xref: /linux/drivers/gpu/drm/panthor/panthor_mmu.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce) !
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4 
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12 
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29 
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36 
37 #define MAX_AS_SLOTS			32
38 
39 struct panthor_vm;
40 
41 /**
42  * struct panthor_as_slot - Address space slot
43  */
44 struct panthor_as_slot {
45 	/** @vm: VM bound to this slot. NULL is no VM is bound. */
46 	struct panthor_vm *vm;
47 };
48 
49 /**
50  * struct panthor_mmu - MMU related data
51  */
52 struct panthor_mmu {
53 	/** @irq: The MMU irq. */
54 	struct panthor_irq irq;
55 
56 	/**
57 	 * @as: Address space related fields.
58 	 *
59 	 * The GPU has a limited number of address spaces (AS) slots, forcing
60 	 * us to re-assign them to re-assign slots on-demand.
61 	 */
62 	struct {
63 		/** @as.slots_lock: Lock protecting access to all other AS fields. */
64 		struct mutex slots_lock;
65 
66 		/** @as.alloc_mask: Bitmask encoding the allocated slots. */
67 		unsigned long alloc_mask;
68 
69 		/** @as.faulty_mask: Bitmask encoding the faulty slots. */
70 		unsigned long faulty_mask;
71 
72 		/** @as.slots: VMs currently bound to the AS slots. */
73 		struct panthor_as_slot slots[MAX_AS_SLOTS];
74 
75 		/**
76 		 * @as.lru_list: List of least recently used VMs.
77 		 *
78 		 * We use this list to pick a VM to evict when all slots are
79 		 * used.
80 		 *
81 		 * There should be no more active VMs than there are AS slots,
82 		 * so this LRU is just here to keep VMs bound until there's
83 		 * a need to release a slot, thus avoid unnecessary TLB/cache
84 		 * flushes.
85 		 */
86 		struct list_head lru_list;
87 	} as;
88 
89 	/** @vm: VMs management fields */
90 	struct {
91 		/** @vm.lock: Lock protecting access to list. */
92 		struct mutex lock;
93 
94 		/** @vm.list: List containing all VMs. */
95 		struct list_head list;
96 
97 		/** @vm.reset_in_progress: True if a reset is in progress. */
98 		bool reset_in_progress;
99 
100 		/** @vm.wq: Workqueue used for the VM_BIND queues. */
101 		struct workqueue_struct *wq;
102 	} vm;
103 };
104 
105 /**
106  * struct panthor_vm_pool - VM pool object
107  */
108 struct panthor_vm_pool {
109 	/** @xa: Array used for VM handle tracking. */
110 	struct xarray xa;
111 };
112 
113 /**
114  * struct panthor_vma - GPU mapping object
115  *
116  * This is used to track GEM mappings in GPU space.
117  */
118 struct panthor_vma {
119 	/** @base: Inherits from drm_gpuva. */
120 	struct drm_gpuva base;
121 
122 	/** @node: Used to implement deferred release of VMAs. */
123 	struct list_head node;
124 
125 	/**
126 	 * @flags: Combination of drm_panthor_vm_bind_op_flags.
127 	 *
128 	 * Only map related flags are accepted.
129 	 */
130 	u32 flags;
131 };
132 
133 /**
134  * struct panthor_vm_op_ctx - VM operation context
135  *
136  * With VM operations potentially taking place in a dma-signaling path, we
137  * need to make sure everything that might require resource allocation is
138  * pre-allocated upfront. This is what this operation context is far.
139  *
140  * We also collect resources that have been freed, so we can release them
141  * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
142  * request.
143  */
144 struct panthor_vm_op_ctx {
145 	/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
146 	struct {
147 		/** @rsvd_page_tables.count: Number of pages reserved. */
148 		u32 count;
149 
150 		/** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
151 		u32 ptr;
152 
153 		/**
154 		 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
155 		 *
156 		 * After an VM operation, there might be free pages left in this array.
157 		 * They should be returned to the pt_cache as part of the op_ctx cleanup.
158 		 */
159 		void **pages;
160 	} rsvd_page_tables;
161 
162 	/**
163 	 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
164 	 *
165 	 * Partial unmap requests or map requests overlapping existing mappings will
166 	 * trigger a remap call, which need to register up to three panthor_vma objects
167 	 * (one for the new mapping, and two for the previous and next mappings).
168 	 */
169 	struct panthor_vma *preallocated_vmas[3];
170 
171 	/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
172 	u32 flags;
173 
174 	/** @va: Virtual range targeted by the VM operation. */
175 	struct {
176 		/** @va.addr: Start address. */
177 		u64 addr;
178 
179 		/** @va.range: Range size. */
180 		u64 range;
181 	} va;
182 
183 	/**
184 	 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
185 	 *
186 	 * For unmap operations, this will contain all VMAs that were covered by the
187 	 * specified VA range.
188 	 *
189 	 * For map operations, this will contain all VMAs that previously mapped to
190 	 * the specified VA range.
191 	 *
192 	 * Those VMAs, and the resources they point to will be released as part of
193 	 * the op_ctx cleanup operation.
194 	 */
195 	struct list_head returned_vmas;
196 
197 	/** @map: Fields specific to a map operation. */
198 	struct {
199 		/** @map.vm_bo: Buffer object to map. */
200 		struct drm_gpuvm_bo *vm_bo;
201 
202 		/** @map.bo_offset: Offset in the buffer object. */
203 		u64 bo_offset;
204 
205 		/**
206 		 * @map.sgt: sg-table pointing to pages backing the GEM object.
207 		 *
208 		 * This is gathered at job creation time, such that we don't have
209 		 * to allocate in ::run_job().
210 		 */
211 		struct sg_table *sgt;
212 
213 		/**
214 		 * @map.new_vma: The new VMA object that will be inserted to the VA tree.
215 		 */
216 		struct panthor_vma *new_vma;
217 	} map;
218 };
219 
220 /**
221  * struct panthor_vm - VM object
222  *
223  * A VM is an object representing a GPU (or MCU) virtual address space.
224  * It embeds the MMU page table for this address space, a tree containing
225  * all the virtual mappings of GEM objects, and other things needed to manage
226  * the VM.
227  *
228  * Except for the MCU VM, which is managed by the kernel, all other VMs are
229  * created by userspace and mostly managed by userspace, using the
230  * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
231  *
232  * A portion of the virtual address space is reserved for kernel objects,
233  * like heap chunks, and userspace gets to decide how much of the virtual
234  * address space is left to the kernel (half of the virtual address space
235  * by default).
236  */
237 struct panthor_vm {
238 	/**
239 	 * @base: Inherit from drm_gpuvm.
240 	 *
241 	 * We delegate all the VA management to the common drm_gpuvm framework
242 	 * and only implement hooks to update the MMU page table.
243 	 */
244 	struct drm_gpuvm base;
245 
246 	/**
247 	 * @sched: Scheduler used for asynchronous VM_BIND request.
248 	 *
249 	 * We use a 1:1 scheduler here.
250 	 */
251 	struct drm_gpu_scheduler sched;
252 
253 	/**
254 	 * @entity: Scheduling entity representing the VM_BIND queue.
255 	 *
256 	 * There's currently one bind queue per VM. It doesn't make sense to
257 	 * allow more given the VM operations are serialized anyway.
258 	 */
259 	struct drm_sched_entity entity;
260 
261 	/** @ptdev: Device. */
262 	struct panthor_device *ptdev;
263 
264 	/** @memattr: Value to program to the AS_MEMATTR register. */
265 	u64 memattr;
266 
267 	/** @pgtbl_ops: Page table operations. */
268 	struct io_pgtable_ops *pgtbl_ops;
269 
270 	/** @root_page_table: Stores the root page table pointer. */
271 	void *root_page_table;
272 
273 	/**
274 	 * @op_lock: Lock used to serialize operations on a VM.
275 	 *
276 	 * The serialization of jobs queued to the VM_BIND queue is already
277 	 * taken care of by drm_sched, but we need to serialize synchronous
278 	 * and asynchronous VM_BIND request. This is what this lock is for.
279 	 */
280 	struct mutex op_lock;
281 
282 	/**
283 	 * @op_ctx: The context attached to the currently executing VM operation.
284 	 *
285 	 * NULL when no operation is in progress.
286 	 */
287 	struct panthor_vm_op_ctx *op_ctx;
288 
289 	/**
290 	 * @mm: Memory management object representing the auto-VA/kernel-VA.
291 	 *
292 	 * Used to auto-allocate VA space for kernel-managed objects (tiler
293 	 * heaps, ...).
294 	 *
295 	 * For the MCU VM, this is managing the VA range that's used to map
296 	 * all shared interfaces.
297 	 *
298 	 * For user VMs, the range is specified by userspace, and must not
299 	 * exceed half of the VA space addressable.
300 	 */
301 	struct drm_mm mm;
302 
303 	/** @mm_lock: Lock protecting the @mm field. */
304 	struct mutex mm_lock;
305 
306 	/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
307 	struct {
308 		/** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
309 		u64 start;
310 
311 		/** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
312 		u64 end;
313 	} kernel_auto_va;
314 
315 	/** @as: Address space related fields. */
316 	struct {
317 		/**
318 		 * @as.id: ID of the address space this VM is bound to.
319 		 *
320 		 * A value of -1 means the VM is inactive/not bound.
321 		 */
322 		int id;
323 
324 		/** @as.active_cnt: Number of active users of this VM. */
325 		refcount_t active_cnt;
326 
327 		/**
328 		 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
329 		 *
330 		 * Active VMs should not be inserted in the LRU list.
331 		 */
332 		struct list_head lru_node;
333 	} as;
334 
335 	/**
336 	 * @heaps: Tiler heap related fields.
337 	 */
338 	struct {
339 		/**
340 		 * @heaps.pool: The heap pool attached to this VM.
341 		 *
342 		 * Will stay NULL until someone creates a heap context on this VM.
343 		 */
344 		struct panthor_heap_pool *pool;
345 
346 		/** @heaps.lock: Lock used to protect access to @pool. */
347 		struct mutex lock;
348 	} heaps;
349 
350 	/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
351 	struct list_head node;
352 
353 	/** @for_mcu: True if this is the MCU VM. */
354 	bool for_mcu;
355 
356 	/**
357 	 * @destroyed: True if the VM was destroyed.
358 	 *
359 	 * No further bind requests should be queued to a destroyed VM.
360 	 */
361 	bool destroyed;
362 
363 	/**
364 	 * @unusable: True if the VM has turned unusable because something
365 	 * bad happened during an asynchronous request.
366 	 *
367 	 * We don't try to recover from such failures, because this implies
368 	 * informing userspace about the specific operation that failed, and
369 	 * hoping the userspace driver can replay things from there. This all
370 	 * sounds very complicated for little gain.
371 	 *
372 	 * Instead, we should just flag the VM as unusable, and fail any
373 	 * further request targeting this VM.
