_cleanup;
1332
1333 if (pt_count) {
1334 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1335 sizeof(*op_ctx->rsvd_page_tables.pages),
1336 GFP_KERNEL);
1337 if (!op_ctx->rsvd_page_tables.pages) {
1338 ret = -ENOMEM;
1339 goto err_cleanup;
1340 }
1341
1342 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1343 op_ctx->rsvd_page_tables.pages);
1344 if (ret != pt_count) {
1345 ret = -ENOMEM;
1346 goto err_cleanup;
1347 }
1348 op_ctx->rsvd_page_tables.count = pt_count;
1349 }
1350
1351 return 0;
1352
1353 err_cleanup:
1354 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1355 return ret;
1356 }
1357
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1358 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1359 struct panthor_vm *vm)
1360 {
1361 memset(op_ctx, 0, sizeof(*op_ctx));
1362 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1363 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1364 }
1365
1366 /**
1367 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1368 * @vm: VM to look into.
1369 * @va: Virtual address to search for.
1370 * @bo_offset: Offset of the GEM object mapped at this virtual address.
1371 * Only valid on success.
1372 *
1373 * The object returned by this function might no longer be mapped when the
1374 * function returns. It's the caller responsibility to ensure there's no
1375 * concurrent map/unmap operations making the returned value invalid, or
1376 * make sure it doesn't matter if the object is no longer mapped.
1377 *
1378 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1379 */
1380 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1381 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1382 {
1383 struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1384 struct drm_gpuva *gpuva;
1385 struct panthor_vma *vma;
1386
1387 /* Take the VM lock to prevent concurrent map/unmap operations. */
1388 mutex_lock(&vm->op_lock);
1389 gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1390 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1391 if (vma && vma->base.gem.obj) {
1392 drm_gem_object_get(vma->base.gem.obj);
1393 bo = to_panthor_bo(vma->base.gem.obj);
1394 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1395 }
1396 mutex_unlock(&vm->op_lock);
1397
1398 return bo;
1399 }
1400
1401 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
1402
1403 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1404 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1405 u64 full_va_range)
1406 {
1407 u64 user_va_range;
1408
1409 /* Make sure we have a minimum amount of VA space for kernel objects. */
1410 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1411 return 0;
1412
1413 if (args->user_va_range) {
1414 /* Use the user provided value if != 0. */
1415 user_va_range = args->user_va_range;
1416 } else if (TASK_SIZE_OF(current) < full_va_range) {
1417 /* If the task VM size is smaller than the GPU VA range, pick this
1418 * as our default user VA range, so userspace can CPU/GPU map buffers
1419 * at the same address.
1420 */
1421 user_va_range = TASK_SIZE_OF(current);
1422 } else {
1423 /* If the GPU VA range is smaller than the task VM size, we
1424 * just have to live with the fact we won't be able to map
1425 * all buffers at the same GPU/CPU address.
1426 *
1427 * If the GPU VA range is bigger than 4G (more than 32-bit of
1428 * VA), we split the range in two, and assign half of it to
1429 * the user and the other half to the kernel, if it's not, we
1430 * keep the kernel VA space as small as possible.
1431 */
1432 user_va_range = full_va_range > SZ_4G ?
1433 full_va_range / 2 :
1434 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1435 }
1436
1437 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1438 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1439
1440 return user_va_range;
1441 }
1442
1443 #define PANTHOR_VM_CREATE_FLAGS 0
1444
1445 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1446 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1447 const struct drm_panthor_vm_create *args,
1448 u64 *kernel_va_start, u64 *kernel_va_range)
1449 {
1450 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1451 u64 full_va_range = 1ull << va_bits;
1452 u64 user_va_range;
1453
1454 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1455 return -EINVAL;
1456
1457 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1458 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1459 return -EINVAL;
1460
1461 /* Pick a kernel VA range that's a power of two, to have a clear split. */
1462 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1463 *kernel_va_start = full_va_range - *kernel_va_range;
1464 return 0;
1465 }
1466
1467 /*
1468 * Only 32 VMs per open file. If that becomes a limiting factor, we can
1469 * increase this number.
1470 */
1471 #define PANTHOR_MAX_VMS_PER_FILE 32
1472
1473 /**
1474 * panthor_vm_pool_create_vm() - Create a VM
1475 * @ptdev: The panthor device
1476 * @pool: The VM to create this VM on.
1477 * @args: VM creation args.
1478 *
1479 * Return: a positive VM ID on success, a negative error code otherwise.
1480 */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1481 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1482 struct panthor_vm_pool *pool,
1483 struct drm_panthor_vm_create *args)
1484 {
1485 u64 kernel_va_start, kernel_va_range;
1486 struct panthor_vm *vm;
1487 int ret;
1488 u32 id;
1489
1490 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1491 if (ret)
1492 return ret;
1493
1494 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1495 kernel_va_start, kernel_va_range);
1496 if (IS_ERR(vm))
1497 return PTR_ERR(vm);
1498
1499 ret = xa_alloc(&pool->xa, &id, vm,
1500 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1501
1502 if (ret) {
1503 panthor_vm_put(vm);
1504 return ret;
1505 }
1506
1507 args->user_va_range = kernel_va_start;
1508 return id;
1509 }
1510
panthor_vm_destroy(struct panthor_vm * vm)1511 static void panthor_vm_destroy(struct panthor_vm *vm)
1512 {
1513 if (!vm)
1514 return;
1515
1516 vm->destroyed = true;
1517
1518 mutex_lock(&vm->heaps.lock);
1519 panthor_heap_pool_destroy(vm->heaps.pool);
1520 vm->heaps.pool = NULL;
1521 mutex_unlock(&vm->heaps.lock);
1522
1523 drm_WARN_ON(&vm->ptdev->base,
1524 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1525 panthor_vm_put(vm);
1526 }
1527
1528 /**
1529 * panthor_vm_pool_destroy_vm() - Destroy a VM.