374 	 *
375 	 * We also provide a way to query a VM state, so userspace can destroy
376 	 * it and create a new one.
377 	 *
378 	 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
379 	 * situation, where the logical device needs to be re-created.
380 	 */
381 	bool unusable;
382 
383 	/**
384 	 * @unhandled_fault: Unhandled fault happened.
385 	 *
386 	 * This should be reported to the scheduler, and the queue/group be
387 	 * flagged as faulty as a result.
388 	 */
389 	bool unhandled_fault;
390 };
391 
392 /**
393  * struct panthor_vm_bind_job - VM bind job
394  */
395 struct panthor_vm_bind_job {
396 	/** @base: Inherit from drm_sched_job. */
397 	struct drm_sched_job base;
398 
399 	/** @refcount: Reference count. */
400 	struct kref refcount;
401 
402 	/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
403 	struct work_struct cleanup_op_ctx_work;
404 
405 	/** @vm: VM targeted by the VM operation. */
406 	struct panthor_vm *vm;
407 
408 	/** @ctx: Operation context. */
409 	struct panthor_vm_op_ctx ctx;
410 };
411 
412 /*
413  * @pt_cache: Cache used to allocate MMU page tables.
414  *
415  * The pre-allocation pattern forces us to over-allocate to plan for
416  * the worst case scenario, and return the pages we didn't use.
417  *
418  * Having a kmem_cache allows us to speed allocations.
419  */
420 static struct kmem_cache *pt_cache;
421 
422 /**
423  * alloc_pt() - Custom page table allocator
424  * @cookie: Cookie passed at page table allocation time.
425  * @size: Size of the page table. This size should be fixed,
426  * and determined at creation time based on the granule size.
427  * @gfp: GFP flags.
428  *
429  * We want a custom allocator so we can use a cache for page table
430  * allocations and amortize the cost of the over-reservation that's
431  * done to allow asynchronous VM operations.
432  *
433  * Return: non-NULL on success, NULL if the allocation failed for any
434  * reason.
435  */
alloc_pt(void * cookie,size_t size,gfp_t gfp)436 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
437 {
438 	struct panthor_vm *vm = cookie;
439 	void *page;
440 
441 	/* Allocation of the root page table happening during init. */
442 	if (unlikely(!vm->root_page_table)) {
443 		struct page *p;
444 
445 		drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
446 		p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
447 				     gfp | __GFP_ZERO, get_order(size));
448 		page = p ? page_address(p) : NULL;
449 		vm->root_page_table = page;
450 		return page;
451 	}
452 
453 	/* We're not supposed to have anything bigger than 4k here, because we picked a
454 	 * 4k granule size at init time.
455 	 */
456 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
457 		return NULL;
458 
459 	/* We must have some op_ctx attached to the VM and it must have at least one
460 	 * free page.
461 	 */
462 	if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
463 	    drm_WARN_ON(&vm->ptdev->base,
464 			vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
465 		return NULL;
466 
467 	page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
468 	memset(page, 0, SZ_4K);
469 
470 	/* Page table entries don't use virtual addresses, which trips out
471 	 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
472 	 * are mixed with other fields, and I fear kmemleak won't detect that
473 	 * either.
474 	 *
475 	 * Let's just ignore memory passed to the page-table driver for now.
476 	 */
477 	kmemleak_ignore(page);
478 	return page;
479 }
480 
481 /**
482  * free_pt() - Custom page table free function
483  * @cookie: Cookie passed at page table allocation time.
484  * @data: Page table to free.
485  * @size: Size of the page table. This size should be fixed,
486  * and determined at creation time based on the granule size.
487  */
free_pt(void * cookie,void * data,size_t size)488 static void free_pt(void *cookie, void *data, size_t size)
489 {
490 	struct panthor_vm *vm = cookie;
491 
492 	if (unlikely(vm->root_page_table == data)) {
493 		free_pages((unsigned long)data, get_order(size));
494 		vm->root_page_table = NULL;
495 		return;
496 	}
497 
498 	if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
499 		return;
500 
501 	/* Return the page to the pt_cache. */
502 	kmem_cache_free(pt_cache, data);
503 }
504 
wait_ready(struct panthor_device * ptdev,u32 as_nr)505 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
506 {
507 	int ret;
508 	u32 val;
509 
510 	/* Wait for the MMU status to indicate there is no active command, in
511 	 * case one is pending.
512 	 */
513 	ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val,
514 						   !(val & AS_STATUS_AS_ACTIVE),
515 						   10, 100000);
516 
517 	if (ret) {
518 		panthor_device_schedule_reset(ptdev);
519 		drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
520 	}
521 
522 	return ret;
523 }
524 
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)525 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
526 {
527 	int status;
528 
529 	/* write AS_COMMAND when MMU is ready to accept another command */
530 	status = wait_ready(ptdev, as_nr);
531 	if (!status)
532 		gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
533 
534 	return status;
535 }
536 
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)537 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
538 			u64 region_start, u64 size)
539 {
540 	u8 region_width;
541 	u64 region;
542 	u64 region_end = region_start + size;
543 
544 	if (!size)
545 		return;
546 
547 	/*
548 	 * The locked region is a naturally aligned power of 2 block encoded as
549 	 * log2 minus(1).
550 	 * Calculate the desired start/end and look for the highest bit which
551 	 * differs. The smallest naturally aligned block must include this bit
552 	 * change, the desired region starts with this bit (and subsequent bits)
553 	 * zeroed and ends with the bit (and subsequent bits) set to one.
554 	 */
555 	region_width = max(fls64(region_start ^ (region_end - 1)),
556 			   const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
557 
558 	/*
559 	 * Mask off the low bits of region_start (which would be ignored by
560 	 * the hardware anyway)
561 	 */
562 	region_start &= GENMASK_ULL(63, region_width);
563 
564 	region = region_width | region_start;
565 
566 	/* Lock the region that needs to be updated */
567 	gpu_write64(ptdev, AS_LOCKADDR(as_nr), region);
568 	write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
569 }
570 
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)571 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
572 				      u64 iova, u64 size, u32 op)
573 {
574 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
575 
576 	if (as_nr < 0)
577 		return 0;
578 
579 	/*
580 	 * If the AS number is greater than zero, then we can be sure
581 	 * the device is up and running, so we don't need to explicitly
582 	 * power it up
583 	 */
584 
585 	if (op != AS_COMMAND_UNLOCK)
586 		lock_region(ptdev, as_nr, iova, size);
587 
588 	/* Run the MMU operation */
589 	write_cmd(ptdev, as_nr, op);
590 
591 	/* Wait for the flush to complete */
592 	return wait_ready(ptdev, as_nr);
593 }
594 
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)595 static int mmu_hw_do_operation(struct panthor_vm *vm,
596 			       u64 iova, u64 size, u32 op)
597 {
598 	struct panthor_device *ptdev = vm->ptdev;
599 	int ret;
600 
601 	mutex_lock(&ptdev->mmu->as.slots_lock);
602 	ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
603 	mutex_unlock(&ptdev->mmu->as.slots_lock);
604 
605 	return ret;
606 }
607 
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)608 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
609 				 u64 transtab, u64 transcfg, u64 memattr)
610 {
611 	int ret;
612 
613 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
614 	if (ret)
615 		return ret;
616 
617 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab);
618 	gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr);
619 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg);
620 
621 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
622 }
623 
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)624 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
625 {
626 	int ret;
627 
628 	ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
629 	if (ret)
630 		return ret;
631 
632 	gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0);
633 	gpu_write64(ptdev, AS_MEMATTR(as_nr), 0);
634 	gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
635 
636 	return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
637 }
638 
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)639 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
640 {
641 	/* Bits 16 to 31 mean REQ_COMPLETE. */
642 	return value & GENMASK(15, 0);
643 }
644 
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)645 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
646 {
647 	return BIT(as);
648 }
649 
650 /**
651  * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
652  * @vm: VM to check.
653  *
654  * Return: true if the VM has unhandled faults, false otherwise.
655  */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)656 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
657 {
658 	return vm->unhandled_fault;
659 }
660 
661 /**
662  * panthor_vm_is_unusable() - Check if the VM is still usable
663  * @vm: VM to check.
664  *
665  * Return: true if the VM is unusable, false otherwise.
666  */
panthor_vm_is_unusable(struct panthor_vm * vm)667 bool panthor_vm_is_unusable(struct panthor_vm *vm)
668 {
669 	return vm->unusable;
670 }
671 
panthor_vm_release_as_locked(struct panthor_vm * vm)672 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
673 {
674 	struct panthor_device *ptdev = vm->ptdev;
675 
676 	lockdep_assert_held(&ptdev->mmu->as.slots_lock);
677 
678 	if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
679 		return;
680 
681 	ptdev->mmu->as.slots[vm->as.id].vm = NULL;
682 	clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
683 	refcount_set(&vm->as.active_cnt, 0);
684 	list_del_init(&vm->as.lru_node);
685 	vm->as.id = -1;
686 }
687 
688 /**
689  * panthor_vm_active() - Flag a VM as active
690  * @vm: VM to flag as active.
691  *
692  * Assigns an address space to a VM so it can be used by the GPU/MCU.
693  *
694  * Return: 0 on success, a negative error code otherwise.
695  */
panthor_vm_active(struct panthor_vm * vm)696 int panthor_vm_active(struct panthor_vm *vm)
697 {
698 	struct panthor_device *ptdev = vm->ptdev;
699 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
700 	struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
701 	int ret = 0, as, cookie;
702 	u64 transtab, transcfg;
703 
704 	if (!drm_dev_enter(&ptdev->base, &cookie))
705 		return -ENODEV;
706 
707 	if (refcount_inc_not_zero(&vm->as.active_cnt))
708 		goto out_dev_exit;
709 
710 	mutex_lock(&ptdev->mmu->as.slots_lock);
711 
712 	if (refcount_inc_not_zero(&vm->as.active_cnt))
713 		goto out_unlock;
714 
715 	as = vm->as.id;
716 	if (as >= 0) {
717 		/* Unhandled pagefault on this AS, the MMU was disabled. We need to
718 		 * re-enable the MMU after clearing+unmasking the AS interrupts.