1530 * @pool: VM pool.
1531 * @handle: VM handle.
1532 *
1533 * This function doesn't free the VM object or its resources, it just kills
1534 * all mappings, and makes sure nothing can be mapped after that point.
1535 *
1536 * If there was any active jobs at the time this function is called, these
1537 * jobs should experience page faults and be killed as a result.
1538 *
1539 * The VM resources are freed when the last reference on the VM object is
1540 * dropped.
1541 *
1542 * Return: %0 for success, negative errno value for failure
1543 */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1544 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1545 {
1546 struct panthor_vm *vm;
1547
1548 vm = xa_erase(&pool->xa, handle);
1549
1550 panthor_vm_destroy(vm);
1551
1552 return vm ? 0 : -EINVAL;
1553 }
1554
1555 /**
1556 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1557 * @pool: VM pool to check.
1558 * @handle: Handle of the VM to retrieve.
1559 *
1560 * Return: A valid pointer if the VM exists, NULL otherwise.
1561 */
1562 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1563 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1564 {
1565 struct panthor_vm *vm;
1566
1567 xa_lock(&pool->xa);
1568 vm = panthor_vm_get(xa_load(&pool->xa, handle));
1569 xa_unlock(&pool->xa);
1570
1571 return vm;
1572 }
1573
1574 /**
1575 * panthor_vm_pool_destroy() - Destroy a VM pool.
1576 * @pfile: File.
1577 *
1578 * Destroy all VMs in the pool, and release the pool resources.
1579 *
1580 * Note that VMs can outlive the pool they were created from if other
1581 * objects hold a reference to there VMs.
1582 */
panthor_vm_pool_destroy(struct panthor_file * pfile)1583 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1584 {
1585 struct panthor_vm *vm;
1586 unsigned long i;
1587
1588 if (!pfile->vms)
1589 return;
1590
1591 xa_for_each(&pfile->vms->xa, i, vm)
1592 panthor_vm_destroy(vm);
1593
1594 xa_destroy(&pfile->vms->xa);
1595 kfree(pfile->vms);
1596 }
1597
1598 /**
1599 * panthor_vm_pool_create() - Create a VM pool
1600 * @pfile: File.
1601 *
1602 * Return: 0 on success, a negative error code otherwise.
1603 */
panthor_vm_pool_create(struct panthor_file * pfile)1604 int panthor_vm_pool_create(struct panthor_file *pfile)
1605 {
1606 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1607 if (!pfile->vms)
1608 return -ENOMEM;
1609
1610 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1611 return 0;
1612 }
1613
1614 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1615 static void mmu_tlb_flush_all(void *cookie)
1616 {
1617 }
1618
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1619 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1620 {
1621 }
1622
1623 static const struct iommu_flush_ops mmu_tlb_ops = {
1624 .tlb_flush_all = mmu_tlb_flush_all,
1625 .tlb_flush_walk = mmu_tlb_flush_walk,
1626 };
1627
access_type_name(struct panthor_device * ptdev,u32 fault_status)1628 static const char *access_type_name(struct panthor_device *ptdev,
1629 u32 fault_status)
1630 {
1631 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1632 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1633 return "ATOMIC";
1634 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1635 return "READ";
1636 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1637 return "WRITE";
1638 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1639 return "EXECUTE";
1640 default:
1641 drm_WARN_ON(&ptdev->base, 1);
1642 return NULL;
1643 }
1644 }
1645
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1646 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1647 {
1648 bool has_unhandled_faults = false;
1649
1650 status = panthor_mmu_fault_mask(ptdev, status);
1651 while (status) {
1652 u32 as = ffs(status | (status >> 16)) - 1;
1653 u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1654 u32 new_int_mask;
1655 u64 addr;
1656 u32 fault_status;
1657 u32 exception_type;
1658 u32 access_type;
1659 u32 source_id;
1660
1661 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1662 addr = gpu_read64(ptdev, AS_FAULTADDRESS(as));
1663
1664 /* decode the fault status */
1665 exception_type = fault_status & 0xFF;
1666 access_type = (fault_status >> 8) & 0x3;
1667 source_id = (fault_status >> 16);
1668
1669 mutex_lock(&ptdev->mmu->as.slots_lock);
1670
1671 ptdev->mmu->as.faulty_mask |= mask;
1672 new_int_mask =
1673 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1674
1675 /* terminal fault, print info about the fault */
1676 drm_err(&ptdev->base,
1677 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
1678 "raw fault status: 0x%X\n"
1679 "decoded fault status: %s\n"
1680 "exception type 0x%X: %s\n"
1681 "access type 0x%X: %s\n"
1682 "source id 0x%X\n",
1683 as, addr,
1684 fault_status,
1685 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1686 exception_type, panthor_exception_name(ptdev, exception_type),
1687 access_type, access_type_name(ptdev, fault_status),
1688 source_id);
1689
1690 /* We don't handle VM faults at the moment, so let's just clear the
1691 * interrupt and let the writer/reader crash.
1692 * Note that COMPLETED irqs are never cleared, but this is fine
1693 * because they are always masked.
1694 */
1695 gpu_write(ptdev, MMU_INT_CLEAR, mask);
1696
1697 /* Ignore MMU interrupts on this AS until it's been
1698 * re-enabled.