719 		 */
720 		if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
721 			goto out_enable_as;
722 
723 		goto out_make_active;
724 	}
725 
726 	/* Check for a free AS */
727 	if (vm->for_mcu) {
728 		drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
729 		as = 0;
730 	} else {
731 		as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
732 	}
733 
734 	if (!(BIT(as) & ptdev->gpu_info.as_present)) {
735 		struct panthor_vm *lru_vm;
736 
737 		lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
738 						  struct panthor_vm,
739 						  as.lru_node);
740 		if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
741 			ret = -EBUSY;
742 			goto out_unlock;
743 		}
744 
745 		drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
746 		as = lru_vm->as.id;
747 		panthor_vm_release_as_locked(lru_vm);
748 	}
749 
750 	/* Assign the free or reclaimed AS to the FD */
751 	vm->as.id = as;
752 	set_bit(as, &ptdev->mmu->as.alloc_mask);
753 	ptdev->mmu->as.slots[as].vm = vm;
754 
755 out_enable_as:
756 	transtab = cfg->arm_lpae_s1_cfg.ttbr;
757 	transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
758 		   AS_TRANSCFG_PTW_RA |
759 		   AS_TRANSCFG_ADRMODE_AARCH64_4K |
760 		   AS_TRANSCFG_INA_BITS(55 - va_bits);
761 	if (ptdev->coherent)
762 		transcfg |= AS_TRANSCFG_PTW_SH_OS;
763 
764 	/* If the VM is re-activated, we clear the fault. */
765 	vm->unhandled_fault = false;
766 
767 	/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
768 	 * before enabling the AS.
769 	 */
770 	if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
771 		gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
772 		ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
773 		ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
774 		gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
775 	}
776 
777 	ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
778 
779 out_make_active:
780 	if (!ret) {
781 		refcount_set(&vm->as.active_cnt, 1);
782 		list_del_init(&vm->as.lru_node);
783 	}
784 
785 out_unlock:
786 	mutex_unlock(&ptdev->mmu->as.slots_lock);
787 
788 out_dev_exit:
789 	drm_dev_exit(cookie);
790 	return ret;
791 }
792 
793 /**
794  * panthor_vm_idle() - Flag a VM idle
795  * @vm: VM to flag as idle.
796  *
797  * When we know the GPU is done with the VM (no more jobs to process),
798  * we can relinquish the AS slot attached to this VM, if any.
799  *
800  * We don't release the slot immediately, but instead place the VM in
801  * the LRU list, so it can be evicted if another VM needs an AS slot.
802  * This way, VMs keep attached to the AS they were given until we run
803  * out of free slot, limiting the number of MMU operations (TLB flush
804  * and other AS updates).
805  */
panthor_vm_idle(struct panthor_vm * vm)806 void panthor_vm_idle(struct panthor_vm *vm)
807 {
808 	struct panthor_device *ptdev = vm->ptdev;
809 
810 	if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
811 		return;
812 
813 	if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
814 		list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
815 
816 	refcount_set(&vm->as.active_cnt, 0);
817 	mutex_unlock(&ptdev->mmu->as.slots_lock);
818 }
819 
panthor_vm_page_size(struct panthor_vm * vm)820 u32 panthor_vm_page_size(struct panthor_vm *vm)
821 {
822 	const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
823 	u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
824 
825 	return 1u << pg_shift;
826 }
827 
panthor_vm_stop(struct panthor_vm * vm)828 static void panthor_vm_stop(struct panthor_vm *vm)
829 {
830 	drm_sched_stop(&vm->sched, NULL);
831 }
832 
panthor_vm_start(struct panthor_vm * vm)833 static void panthor_vm_start(struct panthor_vm *vm)
834 {
835 	drm_sched_start(&vm->sched, 0);
836 }
837 
838 /**
839  * panthor_vm_as() - Get the AS slot attached to a VM
840  * @vm: VM to get the AS slot of.
841  *
842  * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
843  */
panthor_vm_as(struct panthor_vm * vm)844 int panthor_vm_as(struct panthor_vm *vm)
845 {
846 	return vm->as.id;
847 }
848 
get_pgsize(u64 addr,size_t size,size_t * count)849 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
850 {
851 	/*
852 	 * io-pgtable only operates on multiple pages within a single table
853 	 * entry, so we need to split at boundaries of the table size, i.e.
854 	 * the next block size up. The distance from address A to the next
855 	 * boundary of block size B is logically B - A % B, but in unsigned
856 	 * two's complement where B is a power of two we get the equivalence
857 	 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
858 	 */
859 	size_t blk_offset = -addr % SZ_2M;
860 
861 	if (blk_offset || size < SZ_2M) {
862 		*count = min_not_zero(blk_offset, size) / SZ_4K;
863 		return SZ_4K;
864 	}
865 	blk_offset = -addr % SZ_1G ?: SZ_1G;
866 	*count = min(blk_offset, size) / SZ_2M;
867 	return SZ_2M;
868 }
869 
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)870 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
871 {
872 	struct panthor_device *ptdev = vm->ptdev;
873 	int ret = 0, cookie;
874 
875 	if (vm->as.id < 0)
876 		return 0;
877 
878 	/* If the device is unplugged, we just silently skip the flush. */
879 	if (!drm_dev_enter(&ptdev->base, &cookie))
880 		return 0;
881 
882 	ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
883 
884 	drm_dev_exit(cookie);
885 	return ret;
886 }
887 
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)888 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
889 {
890 	struct panthor_device *ptdev = vm->ptdev;
891 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
892 	u64 offset = 0;
893 
894 	drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
895 
896 	while (offset < size) {
897 		size_t unmapped_sz = 0, pgcount;
898 		size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
899 
900 		unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
901 
902 		if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
903 			drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
904 				iova + offset + unmapped_sz,
905 				iova + offset + pgsize * pgcount,
906 				iova, iova + size);
907 			panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
908 			return  -EINVAL;
909 		}
910 		offset += unmapped_sz;
911 	}
912 
913 	return panthor_vm_flush_range(vm, iova, size);
914 }
915 
916 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)917 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
918 		     struct sg_table *sgt, u64 offset, u64 size)
919 {
920 	struct panthor_device *ptdev = vm->ptdev;
921 	unsigned int count;
922 	struct scatterlist *sgl;
923 	struct io_pgtable_ops *ops = vm->pgtbl_ops;
924 	u64 start_iova = iova;
925 	int ret;
926 
927 	if (!size)
928 		return 0;
929 
930 	for_each_sgtable_dma_sg(sgt, sgl, count) {
931 		dma_addr_t paddr = sg_dma_address(sgl);
932 		size_t len = sg_dma_len(sgl);
933 
934 		if (len <= offset) {
935 			offset -= len;
936 			continue;
937 		}
938 
939 		paddr += offset;
940 		len -= offset;
941 		len = min_t(size_t, len, size);
942 		size -= len;
943 
944 		drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
945 			vm->as.id, iova, &paddr, len);
946 
947 		while (len) {
948 			size_t pgcount, mapped = 0;
949 			size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
950 
951 			ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
952 					     GFP_KERNEL, &mapped);
953 			iova += mapped;
954 			paddr += mapped;
955 			len -= mapped;
956 
957 			if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
958 				ret = -ENOMEM;
959 
960 			if (ret) {
961 				/* If something failed, unmap what we've already mapped before
962 				 * returning. The unmap call is not supposed to fail.
963 				 */
964 				drm_WARN_ON(&ptdev->base,
965 					    panthor_vm_unmap_pages(vm, start_iova,
966 								   iova - start_iova));
967 				return ret;
968 			}
969 		}
970 
971 		if (!size)
972 			break;
973 
974 		offset = 0;
975 	}
976 
977 	return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
978 }
979 
flags_to_prot(u32 flags)980 static int flags_to_prot(u32 flags)
981 {
982 	int prot = 0;
983 
984 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
985 		prot |= IOMMU_NOEXEC;
986 
987 	if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
988 		prot |= IOMMU_CACHE;
989 
990 	if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
991 		prot |= IOMMU_READ;
992 	else
993 		prot |= IOMMU_READ | IOMMU_WRITE;
994 
995 	return prot;
996 }
997 
998 /**
999  * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1000  * @vm: VM to allocate a region on.
1001  * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1002  * wants the VA to be automatically allocated from the auto-VA range.
1003  * @size: size of the VA range.
1004  * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1005  *
1006  * Some GPU objects, like heap chunks, are fully managed by the kernel and
1007  * need to be mapped to the userspace VM, in the region reserved for kernel
1008  * objects.
1009  *
1010  * This function takes care of allocating a region in the kernel auto-VA space.
1011  *
1012  * Return: 0 on success, an error code otherwise.
1013  */
1014 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1015 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1016 		    struct drm_mm_node *va_node)
1017 {
1018 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
1019 	int ret;
1020 
1021 	if (!size || !IS_ALIGNED(size, vm_pgsz))
1022 		return -EINVAL;
1023 
1024 	if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1025 		return -EINVAL;
1026 
1027 	mutex_lock(&vm->mm_lock);
1028 	if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1029 		va_node->start = va;
1030 		va_node->size = size;
1031 		ret = drm_mm_reserve_node(&vm->mm, va_node);
1032 	} else {
1033 		ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1034 						  size >= SZ_2M ? SZ_2M : SZ_4K,
1035 						  0, vm->kernel_auto_va.start,
1036 						  vm->kernel_auto_va.end,
1037 						  DRM_MM_INSERT_BEST);
1038 	}
1039 	mutex_unlock(&vm->mm_lock);
1040 
1041 	return ret;
1042 }
1043 
1044 /**
1045  * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1046  * @vm: VM to free the region on.
1047  * @va_node: Memory node representing the region to free.
1048  */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1049 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1050 {
1051 	mutex_lock(&vm->mm_lock);
1052 	drm_mm_remove_node(va_node);
1053 	mutex_unlock(&vm->mm_lock);
1054 }
1055 
panthor_vm_bo_put(struct drm_gpuvm_bo * vm_bo)1056 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1057 {
1058 	struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1059 	struct drm_gpuvm *vm = vm_bo->vm;
1060 	bool unpin;
1061 
1062 	/* We must retain the GEM before calling drm_gpuvm_bo_put(),
1063 	 * otherwise the mutex might be destroyed while we hold it.
1064 	 * Same goes for the VM, since we take the VM resv lock.
1065 	 */
1066 	drm_gem_object_get(&bo->base.base);
1067 	drm_gpuvm_get(vm);
1068 
1069 	/* We take the resv lock to protect against concurrent accesses to the
1070 	 * gpuvm evicted/extobj lists that are modified in
1071 	 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1072 	 * releases sthe last vm_bo reference.
1073 	 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1074 	 * GEM vm_bo list.
1075 	 */
1076 	dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1077 	mutex_lock(&bo->gpuva_list_lock);
1078 	unpin = drm_gpuvm_bo_put(vm_bo);
1079 	mutex_unlock(&bo->gpuva_list_lock);
1080 	dma_resv_unlock(drm_gpuvm_resv(vm));
1081 
1082 	/* If the vm_bo object was destroyed, release the pin reference that
1083 	 * was hold by this object.
1084 	 */
1085 	if (unpin && !drm_gem_is_imported(&bo->base.base))
1086 		drm_gem_shmem_unpin(&bo->base);
1087 
1088 	drm_gpuvm_put(vm);
1089 	drm_gem_object_put(&bo->base.base);
1090 }
1091 
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1092 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1093 				      struct panthor_vm *vm)
1094 {
1095 	struct panthor_vma *vma, *tmp_vma;
1096 
1097 	u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1098 				 op_ctx->rsvd_page_tables.ptr;
1099 
1100 	if (remaining_pt_count) {
1101 		kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1102 				     op_ctx->rsvd_page_tables.pages +
1103 				     op_ctx->rsvd_page_tables.ptr);
1104 	}
1105 
1106 	kfree(op_ctx->rsvd_page_tables.pages);
1107 
1108 	if (op_ctx->map.vm_bo)
1109 		panthor_vm_bo_put(op_ctx->map.vm_bo);
1110 
1111 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1112 		kfree(op_ctx->preallocated_vmas[i]);
1113 
1114 	list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1115 		list_del(&vma->node);
1116 		panthor_vm_bo_put(vma->base.vm_bo);
1117 		kfree(vma);
1118 	}
1119 }
1120 
1121 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1122 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1123 {
1124 	for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1125 		struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1126 
1127 		if (vma) {
1128 			op_ctx->preallocated_vmas[i] = NULL;
1129 			return vma;
1130 		}
1131 	}
1132 
1133 	return NULL;
1134 }
1135 
1136 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1137 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1138 {
1139 	u32 vma_count;
1140 
1141 	switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1142 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1143 		/* One VMA for the new mapping, and two more VMAs for the remap case
1144 		 * which might contain both a prev and next VA.
1145 		 */
1146 		vma_count = 3;
1147 		break;
1148 
1149 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1150 		/* Partial unmaps might trigger a remap with either a prev or a next VA,
1151 		 * but not both.
1152 		 */
1153 		vma_count = 1;
1154 		break;
1155 
1156 	default:
1157 		return 0;
1158 	}
1159 
1160 	for (u32 i = 0; i < vma_count; i++) {
1161 		struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1162 
1163 		if (!vma)
1164 			return -ENOMEM;
1165 
1166 		op_ctx->preallocated_vmas[i] = vma;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1173 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1174 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1175 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1176 	 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1177 
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1178 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1179 					 struct panthor_vm *vm,
1180 					 struct panthor_gem_object *bo,
1181 					 u64 offset,
1182 					 u64 size, u64 va,
1183 					 u32 flags)
1184 {
1185 	struct drm_gpuvm_bo *preallocated_vm_bo;
1186 	struct sg_table *sgt = NULL;
1187 	u64 pt_count;
1188 	int ret;
1189 
1190 	if (!bo)
1191 		return -EINVAL;
1192 
1193 	if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1194 	    (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1195 		return -EINVAL;
1196 
1197 	/* Make sure the VA and size are aligned and in-bounds. */
1198 	if (size > bo->base.base.size || offset > bo->base.base.size - size)
1199 		return -EINVAL;
1200 
1201 	/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1202 	if (bo->exclusive_vm_root_gem &&
1203 	    bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1204 		return -EINVAL;
1205 
1206 	memset(op_ctx, 0, sizeof(*op_ctx));
1207 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1208 	op_ctx->flags = flags;
1209 	op_ctx->va.range = size;
1210 	op_ctx->va.addr = va;
1211 
1212 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1213 	if (ret)
1214 		goto err_cleanup;
1215 
1216 	if (!drm_gem_is_imported(&bo->base.base)) {
1217 		/* Pre-reserve the BO pages, so the map operation doesn't have to
1218 		 * allocate.
1219 		 */
1220 		ret = drm_gem_shmem_pin(&bo->base);
1221 		if (ret)
1222 			goto err_cleanup;
1223 	}
1224 
1225 	sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1226 	if (IS_ERR(sgt)) {
1227 		if (!drm_gem_is_imported(&bo->base.base))
1228 			drm_gem_shmem_unpin(&bo->base);
1229 
1230 		ret = PTR_ERR(sgt);
1231 		goto err_cleanup;
1232 	}
1233 
1234 	op_ctx->map.sgt = sgt;
1235 
1236 	preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1237 	if (!preallocated_vm_bo) {
1238 		if (!drm_gem_is_imported(&bo->base.base))
1239 			drm_gem_shmem_unpin(&bo->base);
1240 
1241 		ret = -ENOMEM;
1242 		goto err_cleanup;
1243 	}
1244 
1245 	/* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1246 	 * pre-allocated BO if the <BO,VM> association exists. Given we
1247 	 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1248 	 * be called immediately, and we have to hold the VM resv lock when
1249 	 * calling this function.
1250 	 */
1251 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1252 	mutex_lock(&bo->gpuva_list_lock);
1253 	op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1254 	mutex_unlock(&bo->gpuva_list_lock);
1255 	dma_resv_unlock(panthor_vm_resv(vm));
1256 
1257 	/* If the a vm_bo for this <VM,BO> combination exists, it already
1258 	 * retains a pin ref, and we can release the one we took earlier.
1259 	 *
1260 	 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1261 	 * which will be released in panthor_vm_bo_put().
1262 	 */
1263 	if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1264 	    !drm_gem_is_imported(&bo->base.base))
1265 		drm_gem_shmem_unpin(&bo->base);
1266 
1267 	op_ctx->map.bo_offset = offset;
1268 
1269 	/* L1, L2 and L3 page tables.
1270 	 * We could optimize L3 allocation by iterating over the sgt and merging
1271 	 * 2M contiguous blocks, but it's simpler to over-provision and return
1272 	 * the pages if they're not used.
1273 	 */
1274 	pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1275 		   ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1276 		   ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1277 
1278 	op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1279 						 sizeof(*op_ctx->rsvd_page_tables.pages),
1280 						 GFP_KERNEL);
1281 	if (!op_ctx->rsvd_page_tables.pages) {
1282 		ret = -ENOMEM;
1283 		goto err_cleanup;
1284 	}
1285 
1286 	ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1287 				    op_ctx->rsvd_page_tables.pages);
1288 	op_ctx->rsvd_page_tables.count = ret;
1289 	if (ret != pt_count) {
1290 		ret = -ENOMEM;
1291 		goto err_cleanup;
1292 	}
1293 
1294 	/* Insert BO into the extobj list last, when we know nothing can fail. */
1295 	dma_resv_lock(panthor_vm_resv(vm), NULL);
1296 	drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1297 	dma_resv_unlock(panthor_vm_resv(vm));
1298 
1299 	return 0;
1300 
1301 err_cleanup:
1302 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1303 	return ret;
1304 }
1305 
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1306 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1307 					   struct panthor_vm *vm,
1308 					   u64 va, u64 size)
1309 {
1310 	u32 pt_count = 0;
1311 	int ret;
1312 
1313 	memset(op_ctx, 0, sizeof(*op_ctx));
1314 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1315 	op_ctx->va.range = size;
1316 	op_ctx->va.addr = va;
1317 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1318 
1319 	/* Pre-allocate L3 page tables to account for the split-2M-block
1320 	 * situation on unmap.
1321 	 */
1322 	if (va != ALIGN(va, SZ_2M))
1323 		pt_count++;
1324 
1325 	if (va + size != ALIGN(va + size, SZ_2M) &&
1326 	    ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1327 		pt_count++;
1328 
1329 	ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1330 	if (ret)
1331 		goto err_cleanup;
1332 
1333 	if (pt_count) {
1334 		op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1335 							 sizeof(*op_ctx->rsvd_page_tables.pages),
1336 							 GFP_KERNEL);
1337 		if (!op_ctx->rsvd_page_tables.pages) {
1338 			ret = -ENOMEM;
1339 			goto err_cleanup;
1340 		}
1341 
1342 		ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1343 					    op_ctx->rsvd_page_tables.pages);
1344 		if (ret != pt_count) {
1345 			ret = -ENOMEM;
1346 			goto err_cleanup;
1347 		}
1348 		op_ctx->rsvd_page_tables.count = pt_count;
1349 	}
1350 
1351 	return 0;
1352 
1353 err_cleanup:
1354 	panthor_vm_cleanup_op_ctx(op_ctx, vm);
1355 	return ret;
1356 }
1357 
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1358 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1359 						struct panthor_vm *vm)
1360 {
1361 	memset(op_ctx, 0, sizeof(*op_ctx));
1362 	INIT_LIST_HEAD(&op_ctx->returned_vmas);
1363 	op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1364 }
1365 
1366 /**
1367  * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1368  * @vm: VM to look into.
1369  * @va: Virtual address to search for.
1370  * @bo_offset: Offset of the GEM object mapped at this virtual address.
1371  * Only valid on success.
1372  *
1373  * The object returned by this function might no longer be mapped when the
1374  * function returns. It's the caller responsibility to ensure there's no
1375  * concurrent map/unmap operations making the returned value invalid, or
1376  * make sure it doesn't matter if the object is no longer mapped.
1377  *
1378  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1379  */
1380 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1381 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1382 {
1383 	struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1384 	struct drm_gpuva *gpuva;
1385 	struct panthor_vma *vma;
1386 
1387 	/* Take the VM lock to prevent concurrent map/unmap operations. */
1388 	mutex_lock(&vm->op_lock);
1389 	gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1390 	vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1391 	if (vma && vma->base.gem.obj) {
1392 		drm_gem_object_get(vma->base.gem.obj);
1393 		bo = to_panthor_bo(vma->base.gem.obj);
1394 		*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1395 	}
1396 	mutex_unlock(&vm->op_lock);
1397 
1398 	return bo;
1399 }
1400 
1401 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE	SZ_256M
1402 
1403 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1404 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1405 				    u64 full_va_range)
1406 {
1407 	u64 user_va_range;
1408 
1409 	/* Make sure we have a minimum amount of VA space for kernel objects. */
1410 	if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1411 		return 0;
1412 
1413 	if (args->user_va_range) {
1414 		/* Use the user provided value if != 0. */
1415 		user_va_range = args->user_va_range;
1416 	} else if (TASK_SIZE_OF(current) < full_va_range) {
1417 		/* If the task VM size is smaller than the GPU VA range, pick this
1418 		 * as our default user VA range, so userspace can CPU/GPU map buffers
1419 		 * at the same address.
1420 		 */
1421 		user_va_range = TASK_SIZE_OF(current);
1422 	} else {
1423 		/* If the GPU VA range is smaller than the task VM size, we
1424 		 * just have to live with the fact we won't be able to map
1425 		 * all buffers at the same GPU/CPU address.
1426 		 *
1427 		 * If the GPU VA range is bigger than 4G (more than 32-bit of
1428 		 * VA), we split the range in two, and assign half of it to
1429 		 * the user and the other half to the kernel, if it's not, we
1430 		 * keep the kernel VA space as small as possible.
1431 		 */
1432 		user_va_range = full_va_range > SZ_4G ?