1699 */
1700 ptdev->mmu->irq.mask = new_int_mask;
1701
1702 if (ptdev->mmu->as.slots[as].vm)
1703 ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1704
1705 /* Disable the MMU to kill jobs on this AS. */
1706 panthor_mmu_as_disable(ptdev, as);
1707 mutex_unlock(&ptdev->mmu->as.slots_lock);
1708
1709 status &= ~mask;
1710 has_unhandled_faults = true;
1711 }
1712
1713 if (has_unhandled_faults)
1714 panthor_sched_report_mmu_fault(ptdev);
1715 }
1716 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1717
1718 /**
1719 * panthor_mmu_suspend() - Suspend the MMU logic
1720 * @ptdev: Device.
1721 *
1722 * All we do here is de-assign the AS slots on all active VMs, so things
1723 * get flushed to the main memory, and no further access to these VMs are
1724 * possible.
1725 *
1726 * We also suspend the MMU IRQ.
1727 */
panthor_mmu_suspend(struct panthor_device * ptdev)1728 void panthor_mmu_suspend(struct panthor_device *ptdev)
1729 {
1730 mutex_lock(&ptdev->mmu->as.slots_lock);
1731 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1732 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1733
1734 if (vm) {
1735 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1736 panthor_vm_release_as_locked(vm);
1737 }
1738 }
1739 mutex_unlock(&ptdev->mmu->as.slots_lock);
1740
1741 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1742 }
1743
1744 /**
1745 * panthor_mmu_resume() - Resume the MMU logic
1746 * @ptdev: Device.
1747 *
1748 * Resume the IRQ.
1749 *
1750 * We don't re-enable previously active VMs. We assume other parts of the
1751 * driver will call panthor_vm_active() on the VMs they intend to use.
1752 */
panthor_mmu_resume(struct panthor_device * ptdev)1753 void panthor_mmu_resume(struct panthor_device *ptdev)
1754 {
1755 mutex_lock(&ptdev->mmu->as.slots_lock);
1756 ptdev->mmu->as.alloc_mask = 0;
1757 ptdev->mmu->as.faulty_mask = 0;
1758 mutex_unlock(&ptdev->mmu->as.slots_lock);
1759
1760 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1761 }
1762
1763 /**
1764 * panthor_mmu_pre_reset() - Prepare for a reset
1765 * @ptdev: Device.
1766 *
1767 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1768 * don't get asked to do a VM operation while the GPU is down.
1769 *
1770 * We don't cleanly shutdown the AS slots here, because the reset might
1771 * come from an AS_ACTIVE_BIT stuck situation.
1772 */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1773 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1774 {
1775 struct panthor_vm *vm;
1776
1777 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1778
1779 mutex_lock(&ptdev->mmu->vm.lock);
1780 ptdev->mmu->vm.reset_in_progress = true;
1781 list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1782 panthor_vm_stop(vm);
1783 mutex_unlock(&ptdev->mmu->vm.lock);
1784 }
1785
1786 /**
1787 * panthor_mmu_post_reset() - Restore things after a reset
1788 * @ptdev: Device.
1789 *
1790 * Put the MMU logic back in action after a reset. That implies resuming the
1791 * IRQ and re-enabling the VM_BIND queues.
1792 */
panthor_mmu_post_reset(struct panthor_device * ptdev)1793 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1794 {
1795 struct panthor_vm *vm;
1796
1797 mutex_lock(&ptdev->mmu->as.slots_lock);
1798
1799 /* Now that the reset is effective, we can assume that none of the
1800 * AS slots are setup, and clear the faulty flags too.
1801 */
1802 ptdev->mmu->as.alloc_mask = 0;
1803 ptdev->mmu->as.faulty_mask = 0;
1804
1805 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1806 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1807
1808 if (vm)
1809 panthor_vm_release_as_locked(vm);
1810 }
1811
1812 mutex_unlock(&ptdev->mmu->as.slots_lock);
1813
1814 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1815
1816 /* Restart the VM_BIND queues. */
1817 mutex_lock(&ptdev->mmu->vm.lock);
1818 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1819 panthor_vm_start(vm);
1820 }
1821 ptdev->mmu->vm.reset_in_progress = false;
1822 mutex_unlock(&ptdev->mmu->vm.lock);
1823 }
1824
panthor_vm_free(struct drm_gpuvm * gpuvm)1825 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1826 {
1827 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1828 struct panthor_device *ptdev = vm->ptdev;
1829
1830 mutex_lock(&vm->heaps.lock);
1831 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1832 panthor_heap_pool_destroy(vm->heaps.pool);
1833 mutex_unlock(&vm->heaps.lock);
1834 mutex_destroy(&vm->heaps.lock);
1835
1836 mutex_lock(&ptdev->mmu->vm.lock);
1837 list_del(&vm->node);
1838 /* Restore the scheduler state so we can call drm_sched_entity_destroy()
1839 * and drm_sched_fini(). If get there, that means we have no job left
1840 * and no new jobs can be queued, so we can start the scheduler without
1841 * risking interfering with the reset.
1842 */
1843 if (ptdev->mmu->vm.reset_in_progress)
1844 panthor_vm_start(vm);
1845 mutex_unlock(&ptdev->mmu->vm.lock);
1846
1847 drm_sched_entity_destroy(&vm->entity);
1848 drm_sched_fini(&vm->sched);
1849
1850 mutex_lock(&ptdev->mmu->as.slots_lock);
1851 if (vm->as.id >= 0) {
1852 int cookie;
1853
1854 if (drm_dev_enter(&ptdev->base, &cookie)) {
1855 panthor_mmu_as_disable(ptdev, vm->as.id);
1856 drm_dev_exit(cookie);
1857 }
1858
1859 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1860 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1861 list_del(&vm->as.lru_node);
1862 }
1863 mutex_unlock(&ptdev->mmu->as.slots_lock);
1864
1865 free_io_pgtable_ops(vm->pgtbl_ops);
1866
1867 drm_mm_takedown(&vm->mm);
1868 kfree(vm);
1869 }
1870
1871 /**
1872 * panthor_vm_put() - Release a reference on a VM
1873 * @vm: VM to release the reference on. Can be NULL.
1874 */
panthor_vm_put(struct panthor_vm * vm)1875 void panthor_vm_put(struct panthor_vm *vm)
1876 {
1877 drm_gpuvm_put(vm ? &vm->base : NULL);
1878 }
1879
1880 /**
1881 * panthor_vm_get() - Get a VM reference
1882 * @vm: VM to get the reference on. Can be NULL.
1883 *
1884 * Return: @vm value.
1885 */
panthor_vm_get(struct panthor_vm * vm)1886 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1887 {
1888 if (vm)
1889 drm_gpuvm_get(&vm->base);
1890
1891 return vm;
1892 }
1893
1894 /**
1895 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1896 * @vm: VM to query the heap pool on.
1897 * @create: True if the heap pool should be created when it doesn't exist.
1898 *
1899 * Heap pools are per-VM. This function allows one to retrieve the heap pool
1900 * attached to a VM.
1901 *
1902 * If no heap pool exists yet, and @create is true, we create one.
1903 *
1904 * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1905 *
1906 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1907 */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1908 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1909 {
1910 struct panthor_heap_pool *pool;
1911
1912 mutex_lock(&vm->heaps.lock);
1913 if (!vm->heaps.pool && create) {
1914 if (vm->destroyed)
1915 pool = ERR_PTR(-EINVAL);
1916 else
1917 pool = panthor_heap_pool_create(vm->ptdev, vm);
1918
1919 if (!IS_ERR(pool))
1920 vm->heaps.pool = panthor_heap_pool_get(pool);
1921 } else {
1922 pool = panthor_heap_pool_get(vm->heaps.pool);
1923 if (!pool)
1924 pool = ERR_PTR(-ENOENT);
1925 }
1926 mutex_unlock(&vm->heaps.lock);
1927
1928 return pool;
1929 }
1930
1931 /**
1932 * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all
1933 * heaps over all the heap pools in a VM
1934 * @pfile: File.
1935 * @stats: Memory stats to be updated.
1936 *
1937 * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM
1938 * is active, record the size as active as well.
1939 */
panthor_vm_heaps_sizes(struct panthor_file * pfile,struct drm_memory_stats * stats)1940 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats)
1941 {
1942 struct panthor_vm *vm;
1943 unsigned long i;
1944
1945 if (!pfile->vms)
1946 return;
1947
1948 xa_lock(&pfile->vms->xa);
1949 xa_for_each(&pfile->vms->xa, i, vm) {
1950 size_t size = panthor_heap_pool_size(vm->heaps.pool);
1951 stats->resident += size;
1952 if (vm->as.id >= 0)
1953 stats->active += size;
1954 }
1955 xa_unlock(&pfile->vms->xa);
1956 }
1957
mair_to_memattr(u64 mair,bool coherent)1958 static u64 mair_to_memattr(u64 mair, bool coherent)
1959 {
1960 u64 memattr = 0;
1961 u32 i;
1962
1963 for (i = 0; i < 8; i++) {
1964 u8 in_attr = mair >> (8 * i), out_attr;
1965 u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1966
1967 /* For caching to be enabled, inner and outer caching policy
1968 * have to be both write-back, if one of them is write-through
1969 * or non-cacheable, we just choose non-cacheable. Device
1970 * memory is also translated to non-cacheable.
1971 */
1972 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1973 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1974 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1975 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1976 } else {
1977 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1978 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1979 /* Use SH_MIDGARD_INNER mode when device isn't coherent,
1980 * so SH_IS, which is used when IOMMU_CACHE is set, maps
1981 * to Mali's internal-shareable mode. As per the Mali
1982 * Spec, inner and outer-shareable modes aren't allowed
1983 * for WB memory when coherency is disabled.
1984 * Use SH_CPU_INNER mode when coherency is enabled, so
1985 * that SH_IS actually maps to the standard definition of
1986 * inner-shareable.
1987 */
1988 if (!coherent)
1989 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
1990 else
1991 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
1992 }
1993
1994 memattr |= (u64)out_attr << (8 * i);
1995 }
1996
1997 return memattr;
1998 }
1999
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)2000 static void panthor_vma_link(struct panthor_vm *vm,
2001 struct panthor_vma *vma,
2002 struct drm_gpuvm_bo *vm_bo)
2003 {
2004 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2005
2006 mutex_lock(&bo->gpuva_list_lock);
2007 drm_gpuva_link(&vma->base, vm_bo);
2008 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
2009 mutex_unlock(&bo->gpuva_list_lock);
2010 }
2011
panthor_vma_unlink(struct panthor_vm * vm,struct panthor_vma * vma)2012 static void panthor_vma_unlink(struct panthor_vm *vm,
2013 struct panthor_vma *vma)
2014 {
2015 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2016 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
2017
2018 mutex_lock(&bo->gpuva_list_lock);
2019 drm_gpuva_unlink(&vma->base);
2020 mutex_unlock(&bo->gpuva_list_lock);
2021
2022 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it
2023 * when entering this function, so we can implement deferred VMA
2024 * destruction. Re-assign it here.