1433 				full_va_range / 2 :
1434 				full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1435 	}
1436 
1437 	if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1438 		user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1439 
1440 	return user_va_range;
1441 }
1442 
1443 #define PANTHOR_VM_CREATE_FLAGS		0
1444 
1445 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1446 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1447 			     const struct drm_panthor_vm_create *args,
1448 			     u64 *kernel_va_start, u64 *kernel_va_range)
1449 {
1450 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1451 	u64 full_va_range = 1ull << va_bits;
1452 	u64 user_va_range;
1453 
1454 	if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1455 		return -EINVAL;
1456 
1457 	user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1458 	if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1459 		return -EINVAL;
1460 
1461 	/* Pick a kernel VA range that's a power of two, to have a clear split. */
1462 	*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1463 	*kernel_va_start = full_va_range - *kernel_va_range;
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Only 32 VMs per open file. If that becomes a limiting factor, we can
1469  * increase this number.
1470  */
1471 #define PANTHOR_MAX_VMS_PER_FILE	32
1472 
1473 /**
1474  * panthor_vm_pool_create_vm() - Create a VM
1475  * @ptdev: The panthor device
1476  * @pool: The VM to create this VM on.
1477  * @args: VM creation args.
1478  *
1479  * Return: a positive VM ID on success, a negative error code otherwise.
1480  */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1481 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1482 			      struct panthor_vm_pool *pool,
1483 			      struct drm_panthor_vm_create *args)
1484 {
1485 	u64 kernel_va_start, kernel_va_range;
1486 	struct panthor_vm *vm;
1487 	int ret;
1488 	u32 id;
1489 
1490 	ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1491 	if (ret)
1492 		return ret;
1493 
1494 	vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1495 			       kernel_va_start, kernel_va_range);
1496 	if (IS_ERR(vm))
1497 		return PTR_ERR(vm);
1498 
1499 	ret = xa_alloc(&pool->xa, &id, vm,
1500 		       XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1501 
1502 	if (ret) {
1503 		panthor_vm_put(vm);
1504 		return ret;
1505 	}
1506 
1507 	args->user_va_range = kernel_va_start;
1508 	return id;
1509 }
1510 
panthor_vm_destroy(struct panthor_vm * vm)1511 static void panthor_vm_destroy(struct panthor_vm *vm)
1512 {
1513 	if (!vm)
1514 		return;
1515 
1516 	vm->destroyed = true;
1517 
1518 	mutex_lock(&vm->heaps.lock);
1519 	panthor_heap_pool_destroy(vm->heaps.pool);
1520 	vm->heaps.pool = NULL;
1521 	mutex_unlock(&vm->heaps.lock);
1522 
1523 	drm_WARN_ON(&vm->ptdev->base,
1524 		    panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1525 	panthor_vm_put(vm);
1526 }
1527 
1528 /**
1529  * panthor_vm_pool_destroy_vm() - Destroy a VM.
1530  * @pool: VM pool.
1531  * @handle: VM handle.
1532  *
1533  * This function doesn't free the VM object or its resources, it just kills
1534  * all mappings, and makes sure nothing can be mapped after that point.
1535  *
1536  * If there was any active jobs at the time this function is called, these
1537  * jobs should experience page faults and be killed as a result.
1538  *
1539  * The VM resources are freed when the last reference on the VM object is
1540  * dropped.
1541  *
1542  * Return: %0 for success, negative errno value for failure
1543  */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1544 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1545 {
1546 	struct panthor_vm *vm;
1547 
1548 	vm = xa_erase(&pool->xa, handle);
1549 
1550 	panthor_vm_destroy(vm);
1551 
1552 	return vm ? 0 : -EINVAL;
1553 }
1554 
1555 /**
1556  * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1557  * @pool: VM pool to check.
1558  * @handle: Handle of the VM to retrieve.
1559  *
1560  * Return: A valid pointer if the VM exists, NULL otherwise.
1561  */
1562 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1563 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1564 {
1565 	struct panthor_vm *vm;
1566 
1567 	xa_lock(&pool->xa);
1568 	vm = panthor_vm_get(xa_load(&pool->xa, handle));
1569 	xa_unlock(&pool->xa);
1570 
1571 	return vm;
1572 }
1573 
1574 /**
1575  * panthor_vm_pool_destroy() - Destroy a VM pool.
1576  * @pfile: File.
1577  *
1578  * Destroy all VMs in the pool, and release the pool resources.
1579  *
1580  * Note that VMs can outlive the pool they were created from if other
1581  * objects hold a reference to there VMs.
1582  */
panthor_vm_pool_destroy(struct panthor_file * pfile)1583 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1584 {
1585 	struct panthor_vm *vm;
1586 	unsigned long i;
1587 
1588 	if (!pfile->vms)
1589 		return;
1590 
1591 	xa_for_each(&pfile->vms->xa, i, vm)
1592 		panthor_vm_destroy(vm);
1593 
1594 	xa_destroy(&pfile->vms->xa);
1595 	kfree(pfile->vms);
1596 }
1597 
1598 /**
1599  * panthor_vm_pool_create() - Create a VM pool
1600  * @pfile: File.
1601  *
1602  * Return: 0 on success, a negative error code otherwise.
1603  */
panthor_vm_pool_create(struct panthor_file * pfile)1604 int panthor_vm_pool_create(struct panthor_file *pfile)
1605 {
1606 	pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1607 	if (!pfile->vms)
1608 		return -ENOMEM;
1609 
1610 	xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1611 	return 0;
1612 }
1613 
1614 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1615 static void mmu_tlb_flush_all(void *cookie)
1616 {
1617 }
1618 
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1619 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1620 {
1621 }
1622 
1623 static const struct iommu_flush_ops mmu_tlb_ops = {
1624 	.tlb_flush_all = mmu_tlb_flush_all,
1625 	.tlb_flush_walk = mmu_tlb_flush_walk,
1626 };
1627 
access_type_name(struct panthor_device * ptdev,u32 fault_status)1628 static const char *access_type_name(struct panthor_device *ptdev,
1629 				    u32 fault_status)
1630 {
1631 	switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1632 	case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1633 		return "ATOMIC";
1634 	case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1635 		return "READ";
1636 	case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1637 		return "WRITE";
1638 	case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1639 		return "EXECUTE";
1640 	default:
1641 		drm_WARN_ON(&ptdev->base, 1);
1642 		return NULL;
1643 	}
1644 }
1645 
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1646 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1647 {
1648 	bool has_unhandled_faults = false;
1649 
1650 	status = panthor_mmu_fault_mask(ptdev, status);
1651 	while (status) {
1652 		u32 as = ffs(status | (status >> 16)) - 1;
1653 		u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1654 		u32 new_int_mask;
1655 		u64 addr;
1656 		u32 fault_status;
1657 		u32 exception_type;
1658 		u32 access_type;
1659 		u32 source_id;
1660 
1661 		fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1662 		addr = gpu_read64(ptdev, AS_FAULTADDRESS(as));
1663 
1664 		/* decode the fault status */
1665 		exception_type = fault_status & 0xFF;
1666 		access_type = (fault_status >> 8) & 0x3;
1667 		source_id = (fault_status >> 16);
1668 
1669 		mutex_lock(&ptdev->mmu->as.slots_lock);
1670 
1671 		ptdev->mmu->as.faulty_mask |= mask;
1672 		new_int_mask =
1673 			panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1674 
1675 		/* terminal fault, print info about the fault */
1676 		drm_err(&ptdev->base,
1677 			"Unhandled Page fault in AS%d at VA 0x%016llX\n"
1678 			"raw fault status: 0x%X\n"
1679 			"decoded fault status: %s\n"
1680 			"exception type 0x%X: %s\n"
1681 			"access type 0x%X: %s\n"
1682 			"source id 0x%X\n",
1683 			as, addr,
1684 			fault_status,
1685 			(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1686 			exception_type, panthor_exception_name(ptdev, exception_type),
1687 			access_type, access_type_name(ptdev, fault_status),
1688 			source_id);
1689 
1690 		/* We don't handle VM faults at the moment, so let's just clear the
1691 		 * interrupt and let the writer/reader crash.
1692 		 * Note that COMPLETED irqs are never cleared, but this is fine
1693 		 * because they are always masked.
1694 		 */
1695 		gpu_write(ptdev, MMU_INT_CLEAR, mask);
1696 
1697 		/* Ignore MMU interrupts on this AS until it's been
1698 		 * re-enabled.
1699 		 */
1700 		ptdev->mmu->irq.mask = new_int_mask;
1701 
1702 		if (ptdev->mmu->as.slots[as].vm)
1703 			ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1704 
1705 		/* Disable the MMU to kill jobs on this AS. */
1706 		panthor_mmu_as_disable(ptdev, as);
1707 		mutex_unlock(&ptdev->mmu->as.slots_lock);
1708 
1709 		status &= ~mask;
1710 		has_unhandled_faults = true;
1711 	}
1712 
1713 	if (has_unhandled_faults)
1714 		panthor_sched_report_mmu_fault(ptdev);
1715 }
1716 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1717 
1718 /**
1719  * panthor_mmu_suspend() - Suspend the MMU logic
1720  * @ptdev: Device.
1721  *
1722  * All we do here is de-assign the AS slots on all active VMs, so things
1723  * get flushed to the main memory, and no further access to these VMs are
1724  * possible.
1725  *
1726  * We also suspend the MMU IRQ.
1727  */
panthor_mmu_suspend(struct panthor_device * ptdev)1728 void panthor_mmu_suspend(struct panthor_device *ptdev)
1729 {
1730 	mutex_lock(&ptdev->mmu->as.slots_lock);
1731 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1732 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1733 
1734 		if (vm) {
1735 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1736 			panthor_vm_release_as_locked(vm);
1737 		}
1738 	}
1739 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1740 
1741 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1742 }
1743 
1744 /**
1745  * panthor_mmu_resume() - Resume the MMU logic
1746  * @ptdev: Device.
1747  *
1748  * Resume the IRQ.
1749  *
1750  * We don't re-enable previously active VMs. We assume other parts of the
1751  * driver will call panthor_vm_active() on the VMs they intend to use.
1752  */
panthor_mmu_resume(struct panthor_device * ptdev)1753 void panthor_mmu_resume(struct panthor_device *ptdev)
1754 {
1755 	mutex_lock(&ptdev->mmu->as.slots_lock);
1756 	ptdev->mmu->as.alloc_mask = 0;
1757 	ptdev->mmu->as.faulty_mask = 0;
1758 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1759 
1760 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1761 }
1762 
1763 /**
1764  * panthor_mmu_pre_reset() - Prepare for a reset
1765  * @ptdev: Device.
1766  *
1767  * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1768  * don't get asked to do a VM operation while the GPU is down.
1769  *
1770  * We don't cleanly shutdown the AS slots here, because the reset might
1771  * come from an AS_ACTIVE_BIT stuck situation.
1772  */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1773 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1774 {
1775 	struct panthor_vm *vm;
1776 
1777 	panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1778 
1779 	mutex_lock(&ptdev->mmu->vm.lock);
1780 	ptdev->mmu->vm.reset_in_progress = true;
1781 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1782 		panthor_vm_stop(vm);
1783 	mutex_unlock(&ptdev->mmu->vm.lock);
1784 }
1785 
1786 /**
1787  * panthor_mmu_post_reset() - Restore things after a reset
1788  * @ptdev: Device.