2025 */
2026 vma->base.vm_bo = vm_bo;
2027 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2028 }
2029
panthor_vma_init(struct panthor_vma * vma,u32 flags)2030 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2031 {
2032 INIT_LIST_HEAD(&vma->node);
2033 vma->flags = flags;
2034 }
2035
2036 #define PANTHOR_VM_MAP_FLAGS \
2037 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2038 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2039 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2040
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2041 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2042 {
2043 struct panthor_vm *vm = priv;
2044 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2045 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2046 int ret;
2047
2048 if (!vma)
2049 return -EINVAL;
2050
2051 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2052
2053 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2054 op_ctx->map.sgt, op->map.gem.offset,
2055 op->map.va.range);
2056 if (ret)
2057 return ret;
2058
2059 /* Ref owned by the mapping now, clear the obj field so we don't release the
2060 * pinning/obj ref behind GPUVA's back.
2061 */
2062 drm_gpuva_map(&vm->base, &vma->base, &op->map);
2063 panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2064 op_ctx->map.vm_bo = NULL;
2065 return 0;
2066 }
2067
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2068 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2069 void *priv)
2070 {
2071 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2072 struct panthor_vm *vm = priv;
2073 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2074 struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2075 u64 unmap_start, unmap_range;
2076 int ret;
2077
2078 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2079 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2080 if (ret)
2081 return ret;
2082
2083 if (op->remap.prev) {
2084 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2085 panthor_vma_init(prev_vma, unmap_vma->flags);
2086 }
2087
2088 if (op->remap.next) {
2089 next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2090 panthor_vma_init(next_vma, unmap_vma->flags);
2091 }
2092
2093 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2094 next_vma ? &next_vma->base : NULL,
2095 &op->remap);
2096
2097 if (prev_vma) {
2098 /* panthor_vma_link() transfers the vm_bo ownership to
2099 * the VMA object. Since the vm_bo we're passing is still
2100 * owned by the old mapping which will be released when this
2101 * mapping is destroyed, we need to grab a ref here.
2102 */
2103 panthor_vma_link(vm, prev_vma,
2104 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2105 }
2106
2107 if (next_vma) {
2108 panthor_vma_link(vm, next_vma,
2109 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2110 }
2111
2112 panthor_vma_unlink(vm, unmap_vma);
2113 return 0;
2114 }
2115
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2116 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2117 void *priv)
2118 {
2119 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2120 struct panthor_vm *vm = priv;
2121 int ret;
2122
2123 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2124 unmap_vma->base.va.range);
2125 if (drm_WARN_ON(&vm->ptdev->base, ret))
2126 return ret;
2127
2128 drm_gpuva_unmap(&op->unmap);
2129 panthor_vma_unlink(vm, unmap_vma);
2130 return 0;
2131 }
2132
2133 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2134 .vm_free = panthor_vm_free,
2135 .sm_step_map = panthor_gpuva_sm_step_map,
2136 .sm_step_remap = panthor_gpuva_sm_step_remap,
2137 .sm_step_unmap = panthor_gpuva_sm_step_unmap,
2138 };
2139
2140 /**
2141 * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2142 * @vm: VM to get the dma_resv of.
2143 *
2144 * Return: A dma_resv object.
2145 */
panthor_vm_resv(struct panthor_vm * vm)2146 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2147 {
2148 return drm_gpuvm_resv(&vm->base);
2149 }
2150
panthor_vm_root_gem(struct panthor_vm * vm)2151 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2152 {
2153 if (!vm)
2154 return NULL;
2155
2156 return vm->base.r_obj;
2157 }
2158
2159 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2160 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2161 bool flag_vm_unusable_on_failure)
2162 {
2163 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2164 int ret;
2165
2166 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2167 return 0;
2168
2169 mutex_lock(&vm->op_lock);
2170 vm->op_ctx = op;
2171 switch (op_type) {
2172 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2173 if (vm->unusable) {
2174 ret = -EINVAL;
2175 break;
2176 }
2177
2178 ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2179 op->map.vm_bo->obj, op->map.bo_offset);
2180 break;
2181
2182 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2183 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2184 break;
2185
2186 default:
2187 ret = -EINVAL;
2188 break;
2189 }
2190
2191 if (ret && flag_vm_unusable_on_failure)
2192 vm->unusable = true;
2193
2194 vm->op_ctx = NULL;
2195 mutex_unlock(&vm->op_lock);
2196
2197 return ret;
2198 }
2199
2200 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2201 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2202 {
2203 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2204 bool cookie;
2205 int ret;
2206
2207 /* Not only we report an error whose result is propagated to the
2208 * drm_sched finished fence, but we also flag the VM as unusable, because
2209 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2210 * to be destroyed and recreated.
2211 */
2212 cookie = dma_fence_begin_signalling();
2213 ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2214 dma_fence_end_signalling(cookie);
2215
2216 return ret ? ERR_PTR(ret) : NULL;
2217 }
2218
panthor_vm_bind_job_release(struct kref * kref)2219 static void panthor_vm_bind_job_release(struct kref *kref)
2220 {
2221 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2222
2223 if (job->base.s_fence)
2224 drm_sched_job_cleanup(&job->base);
2225
2226 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2227 panthor_vm_put(job->vm);
2228 kfree(job);
2229 }
2230
2231 /**
2232 * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2233 * @sched_job: Job to release the reference on.
2234 */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2235 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2236 {
2237 struct panthor_vm_bind_job *job =
2238 container_of(sched_job, struct panthor_vm_bind_job, base);
2239
2240 if (sched_job)
2241 kref_put(&job->refcount, panthor_vm_bind_job_release);
2242 }
2243
2244 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2245 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2246 {
2247 struct panthor_vm_bind_job *job =
2248 container_of(sched_job, struct panthor_vm_bind_job, base);
2249
2250 drm_sched_job_cleanup(sched_job);
2251
2252 /* Do the heavy cleanups asynchronously, so we're out of the
2253 * dma-signaling path and can acquire dma-resv locks safely.
2254 */
2255 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2256 }
2257
2258 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2259 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2260 {
2261 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2262 return DRM_GPU_SCHED_STAT_RESET;
2263 }
2264
2265 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2266 .run_job = panthor_vm_bind_run_job,
2267 .free_job = panthor_vm_bind_free_job,
2268 .timedout_job = panthor_vm_bind_timedout_job,
2269 };
2270
2271 /**
2272 * panthor_vm_create() - Create a VM
2273 * @ptdev: Device.
2274 * @for_mcu: True if this is the FW MCU VM.
2275 * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2276 * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2277 * @auto_kernel_va_start: Start of the auto-VA kernel range.
2278 * @auto_kernel_va_size: Size of the auto-VA kernel range.
2279 *
2280 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2281 */
2282 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2283 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2284 u64 kernel_va_start, u64 kernel_va_size,
2285 u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2286 {
2287 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2288 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2289 u64 full_va_range = 1ull << va_bits;
2290 struct drm_gem_object *dummy_gem;
2291 struct drm_gpu_scheduler *sched;
2292 const struct drm_sched_init_args sched_args = {
2293 .ops = &panthor_vm_bind_ops,
2294 .submit_wq = ptdev->mmu->vm.wq,
2295 .num_rqs = 1,
2296 .credit_limit = 1,
2297 /* Bind operations are synchronous for now, no timeout needed. */
2298 .timeout = MAX_SCHEDULE_TIMEOUT,
2299 .name = "panthor-vm-bind",
2300 .dev = ptdev->base.dev,
2301 };
2302 struct io_pgtable_cfg pgtbl_cfg;
2303 u64 mair, min_va, va_range;
2304 struct panthor_vm *vm;
2305 int ret;
2306
2307 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2308 if (!vm)
2309 return ERR_PTR(-ENOMEM);
2310
2311 /* We allocate a dummy GEM for the VM. */
2312 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2313 if (!dummy_gem) {
2314 ret = -ENOMEM;
2315 goto err_free_vm;
2316 }
2317
2318 mutex_init(&vm->heaps.lock);
2319 vm->for_mcu = for_mcu;
2320 vm->ptdev = ptdev;
2321 mutex_init(&vm->op_lock);
2322
2323 if (for_mcu) {
2324 /* CSF MCU is a cortex M7, and can only address 4G */
2325 min_va = 0;
2326 va_range = SZ_4G;
2327 } else {
2328 min_va = 0;
2329 va_range = full_va_range;
2330 }
2331
2332 mutex_init(&vm->mm_lock);
2333 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2334 vm->kernel_auto_va.start = auto_kernel_va_start;
2335 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2336
2337 INIT_LIST_HEAD(&vm->node);
2338 INIT_LIST_HEAD(&vm->as.lru_node);
2339 vm->as.id = -1;
2340 refcount_set(&vm->as.active_cnt, 0);
2341
2342 pgtbl_cfg = (struct io_pgtable_cfg) {
2343 .pgsize_bitmap = SZ_4K | SZ_2M,
2344 .ias = va_bits,
2345 .oas = pa_bits,
2346 .coherent_walk = ptdev->coherent,
2347 .tlb = &mmu_tlb_ops,
2348 .iommu_dev = ptdev->base.dev,
2349 .alloc = alloc_pt,
2350 .free = free_pt,
2351 };
2352
2353 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2354 if (!vm->pgtbl_ops) {
2355 ret = -EINVAL;
2356 goto err_mm_takedown;
2357 }
2358
2359 ret = drm_sched_init(&vm->sched, &sched_args);
2360 if (ret)
2361 goto err_free_io_pgtable;
2362
2363 sched = &vm->sched;
2364 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2365 if (ret)
2366 goto err_sched_fini;
2367
2368 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2369 vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2370
2371 mutex_lock(&ptdev->mmu->vm.lock);
2372 list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2373
2374 /* If a reset is in progress, stop the scheduler. */
2375 if (ptdev->mmu->vm.reset_in_progress)
2376 panthor_vm_stop(vm);
2377 mutex_unlock(&ptdev->mmu->vm.lock);
2378
2379 /* We intentionally leave the reserved range to zero, because we want kernel VMAs
2380 * to be handled the same way user VMAs are.