1789  *
1790  * Put the MMU logic back in action after a reset. That implies resuming the
1791  * IRQ and re-enabling the VM_BIND queues.
1792  */
panthor_mmu_post_reset(struct panthor_device * ptdev)1793 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1794 {
1795 	struct panthor_vm *vm;
1796 
1797 	mutex_lock(&ptdev->mmu->as.slots_lock);
1798 
1799 	/* Now that the reset is effective, we can assume that none of the
1800 	 * AS slots are setup, and clear the faulty flags too.
1801 	 */
1802 	ptdev->mmu->as.alloc_mask = 0;
1803 	ptdev->mmu->as.faulty_mask = 0;
1804 
1805 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1806 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1807 
1808 		if (vm)
1809 			panthor_vm_release_as_locked(vm);
1810 	}
1811 
1812 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1813 
1814 	panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1815 
1816 	/* Restart the VM_BIND queues. */
1817 	mutex_lock(&ptdev->mmu->vm.lock);
1818 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1819 		panthor_vm_start(vm);
1820 	}
1821 	ptdev->mmu->vm.reset_in_progress = false;
1822 	mutex_unlock(&ptdev->mmu->vm.lock);
1823 }
1824 
panthor_vm_free(struct drm_gpuvm * gpuvm)1825 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1826 {
1827 	struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1828 	struct panthor_device *ptdev = vm->ptdev;
1829 
1830 	mutex_lock(&vm->heaps.lock);
1831 	if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1832 		panthor_heap_pool_destroy(vm->heaps.pool);
1833 	mutex_unlock(&vm->heaps.lock);
1834 	mutex_destroy(&vm->heaps.lock);
1835 
1836 	mutex_lock(&ptdev->mmu->vm.lock);
1837 	list_del(&vm->node);
1838 	/* Restore the scheduler state so we can call drm_sched_entity_destroy()
1839 	 * and drm_sched_fini(). If get there, that means we have no job left
1840 	 * and no new jobs can be queued, so we can start the scheduler without
1841 	 * risking interfering with the reset.
1842 	 */
1843 	if (ptdev->mmu->vm.reset_in_progress)
1844 		panthor_vm_start(vm);
1845 	mutex_unlock(&ptdev->mmu->vm.lock);
1846 
1847 	drm_sched_entity_destroy(&vm->entity);
1848 	drm_sched_fini(&vm->sched);
1849 
1850 	mutex_lock(&ptdev->mmu->as.slots_lock);
1851 	if (vm->as.id >= 0) {
1852 		int cookie;
1853 
1854 		if (drm_dev_enter(&ptdev->base, &cookie)) {
1855 			panthor_mmu_as_disable(ptdev, vm->as.id);
1856 			drm_dev_exit(cookie);
1857 		}
1858 
1859 		ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1860 		clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1861 		list_del(&vm->as.lru_node);
1862 	}
1863 	mutex_unlock(&ptdev->mmu->as.slots_lock);
1864 
1865 	free_io_pgtable_ops(vm->pgtbl_ops);
1866 
1867 	drm_mm_takedown(&vm->mm);
1868 	kfree(vm);
1869 }
1870 
1871 /**
1872  * panthor_vm_put() - Release a reference on a VM
1873  * @vm: VM to release the reference on. Can be NULL.
1874  */
panthor_vm_put(struct panthor_vm * vm)1875 void panthor_vm_put(struct panthor_vm *vm)
1876 {
1877 	drm_gpuvm_put(vm ? &vm->base : NULL);
1878 }
1879 
1880 /**
1881  * panthor_vm_get() - Get a VM reference
1882  * @vm: VM to get the reference on. Can be NULL.
1883  *
1884  * Return: @vm value.
1885  */
panthor_vm_get(struct panthor_vm * vm)1886 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1887 {
1888 	if (vm)
1889 		drm_gpuvm_get(&vm->base);
1890 
1891 	return vm;
1892 }
1893 
1894 /**
1895  * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1896  * @vm: VM to query the heap pool on.
1897  * @create: True if the heap pool should be created when it doesn't exist.
1898  *
1899  * Heap pools are per-VM. This function allows one to retrieve the heap pool
1900  * attached to a VM.
1901  *
1902  * If no heap pool exists yet, and @create is true, we create one.
1903  *
1904  * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1905  *
1906  * Return: A valid pointer on success, an ERR_PTR() otherwise.
1907  */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1908 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1909 {
1910 	struct panthor_heap_pool *pool;
1911 
1912 	mutex_lock(&vm->heaps.lock);
1913 	if (!vm->heaps.pool && create) {
1914 		if (vm->destroyed)
1915 			pool = ERR_PTR(-EINVAL);
1916 		else
1917 			pool = panthor_heap_pool_create(vm->ptdev, vm);
1918 
1919 		if (!IS_ERR(pool))
1920 			vm->heaps.pool = panthor_heap_pool_get(pool);
1921 	} else {
1922 		pool = panthor_heap_pool_get(vm->heaps.pool);
1923 		if (!pool)
1924 			pool = ERR_PTR(-ENOENT);
1925 	}
1926 	mutex_unlock(&vm->heaps.lock);
1927 
1928 	return pool;
1929 }
1930 
1931 /**
1932  * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all
1933  * heaps over all the heap pools in a VM
1934  * @pfile: File.
1935  * @stats: Memory stats to be updated.
1936  *
1937  * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM
1938  * is active, record the size as active as well.
1939  */
panthor_vm_heaps_sizes(struct panthor_file * pfile,struct drm_memory_stats * stats)1940 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats)
1941 {
1942 	struct panthor_vm *vm;
1943 	unsigned long i;
1944 
1945 	if (!pfile->vms)
1946 		return;
1947 
1948 	xa_lock(&pfile->vms->xa);
1949 	xa_for_each(&pfile->vms->xa, i, vm) {
1950 		size_t size = panthor_heap_pool_size(vm->heaps.pool);
1951 		stats->resident += size;
1952 		if (vm->as.id >= 0)
1953 			stats->active += size;
1954 	}
1955 	xa_unlock(&pfile->vms->xa);
1956 }
1957 
mair_to_memattr(u64 mair,bool coherent)1958 static u64 mair_to_memattr(u64 mair, bool coherent)
1959 {
1960 	u64 memattr = 0;
1961 	u32 i;
1962 
1963 	for (i = 0; i < 8; i++) {
1964 		u8 in_attr = mair >> (8 * i), out_attr;
1965 		u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1966 
1967 		/* For caching to be enabled, inner and outer caching policy
1968 		 * have to be both write-back, if one of them is write-through
1969 		 * or non-cacheable, we just choose non-cacheable. Device
1970 		 * memory is also translated to non-cacheable.
1971 		 */
1972 		if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
1973 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
1974 				   AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
1975 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
1976 		} else {
1977 			out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
1978 				   AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
1979 			/* Use SH_MIDGARD_INNER mode when device isn't coherent,
1980 			 * so SH_IS, which is used when IOMMU_CACHE is set, maps
1981 			 * to Mali's internal-shareable mode. As per the Mali
1982 			 * Spec, inner and outer-shareable modes aren't allowed
1983 			 * for WB memory when coherency is disabled.
1984 			 * Use SH_CPU_INNER mode when coherency is enabled, so
1985 			 * that SH_IS actually maps to the standard definition of
1986 			 * inner-shareable.
1987 			 */
1988 			if (!coherent)
1989 				out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
1990 			else
1991 				out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
1992 		}
1993 
1994 		memattr |= (u64)out_attr << (8 * i);
1995 	}
1996 
1997 	return memattr;
1998 }
1999 
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)2000 static void panthor_vma_link(struct panthor_vm *vm,
2001 			     struct panthor_vma *vma,
2002 			     struct drm_gpuvm_bo *vm_bo)
2003 {
2004 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2005 
2006 	mutex_lock(&bo->gpuva_list_lock);
2007 	drm_gpuva_link(&vma->base, vm_bo);
2008 	drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
2009 	mutex_unlock(&bo->gpuva_list_lock);
2010 }
2011 
panthor_vma_unlink(struct panthor_vm * vm,struct panthor_vma * vma)2012 static void panthor_vma_unlink(struct panthor_vm *vm,
2013 			       struct panthor_vma *vma)
2014 {
2015 	struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2016 	struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
2017 
2018 	mutex_lock(&bo->gpuva_list_lock);
2019 	drm_gpuva_unlink(&vma->base);
2020 	mutex_unlock(&bo->gpuva_list_lock);
2021 
2022 	/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
2023 	 * when entering this function, so we can implement deferred VMA
2024 	 * destruction. Re-assign it here.
2025 	 */
2026 	vma->base.vm_bo = vm_bo;
2027 	list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2028 }
2029 
panthor_vma_init(struct panthor_vma * vma,u32 flags)2030 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2031 {
2032 	INIT_LIST_HEAD(&vma->node);
2033 	vma->flags = flags;
2034 }
2035 
2036 #define PANTHOR_VM_MAP_FLAGS \
2037 	(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2038 	 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2039 	 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2040 
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2041 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2042 {
2043 	struct panthor_vm *vm = priv;
2044 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2045 	struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2046 	int ret;
2047 
2048 	if (!vma)
2049 		return -EINVAL;
2050 
2051 	panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2052 
2053 	ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2054 				   op_ctx->map.sgt, op->map.gem.offset,
2055 				   op->map.va.range);
2056 	if (ret)
2057 		return ret;
2058 
2059 	/* Ref owned by the mapping now, clear the obj field so we don't release the
2060 	 * pinning/obj ref behind GPUVA's back.
2061 	 */
2062 	drm_gpuva_map(&vm->base, &vma->base, &op->map);
2063 	panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2064 	op_ctx->map.vm_bo = NULL;
2065 	return 0;
2066 }
2067 
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2068 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2069 				       void *priv)
2070 {
2071 	struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2072 	struct panthor_vm *vm = priv;
2073 	struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2074 	struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2075 	u64 unmap_start, unmap_range;
2076 	int ret;
2077 
2078 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2079 	ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2080 	if (ret)
2081 		return ret;
2082 
2083 	if (op->remap.prev) {
2084 		prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2085 		panthor_vma_init(prev_vma, unmap_vma->flags);
2086 	}
2087 
2088 	if (op->remap.next) {
2089 		next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2090 		panthor_vma_init(next_vma, unmap_vma->flags);
2091 	}
2092 
2093 	drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2094 			next_vma ? &next_vma->base : NULL,
2095 			&op->remap);
2096 
2097 	if (prev_vma) {
2098 		/* panthor_vma_link() transfers the vm_bo ownership to
2099 		 * the VMA object. Since the vm_bo we're passing is still
2100 		 * owned by the old mapping which will be released when this
2101 		 * mapping is destroyed, we need to grab a ref here.
2102 		 */
2103 		panthor_vma_link(vm, prev_vma,
2104 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2105 	}
2106 
2107 	if (next_vma) {
2108 		panthor_vma_link(vm, next_vma,
2109 				 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2110 	}
2111 
2112 	panthor_vma_unlink(vm, unmap_vma);
2113 	return 0;
2114 }
2115 
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2116 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2117 				       void *priv)
2118 {
2119 	struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2120 	struct panthor_vm *vm = priv;
2121 	int ret;
2122 
2123 	ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2124 				     unmap_vma->base.va.range);
2125 	if (drm_WARN_ON(&vm->ptdev->base, ret))
2126 		return ret;
2127 
2128 	drm_gpuva_unmap(&op->unmap);
2129 	panthor_vma_unlink(vm, unmap_vma);
2130 	return 0;
2131 }
2132 
2133 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2134 	.vm_free = panthor_vm_free,
2135 	.sm_step_map = panthor_gpuva_sm_step_map,
2136 	.sm_step_remap = panthor_gpuva_sm_step_remap,
2137 	.sm_step_unmap = panthor_gpuva_sm_step_unmap,
2138 };
2139 
2140 /**
2141  * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2142  * @vm: VM to get the dma_resv of.
2143  *
2144  * Return: A dma_resv object.
2145  */
panthor_vm_resv(struct panthor_vm * vm)2146 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2147 {
2148 	return drm_gpuvm_resv(&vm->base);
2149 }
2150 
panthor_vm_root_gem(struct panthor_vm * vm)2151 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2152 {
2153 	if (!vm)
2154 		return NULL;
2155 
2156 	return vm->base.r_obj;
2157 }
2158 
2159 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2160 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2161 		   bool flag_vm_unusable_on_failure)
2162 {
2163 	u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2164 	int ret;
2165 
2166 	if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2167 		return 0;
2168 
2169 	mutex_lock(&vm->op_lock);
2170 	vm->op_ctx = op;
2171 	switch (op_type) {
2172 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2173 		if (vm->unusable) {
2174 			ret = -EINVAL;
2175 			break;
2176 		}
2177 
2178 		ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
2179 				       op->map.vm_bo->obj, op->map.bo_offset);
2180 		break;
2181 
2182 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2183 		ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2184 		break;
2185 
2186 	default:
2187 		ret = -EINVAL;
2188 		break;
2189 	}
2190 
2191 	if (ret && flag_vm_unusable_on_failure)
2192 		vm->unusable = true;
2193 
2194 	vm->op_ctx = NULL;
2195 	mutex_unlock(&vm->op_lock);
2196 
2197 	return ret;
2198 }
2199 
2200 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2201 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2202 {
2203 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2204 	bool cookie;
2205 	int ret;
2206 
2207 	/* Not only we report an error whose result is propagated to the
2208 	 * drm_sched finished fence, but we also flag the VM as unusable, because
2209 	 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2210 	 * to be destroyed and recreated.
2211 	 */
2212 	cookie = dma_fence_begin_signalling();
2213 	ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2214 	dma_fence_end_signalling(cookie);
2215 
2216 	return ret ? ERR_PTR(ret) : NULL;
2217 }
2218 
panthor_vm_bind_job_release(struct kref * kref)2219 static void panthor_vm_bind_job_release(struct kref *kref)
2220 {
2221 	struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2222 
2223 	if (job->base.s_fence)
2224 		drm_sched_job_cleanup(&job->base);
2225 
2226 	panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2227 	panthor_vm_put(job->vm);
2228 	kfree(job);
2229 }
2230 
2231 /**
2232  * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2233  * @sched_job: Job to release the reference on.
2234  */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2235 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2236 {
2237 	struct panthor_vm_bind_job *job =
2238 		container_of(sched_job, struct panthor_vm_bind_job, base);
2239 
2240 	if (sched_job)
2241 		kref_put(&job->refcount, panthor_vm_bind_job_release);
2242 }
2243 
2244 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2245 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2246 {
2247 	struct panthor_vm_bind_job *job =
2248 		container_of(sched_job, struct panthor_vm_bind_job, base);
2249 
2250 	drm_sched_job_cleanup(sched_job);
2251 
2252 	/* Do the heavy cleanups asynchronously, so we're out of the
2253 	 * dma-signaling path and can acquire dma-resv locks safely.
2254 	 */
2255 	queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2256 }
2257 
2258 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2259 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2260 {
2261 	WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2262 	return DRM_GPU_SCHED_STAT_RESET;
2263 }
2264 
2265 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2266 	.run_job = panthor_vm_bind_run_job,
2267 	.free_job = panthor_vm_bind_free_job,
2268 	.timedout_job = panthor_vm_bind_timedout_job,
2269 };
2270 
2271 /**
2272  * panthor_vm_create() - Create a VM
2273  * @ptdev: Device.
2274  * @for_mcu: True if this is the FW MCU VM.
2275  * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2276  * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2277  * @auto_kernel_va_start: Start of the auto-VA kernel range.
2278  * @auto_kernel_va_size: Size of the auto-VA kernel range.
2279  *
2280  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2281  */
2282 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2283 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2284 		  u64 kernel_va_start, u64 kernel_va_size,
2285 		  u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2286 {
2287 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2288 	u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2289 	u64 full_va_range = 1ull << va_bits;
2290 	struct drm_gem_object *dummy_gem;
2291 	struct drm_gpu_scheduler *sched;
2292 	const struct drm_sched_init_args sched_args = {
2293 		.ops = &panthor_vm_bind_ops,
2294 		.submit_wq = ptdev->mmu->vm.wq,
2295 		.num_rqs = 1,
2296 		.credit_limit = 1,
2297 		/* Bind operations are synchronous for now, no timeout needed. */
2298 		.timeout = MAX_SCHEDULE_TIMEOUT,
2299 		.name = "panthor-vm-bind",
2300 		.dev = ptdev->base.dev,
2301 	};
2302 	struct io_pgtable_cfg pgtbl_cfg;
2303 	u64 mair, min_va, va_range;
2304 	struct panthor_vm *vm;
2305 	int ret;
2306 
2307 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2308 	if (!vm)
2309 		return ERR_PTR(-ENOMEM);
2310 
2311 	/* We allocate a dummy GEM for the VM. */
2312 	dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2313 	if (!dummy_gem) {
2314 		ret = -ENOMEM;
2315 		goto err_free_vm;
2316 	}
2317 
2318 	mutex_init(&vm->heaps.lock);
2319 	vm->for_mcu = for_mcu;
2320 	vm->ptdev = ptdev;
2321 	mutex_init(&vm->op_lock);
2322 
2323 	if (for_mcu) {
2324 		/* CSF MCU is a cortex M7, and can only address 4G */
2325 		min_va = 0;
2326 		va_range = SZ_4G;
2327 	} else {
2328 		min_va = 0;
2329 		va_range = full_va_range;
2330 	}
2331 
2332 	mutex_init(&vm->mm_lock);
2333 	drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2334 	vm->kernel_auto_va.start = auto_kernel_va_start;
2335 	vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2336 
2337 	INIT_LIST_HEAD(&vm->node);
2338 	INIT_LIST_HEAD(&vm->as.lru_node);
2339 	vm->as.id = -1;
2340 	refcount_set(&vm->as.active_cnt, 0);
2341 
2342 	pgtbl_cfg = (struct io_pgtable_cfg) {
2343 		.pgsize_bitmap	= SZ_4K | SZ_2M,
2344 		.ias		= va_bits,
2345 		.oas		= pa_bits,
2346 		.coherent_walk	= ptdev->coherent,
2347 		.tlb		= &mmu_tlb_ops,
2348 		.iommu_dev	= ptdev->base.dev,
2349 		.alloc		= alloc_pt,
2350 		.free		= free_pt,
2351 	};
2352 
2353 	vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2354 	if (!vm->pgtbl_ops) {
2355 		ret = -EINVAL;
2356 		goto err_mm_takedown;
2357 	}
2358 
2359 	ret = drm_sched_init(&vm->sched, &sched_args);
2360 	if (ret)
2361 		goto err_free_io_pgtable;
2362 
2363 	sched = &vm->sched;
2364 	ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2365 	if (ret)
2366 		goto err_sched_fini;
2367 
2368 	mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2369 	vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2370 
2371 	mutex_lock(&ptdev->mmu->vm.lock);
2372 	list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2373 
2374 	/* If a reset is in progress, stop the scheduler. */
2375 	if (ptdev->mmu->vm.reset_in_progress)
2376 		panthor_vm_stop(vm);
2377 	mutex_unlock(&ptdev->mmu->vm.lock);
2378 
2379 	/* We intentionally leave the reserved range to zero, because we want kernel VMAs
2380 	 * to be handled the same way user VMAs are.
2381 	 */
2382 	drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2383 		       DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
2384 		       min_va, va_range, 0, 0, &panthor_gpuvm_ops);
2385 	drm_gem_object_put(dummy_gem);
2386 	return vm;
2387 
2388 err_sched_fini:
2389 	drm_sched_fini(&vm->sched);
2390 
2391 err_free_io_pgtable:
2392 	free_io_pgtable_ops(vm->pgtbl_ops);
2393 
2394 err_mm_takedown:
2395 	drm_mm_takedown(&vm->mm);
2396 	drm_gem_object_put(dummy_gem);
2397 
2398 err_free_vm:
2399 	kfree(vm);
2400 	return ERR_PTR(ret);
2401 }
2402 
2403 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2404 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2405 			       struct panthor_vm *vm,
2406 			       const struct drm_panthor_vm_bind_op *op,
2407 			       struct panthor_vm_op_ctx *op_ctx)
2408 {
2409 	ssize_t vm_pgsz = panthor_vm_page_size(vm);
2410 	struct drm_gem_object *gem;
2411 	int ret;
2412 
2413 	/* Aligned on page size. */
2414 	if (!IS_ALIGNED(op->va | op->size, vm_pgsz))
2415 		return -EINVAL;
2416 
2417 	switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2418 	case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2419 		gem = drm_gem_object_lookup(file, op->bo_handle);
2420 		ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2421 						    gem ? to_panthor_bo(gem) : NULL,
2422 						    op->bo_offset,
2423 						    op->size,
2424 						    op->va,
2425 						    op->flags);
2426 		drm_gem_object_put(gem);
2427 		return ret;
2428 
2429 	case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2430 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2431 			return -EINVAL;
2432 
2433 		if (op->bo_handle || op->bo_offset)
2434 			return -EINVAL;
2435 
2436 		return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2437 
2438 	case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2439 		if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2440 			return -EINVAL;
2441 
2442 		if (op->bo_handle || op->bo_offset)
2443 			return -EINVAL;
2444 
2445 		if (op->va || op->size)
2446 			return -EINVAL;
2447 
2448 		if (!op->syncs.count)
2449 			return -EINVAL;
2450 
2451 		panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2452 		return 0;
2453 
2454 	default:
2455 		return -EINVAL;
2456 	}
2457 }
2458 
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2459 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2460 {
2461 	struct panthor_vm_bind_job *job =
2462 		container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2463 
2464 	panthor_vm_bind_job_put(&job->base);
2465 }
2466 
2467 /**
2468  * panthor_vm_bind_job_create() - Create a VM_BIND job
2469  * @file: File.