2381 */
2382 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2383 DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2384 min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2385 drm_gem_object_put(dummy_gem);
2386 return vm;
2387
2388 err_sched_fini:
2389 drm_sched_fini(&vm->sched);
2390
2391 err_free_io_pgtable:
2392 free_io_pgtable_ops(vm->pgtbl_ops);
2393
2394 err_mm_takedown:
2395 drm_mm_takedown(&vm->mm);
2396 drm_gem_object_put(dummy_gem);
2397
2398 err_free_vm:
2399 kfree(vm);
2400 return ERR_PTR(ret);
2401 }
2402
2403 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2404 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2405 struct panthor_vm *vm,
2406 const struct drm_panthor_vm_bind_op *op,
2407 struct panthor_vm_op_ctx *op_ctx)
2408 {
2409 ssize_t vm_pgsz = panthor_vm_page_size(vm);
2410 struct drm_gem_object *gem;
2411 int ret;
2412
2413 /* Aligned on page size. */
2414 if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
2415 return -EINVAL;
2416
2417 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2418 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2419 gem = drm_gem_object_lookup(file, op->bo_handle);
2420 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2421 gem ? to_panthor_bo(gem) : NULL,
2422 op->bo_offset,
2423 op->size,
2424 op->va,
2425 op->flags);
2426 drm_gem_object_put(gem);
2427 return ret;
2428
2429 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2430 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2431 return -EINVAL;
2432
2433 if (op->bo_handle || op->bo_offset)
2434 return -EINVAL;
2435
2436 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2437
2438 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2439 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2440 return -EINVAL;
2441
2442 if (op->bo_handle || op->bo_offset)
2443 return -EINVAL;
2444
2445 if (op->va || op->size)
2446 return -EINVAL;
2447
2448 if (!op->syncs.count)
2449 return -EINVAL;
2450
2451 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2452 return 0;
2453
2454 default:
2455 return -EINVAL;
2456 }
2457 }
2458
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2459 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2460 {
2461 struct panthor_vm_bind_job *job =
2462 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2463
2464 panthor_vm_bind_job_put(&job->base);
2465 }
2466
2467 /**
2468 * panthor_vm_bind_job_create() - Create a VM_BIND job
2469 * @file: File.
2470 * @vm: VM targeted by the VM_BIND job.
2471 * @op: VM operation data.
2472 *
2473 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2474 */
2475 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2476 panthor_vm_bind_job_create(struct drm_file *file,
2477 struct panthor_vm *vm,
2478 const struct drm_panthor_vm_bind_op *op)
2479 {
2480 struct panthor_vm_bind_job *job;
2481 int ret;
2482
2483 if (!vm)
2484 return ERR_PTR(-EINVAL);
2485
2486 if (vm->destroyed || vm->unusable)
2487 return ERR_PTR(-EINVAL);
2488
2489 job = kzalloc(sizeof(*job), GFP_KERNEL);
2490 if (!job)
2491 return ERR_PTR(-ENOMEM);
2492
2493 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2494 if (ret) {
2495 kfree(job);
2496 return ERR_PTR(ret);
2497 }
2498
2499 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2500 kref_init(&job->refcount);
2501 job->vm = panthor_vm_get(vm);
2502
2503 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id);
2504 if (ret)
2505 goto err_put_job;
2506
2507 return &job->base;
2508
2509 err_put_job:
2510 panthor_vm_bind_job_put(&job->base);
2511 return ERR_PTR(ret);
2512 }
2513
2514 /**
2515 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2516 * @exec: The locking/preparation context.
2517 * @sched_job: The job to prepare resvs on.
2518 *
2519 * Locks and prepare the VM resv.
2520 *
2521 * If this is a map operation, locks and prepares the GEM resv.
2522 *
2523 * Return: 0 on success, a negative error code otherwise.
2524 */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2525 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2526 struct drm_sched_job *sched_job)
2527 {
2528 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2529 int ret;
2530
2531 /* Acquire the VM lock an reserve a slot for this VM bind job. */
2532 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2533 if (ret)
2534 return ret;
2535
2536 if (job->ctx.map.vm_bo) {
2537 /* Lock/prepare the GEM being mapped. */
2538 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2539 if (ret)
2540 return ret;
2541 }
2542
2543 return 0;
2544 }
2545
2546 /**
2547 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2548 * @exec: drm_exec context.
2549 * @sched_job: Job to update the resvs on.
2550 */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2551 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2552 struct drm_sched_job *sched_job)
2553 {
2554 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2555
2556 /* Explicit sync => we just register our job finished fence as bookkeep. */
2557 drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2558 &sched_job->s_fence->finished,
2559 DMA_RESV_USAGE_BOOKKEEP,
2560 DMA_RESV_USAGE_BOOKKEEP);
2561 }
2562
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2563 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2564 struct dma_fence *fence,
2565 enum dma_resv_usage private_usage,
2566 enum dma_resv_usage extobj_usage)
2567 {
2568 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2569 }
2570
2571 /**
2572 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2573 * @file: File.
2574 * @vm: VM targeted by the VM operation.
2575 * @op: Data describing the VM operation.
2576 *
2577 * Return: 0 on success, a negative error code otherwise.
2578 */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2579 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2580 struct panthor_vm *vm,
2581 struct drm_panthor_vm_bind_op *op)
2582 {
2583 struct panthor_vm_op_ctx op_ctx;
2584 int ret;
2585
2586 /* No sync objects allowed on synchronous operations. */
2587 if (op->syncs.count)
2588 return -EINVAL;
2589
2590 if (!op->size)
2591 return 0;
2592
2593 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2594 if (ret)
2595 return ret;
2596
2597 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2598 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2599
2600 return ret;
2601 }
2602
2603 /**
2604 * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2605 * @vm: VM to map the GEM to.
2606 * @bo: GEM object to map.
2607 * @offset: Offset in the GEM object.
2608 * @size: Size to map.
2609 * @va: Virtual address to map the object to.
2610 * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2611 * Only map-related flags are valid.
2612 *
2613 * Internal use only. For userspace requests, use
2614 * panthor_vm_bind_exec_sync_op() instead.
2615 *
2616 * Return: 0 on success, a negative error code otherwise.
2617 */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2618 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2619 u64 offset, u64 size, u64 va, u32 flags)
2620 {
2621 struct panthor_vm_op_ctx op_ctx;
2622 int ret;
2623
2624 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2625 if (ret)
2626 return ret;
2627
2628 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2629 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2630
2631 return ret;
2632 }
2633
2634 /**
2635 * panthor_vm_unmap_range() - Unmap a portion of the VA space
2636 * @vm: VM to unmap the region from.