2470  * @vm: VM targeted by the VM_BIND job.
2471  * @op: VM operation data.
2472  *
2473  * Return: A valid pointer on success, an ERR_PTR() otherwise.
2474  */
2475 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2476 panthor_vm_bind_job_create(struct drm_file *file,
2477 			   struct panthor_vm *vm,
2478 			   const struct drm_panthor_vm_bind_op *op)
2479 {
2480 	struct panthor_vm_bind_job *job;
2481 	int ret;
2482 
2483 	if (!vm)
2484 		return ERR_PTR(-EINVAL);
2485 
2486 	if (vm->destroyed || vm->unusable)
2487 		return ERR_PTR(-EINVAL);
2488 
2489 	job = kzalloc(sizeof(*job), GFP_KERNEL);
2490 	if (!job)
2491 		return ERR_PTR(-ENOMEM);
2492 
2493 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2494 	if (ret) {
2495 		kfree(job);
2496 		return ERR_PTR(ret);
2497 	}
2498 
2499 	INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2500 	kref_init(&job->refcount);
2501 	job->vm = panthor_vm_get(vm);
2502 
2503 	ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id);
2504 	if (ret)
2505 		goto err_put_job;
2506 
2507 	return &job->base;
2508 
2509 err_put_job:
2510 	panthor_vm_bind_job_put(&job->base);
2511 	return ERR_PTR(ret);
2512 }
2513 
2514 /**
2515  * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2516  * @exec: The locking/preparation context.
2517  * @sched_job: The job to prepare resvs on.
2518  *
2519  * Locks and prepare the VM resv.
2520  *
2521  * If this is a map operation, locks and prepares the GEM resv.
2522  *
2523  * Return: 0 on success, a negative error code otherwise.
2524  */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2525 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2526 				      struct drm_sched_job *sched_job)
2527 {
2528 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2529 	int ret;
2530 
2531 	/* Acquire the VM lock an reserve a slot for this VM bind job. */
2532 	ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2533 	if (ret)
2534 		return ret;
2535 
2536 	if (job->ctx.map.vm_bo) {
2537 		/* Lock/prepare the GEM being mapped. */
2538 		ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2539 		if (ret)
2540 			return ret;
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2548  * @exec: drm_exec context.
2549  * @sched_job: Job to update the resvs on.
2550  */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2551 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2552 				      struct drm_sched_job *sched_job)
2553 {
2554 	struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2555 
2556 	/* Explicit sync => we just register our job finished fence as bookkeep. */
2557 	drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2558 				 &sched_job->s_fence->finished,
2559 				 DMA_RESV_USAGE_BOOKKEEP,
2560 				 DMA_RESV_USAGE_BOOKKEEP);
2561 }
2562 
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2563 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2564 			     struct dma_fence *fence,
2565 			     enum dma_resv_usage private_usage,
2566 			     enum dma_resv_usage extobj_usage)
2567 {
2568 	drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2569 }
2570 
2571 /**
2572  * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2573  * @file: File.
2574  * @vm: VM targeted by the VM operation.
2575  * @op: Data describing the VM operation.
2576  *
2577  * Return: 0 on success, a negative error code otherwise.
2578  */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2579 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2580 				 struct panthor_vm *vm,
2581 				 struct drm_panthor_vm_bind_op *op)
2582 {
2583 	struct panthor_vm_op_ctx op_ctx;
2584 	int ret;
2585 
2586 	/* No sync objects allowed on synchronous operations. */
2587 	if (op->syncs.count)
2588 		return -EINVAL;
2589 
2590 	if (!op->size)
2591 		return 0;
2592 
2593 	ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2594 	if (ret)
2595 		return ret;
2596 
2597 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2598 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2599 
2600 	return ret;
2601 }
2602 
2603 /**
2604  * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2605  * @vm: VM to map the GEM to.
2606  * @bo: GEM object to map.
2607  * @offset: Offset in the GEM object.
2608  * @size: Size to map.
2609  * @va: Virtual address to map the object to.
2610  * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2611  * Only map-related flags are valid.
2612  *
2613  * Internal use only. For userspace requests, use
2614  * panthor_vm_bind_exec_sync_op() instead.
2615  *
2616  * Return: 0 on success, a negative error code otherwise.
2617  */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2618 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2619 			    u64 offset, u64 size, u64 va, u32 flags)
2620 {
2621 	struct panthor_vm_op_ctx op_ctx;
2622 	int ret;
2623 
2624 	ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2625 	if (ret)
2626 		return ret;
2627 
2628 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2629 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2630 
2631 	return ret;
2632 }
2633 
2634 /**
2635  * panthor_vm_unmap_range() - Unmap a portion of the VA space
2636  * @vm: VM to unmap the region from.
2637  * @va: Virtual address to unmap. Must be 4k aligned.
2638  * @size: Size of the region to unmap. Must be 4k aligned.
2639  *
2640  * Internal use only. For userspace requests, use
2641  * panthor_vm_bind_exec_sync_op() instead.
2642  *
2643  * Return: 0 on success, a negative error code otherwise.
2644  */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2645 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2646 {
2647 	struct panthor_vm_op_ctx op_ctx;
2648 	int ret;
2649 
2650 	ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2651 	if (ret)
2652 		return ret;
2653 
2654 	ret = panthor_vm_exec_op(vm, &op_ctx, false);
2655 	panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2656 
2657 	return ret;
2658 }
2659 
2660 /**
2661  * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2662  * @exec: Locking/preparation context.
2663  * @vm: VM targeted by the GPU job.
2664  * @slot_count: Number of slots to reserve.
2665  *
2666  * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2667  * are available when the job is executed. In order to guarantee that, we
2668  * need to reserve a slot on all BOs mapped to a VM and update this slot with
2669  * the job fence after its submission.
2670  *
2671  * Return: 0 on success, a negative error code otherwise.
2672  */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2673 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2674 					u32 slot_count)
2675 {
2676 	int ret;
2677 
2678 	/* Acquire the VM lock and reserve a slot for this GPU job. */
2679 	ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2680 	if (ret)
2681 		return ret;
2682 
2683 	return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2684 }
2685 
2686 /**
2687  * panthor_mmu_unplug() - Unplug the MMU logic
2688  * @ptdev: Device.
2689  *
2690  * No access to the MMU regs should be done after this function is called.
2691  * We suspend the IRQ and disable all VMs to guarantee that.
2692  */
panthor_mmu_unplug(struct panthor_device * ptdev)2693 void panthor_mmu_unplug(struct panthor_device *ptdev)
2694 {
2695 	if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2696 		panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2697 
2698 	mutex_lock(&ptdev->mmu->as.slots_lock);
2699 	for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2700 		struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2701 
2702 		if (vm) {
2703 			drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2704 			panthor_vm_release_as_locked(vm);
2705 		}
2706 	}
2707 	mutex_unlock(&ptdev->mmu->as.slots_lock);
2708 }
2709 
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2710 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2711 {
2712 	destroy_workqueue(res);
2713 }
2714 
2715 /**
2716  * panthor_mmu_init() - Initialize the MMU logic.
2717  * @ptdev: Device.
2718  *
2719  * Return: 0 on success, a negative error code otherwise.
2720  */
panthor_mmu_init(struct panthor_device * ptdev)2721 int panthor_mmu_init(struct panthor_device *ptdev)
2722 {
2723 	u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2724 	struct panthor_mmu *mmu;
2725 	int ret, irq;
2726 
2727 	mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2728 	if (!mmu)
2729 		return -ENOMEM;
2730 
2731 	INIT_LIST_HEAD(&mmu->as.lru_list);
2732 
2733 	ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2734 	if (ret)
2735 		return ret;
2736 
2737 	INIT_LIST_HEAD(&mmu->vm.list);
2738 	ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2739 	if (ret)
2740 		return ret;
2741 
2742 	ptdev->mmu = mmu;
2743 
2744 	irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2745 	if (irq <= 0)
2746 		return -ENODEV;
2747 
2748 	ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2749 				      panthor_mmu_fault_mask(ptdev, ~0));
2750 	if (ret)
2751 		return ret;
2752 
2753 	mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2754 	if (!mmu->vm.wq)
2755 		return -ENOMEM;
2756 
2757 	/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2758 	 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2759 	 * limitation.
2760 	 */
2761 	if (va_bits > BITS_PER_LONG) {
2762 		ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2763 		ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2764 	}
2765 
2766 	return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2767 }
2768 
2769 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2770 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2771 {
2772 	int ret;
2773 
2774 	mutex_lock(&vm->op_lock);
2775 	ret = drm_debugfs_gpuva_info(m, &vm->base);
2776 	mutex_unlock(&vm->op_lock);
2777 
2778 	return ret;
2779 }
2780 
show_each_vm(struct seq_file * m,void * arg)2781 static int show_each_vm(struct seq_file *m, void *arg)
2782 {
2783 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2784 	struct drm_device *ddev = node->minor->dev;
2785 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2786 	int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2787 	struct panthor_vm *vm;
2788 	int ret = 0;
2789 
2790 	mutex_lock(&ptdev->mmu->vm.lock);
2791 	list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2792 		ret = show(vm, m);
2793 		if (ret < 0)
2794 			break;
2795 
2796 		seq_puts(m, "\n");
2797 	}
2798 	mutex_unlock(&ptdev->mmu->vm.lock);
2799 
2800 	return ret;
2801 }
2802 
2803 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2804 	DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2805 };
2806 
2807 /**
2808  * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2809  * @minor: Minor.
2810  */
panthor_mmu_debugfs_init(struct drm_minor * minor)2811 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2812 {
2813 	drm_debugfs_create_files(panthor_mmu_debugfs_list,
2814 				 ARRAY_SIZE(panthor_mmu_debugfs_list),
2815 				 minor->debugfs_root, minor);
2816 }
2817 #endif /* CONFIG_DEBUG_FS */
2818 
2819 /**
2820  * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2821  *
2822  * Return: 0 on success, a negative error code otherwise.
2823  */
panthor_mmu_pt_cache_init(void)2824 int panthor_mmu_pt_cache_init(void)
2825 {
2826 	pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2827 	if (!pt_cache)
2828 		return -ENOMEM;
2829 
2830 	return 0;
2831 }
2832 
2833 /**
2834  * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2835  */
panthor_mmu_pt_cache_fini(void)2836 void panthor_mmu_pt_cache_fini(void)
2837 {
2838 	kmem_cache_destroy(pt_cache);
2839 }
2840