2637 * @va: Virtual address to unmap. Must be 4k aligned.
2638 * @size: Size of the region to unmap. Must be 4k aligned.
2639 *
2640 * Internal use only. For userspace requests, use
2641 * panthor_vm_bind_exec_sync_op() instead.
2642 *
2643 * Return: 0 on success, a negative error code otherwise.
2644 */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2645 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2646 {
2647 struct panthor_vm_op_ctx op_ctx;
2648 int ret;
2649
2650 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2651 if (ret)
2652 return ret;
2653
2654 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2655 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2656
2657 return ret;
2658 }
2659
2660 /**
2661 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2662 * @exec: Locking/preparation context.
2663 * @vm: VM targeted by the GPU job.
2664 * @slot_count: Number of slots to reserve.
2665 *
2666 * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2667 * are available when the job is executed. In order to guarantee that, we
2668 * need to reserve a slot on all BOs mapped to a VM and update this slot with
2669 * the job fence after its submission.
2670 *
2671 * Return: 0 on success, a negative error code otherwise.
2672 */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2673 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2674 u32 slot_count)
2675 {
2676 int ret;
2677
2678 /* Acquire the VM lock and reserve a slot for this GPU job. */
2679 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2680 if (ret)
2681 return ret;
2682
2683 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2684 }
2685
2686 /**
2687 * panthor_mmu_unplug() - Unplug the MMU logic
2688 * @ptdev: Device.
2689 *
2690 * No access to the MMU regs should be done after this function is called.
2691 * We suspend the IRQ and disable all VMs to guarantee that.
2692 */
panthor_mmu_unplug(struct panthor_device * ptdev)2693 void panthor_mmu_unplug(struct panthor_device *ptdev)
2694 {
2695 if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2696 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2697
2698 mutex_lock(&ptdev->mmu->as.slots_lock);
2699 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2700 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2701
2702 if (vm) {
2703 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2704 panthor_vm_release_as_locked(vm);
2705 }
2706 }
2707 mutex_unlock(&ptdev->mmu->as.slots_lock);
2708 }
2709
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2710 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2711 {
2712 destroy_workqueue(res);
2713 }
2714
2715 /**
2716 * panthor_mmu_init() - Initialize the MMU logic.
2717 * @ptdev: Device.
2718 *
2719 * Return: 0 on success, a negative error code otherwise.
2720 */
panthor_mmu_init(struct panthor_device * ptdev)2721 int panthor_mmu_init(struct panthor_device *ptdev)
2722 {
2723 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2724 struct panthor_mmu *mmu;
2725 int ret, irq;
2726
2727 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2728 if (!mmu)
2729 return -ENOMEM;
2730
2731 INIT_LIST_HEAD(&mmu->as.lru_list);
2732
2733 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2734 if (ret)
2735 return ret;
2736
2737 INIT_LIST_HEAD(&mmu->vm.list);
2738 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2739 if (ret)
2740 return ret;
2741
2742 ptdev->mmu = mmu;
2743
2744 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2745 if (irq <= 0)
2746 return -ENODEV;
2747
2748 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2749 panthor_mmu_fault_mask(ptdev, ~0));
2750 if (ret)
2751 return ret;
2752
2753 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2754 if (!mmu->vm.wq)
2755 return -ENOMEM;
2756
2757 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2758 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2759 * limitation.
2760 */
2761 if (va_bits > BITS_PER_LONG) {
2762 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2763 ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2764 }
2765
2766 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2767 }
2768
2769 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2770 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2771 {
2772 int ret;
2773
2774 mutex_lock(&vm->op_lock);
2775 ret = drm_debugfs_gpuva_info(m, &vm->base);
2776 mutex_unlock(&vm->op_lock);
2777
2778 return ret;
2779 }
2780
show_each_vm(struct seq_file * m,void * arg)2781 static int show_each_vm(struct seq_file *m, void *arg)
2782 {
2783 struct drm_info_node *node = (struct drm_info_node *)m->private;
2784 struct drm_device *ddev = node->minor->dev;
2785 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2786 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2787 struct panthor_vm *vm;
2788 int ret = 0;
2789
2790 mutex_lock(&ptdev->mmu->vm.lock);
2791 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2792 ret = show(vm, m);
2793 if (ret < 0)
2794 break;
2795
2796 seq_puts(m, "\n");
2797 }
2798 mutex_unlock(&ptdev->mmu->vm.lock);
2799
2800 return ret;
2801 }
2802
2803 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2804 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2805 };
2806
2807 /**
2808 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2809 * @minor: Minor.
2810 */
panthor_mmu_debugfs_init(struct drm_minor * minor)2811 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2812 {
2813 drm_debugfs_create_files(panthor_mmu_debugfs_list,
2814 ARRAY_SIZE(panthor_mmu_debugfs_list),
2815 minor->debugfs_root, minor);
2816 }
2817 #endif /* CONFIG_DEBUG_FS */
2818
2819 /**
2820 * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2821 *
2822 * Return: 0 on success, a negative error code otherwise.
2823 */
panthor_mmu_pt_cache_init(void)2824 int panthor_mmu_pt_cache_init(void)
2825 {
2826 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2827 if (!pt_cache)
2828 return -ENOMEM;
2829
2830 return 0;
2831 }
2832
2833 /**
2834 * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2835 */
panthor_mmu_pt_cache_fini(void)2836 void panthor_mmu_pt_cache_fini(void)
2837 {
2838 kmem_cache_destroy(pt_cache);
2839 }
2840